
AT91 ARM
Thumb
Microcontrollers

Application
Note

 6283B–ATARM–17-Jul-09
AT91 USB Mass Storage Device Driver
Implementation

1. Introduction
The Mass Storage (MS) class is an extension to the USB specification that defines
how mass storage devices, such as a hard-disk, a disk-on-key or a USB floppy drive
should operate on the USB.

Using the USB for a mass storage device has two advantages. First, software devel-
opment is much faster, since most operating systems (if not all) include a fully-
functional driver for the MSD class. Thus, only the device-side driver has to be devel-
oped to have a working product. In addition, relying on the Mass Storage standard
guarantees that a device will be useable on many operating systems without any
extra coding.

This Application Note describes how to implement a Mass Storage Device (MSD)
driver with the AT91 USB Framework provided by Atmel® and developed for AT91
ARM® Thumb®-based microcontrollers. First, generic information about MSD-specific
definitions and requirements is given. This document then details how to use the MSD
class to create a hard disk operating on the internal Flash memory of a chip.

2. Related Documents
[1] Atmel Corp., AT91 USB Framework, lit. num. 6269

[2] T10, SCSI Block Commands - 3 (SBC-3), Revision 7, September 22, 2006.

[3] T10, SCSI Primary Commands - 4 (SPC-4), Revision 6, July 18, 2006.

[4] USB Mass Storage Class Bulk-Only Transport, Revision 1.0, September 31, 1999.

[5] USB Mass Storage Class Compliance Test Specification, Revision 0.9a, June 30,
2005.

[6] USB Mass Storage Class Specification Overview, Revision 1.2, June 23, 2003.

http://www.atmel.com/dyn/products/app_notes.asp?family_id=605#Communication%20Modules

3. Mass Storage Class Basics
This section gives generic details on the MSD class, including its purpose, architecture and how
it is supported by various operating systems.

3.1 Purpose
The MSD class defines how devices such as a hard disk, a USB floppy disk drive or a disk-on-
key shall operate on the USB. These devices are referred to as mass storage devices, since
they usually offer a high storage capacity. When plugged to a PC, a device complying to the
MSD specification is accessed like any other disk on the system.

Many devices use the MSD class in various ways. The simplest use is for disk-on-keys, which
offer a portable storage with a high capacity compared to traditional floppy disks. External USB
hard-drives are also common; they enable quick and easy connection to any system. Devices
like MP3 & video players use MSD to simplify data transfer to and from the player. Finally, on
some products the internal memory can be accessed through a MSD interface, allowing easy
upgrade of the firmware.

In practice, the specification only defines a way to wrap existing data transfer protocols, such as
SCSI or the Reduced Block Commands (RBC) set. A list of the supported protocols and their
uses is given in the following section.

3.2 Data Transfer Protocols
The Mass Storage Class Specification Overview 1.2 supports the following set of devices for an
MSD device:

The SCSI transparent command set comprises all SCSI-related specifications, such as SCSI
Primary Commands (SPC), SCSI Block Commands (SBC), and so on. A command will be
issued by the host to determine exactly with which standard the device is compliant.

The protocol used by the device is specified in its Interface descriptor, in the bInterfaceSubclass
field.

3.3 Transport Protocols
There are actually two different transport protocols for the MSD class:

• Control/Bulk/Interrupt (CBI) transport
• Bulk-Only Transport (BOT)

These two methods are described in two separate stand-alone documents. CBI can be consid-
ered obsolete and is being completely replaced by BOT. It was originally targeted at full-speed

Table 3-1. Supported Protocols for MSD Devices

Subclass Code Command Block Specification Used by

01h Reduced Block Commands (RBC) Flash devices

02h SFF-8020i, MMC-2 CD & DVD devices

03h QIC-157 Tape devices

04h UFI Floppy disk drives

05h SFF-8070i Floppy disk drives

06h SCSI transparent command set Any
2
6283B–ATARM–17-Jul-09

Application Note

Application Note
floppy disk drives. Therefore, the rest of this document will talk about Bulk-Only Transport
exclusively.

3.4 Architecture

3.4.1 Interfaces
An MSD device only needs one single interface. It should display the MSD class code (08h) in
the bInterfaceClass field, the corresponding data transfer protocol code (see Section 3.2 on
page 2) in the bInterfaceSubclass field, and finally the transport protocol (see Section 3.3 on
page 2) code in the bInterfaceProtocol field. The protocol code for Bulk-only transport is 50h.

3.4.2 Endpoints
Exactly three endpoints (when using the Bulk-Only Transport protocol) are necessary for MSD
devices.

The first one is the Control endpoint 0, and is used for class-specific requests and for clearing
Halt conditions on the other two endpoints. Endpoints are halted in response to errors and host
bad behavior during data transfers, and the CLEAR_FEATURE request is consequently used to
return them to a functional state.

The other two endpoints, which are of type Bulk, are used for transferring commands and data
over the bus. There must be one Bulk-IN and one Bulk-OUT endpoint.

Figure 3-1. Mass Storage Device Driver Architecture

3.4.3 Class-Specific Descriptors
There are no class-specific descriptors for an MSD device using the Bulk-only transport protocol.

Table 3-2. Transport Protocol Codes

bInterfaceProtocol Protocol Implementation

00h Control/Bulk/Interrupt protocol (with command completion interrupt)

01h Control/Bulk/Interrupt protocol (without command completion interrupt)

50h Bulk-only transport
3
6283B–ATARM–17-Jul-09

3.4.4 Class-specific Requests

3.4.4.1 GetMaxLUN
A device can feature one or more Logical Unit (LU). Each of these units will be treated as a sep-
arate disk when plugged to a computer. A device can have up to 15 logical units.

The GET_MAX_LUN request is issued by the host to determine the maximum Logical Unit
Number (LUN) supported by the device. This is not equivalent to the number of LU on the
device; since units are numbered starting from 0, a device with 5 LUs should report a value of 4,
which will be the index of the fifth unit.

Optionally, a device with only one LUN may STALL this request instead of returning a value of
zero.

3.4.4.2 Bulk-Only Mass Storage Reset
This request is used to reset the state of the device and prepare it to receive commands and
data. Note that the data toggle bits must not be altered by a RESET command; same for the Halt
state of endpoints, i.e., halted endpoints must not be reset to a normal state.

3.4.5 Command/Data/Status
Each MSD transaction is divided into three steps:

• Command stage
• Data stage (optional)
• Status stage

During the command stage, a Command Block Wrapper (CBW) is transmitted by the host to the
device. The CBW describes several parameters of the transaction (direction, length, LUN) and
carries a variable-length command block. The command block contains data in the format
defined by the transfer protocol used by the device (see Section 3.2 on page 2).

After the device has received and interpreted the command, an optional data stage may take
place if the command requires it. During this step, data is transferred either to or from the device
depending on the command, in several IN/OUT transfers.

Once the data stage is complete, the host issues a final IN request on the Bulk-IN endpoint of
the device to request the Command Status Wrapper (CSW). The CSW is used to report correct

Table 3-3. Command Block Wrapper Data Format

Offset Field Name Length Comment

0 dCBWSignature 4 bytes Signature to identify CBW, must be 43425355h

4 dCBWTag 4 bytes Tag sent by the host, echoed in the CSW

8 dCBWTransferLength 4 bytes Length of transfer during the data stage

12 bmCBWFlags 1 byte
Bits 0-6: Reserved/obsolete
Bit 7: Transfer direction (0 = OUT, 1 = IN)

13 bCBWLUN 1 byte
Bits 0-3: LUN to which the command is sent
Bits 4-7: Reserved

14 bCBWCBLength 1 byte
Bits 0-5: Length of command block in bytes
Bits 6-7: Reserved

15 CBWCB 0-16 bytes Command block to be executed by the device
4
6283B–ATARM–17-Jul-09

Application Note

Application Note
or incorrect execution of the command, as well as indicating the length of remaining data that
has not been transferred.

These steps are all performed on the two Bulk endpoints, and do not involve Control endpoint 0
at all.

3.4.6 Reset Recovery
When severe errors occur during command or data transfers (as defined in the Mass Storage
Bulk-only Transport 1.0 document), the device must halt both Bulk endpoints and wait for a
Reset Recovery procedure. The Reset Recovery sequence goes as follows:

• The host issues a Bulk-Only Mass Storage Reset request
• The host issues two CLEAR_FEATURE requests to unhalt each endpoint

A device waiting for a Reset Recovery must not carry out CLEAR_FEATURE requests trying to
unhalt either Bulk endpoint until after a Reset request has been received. This enables the host
to distinguish between severe and minor errors.

The only major error defined by the Bulk-Only Transport standard is when a CBW is not valid.
This means one or more of the following:

• The CBW is not received after a CSW has been sent or a reset.
• The CBW is not exactly 31 bytes in length.
• The dCBWSignature field of the CBW is not equal to 43425355h.

3.5 Host Drivers
Almost all operating systems now provide a generic driver for the MSD class. However, the set
of supported data transfer protocols (see Section 3.2 on page 2) may vary. For example, Micro-
soft® Windows® does not currently support the Reduced Block Command set.

4. Mass Storage SCSI Disk
This section describes how to implement a USB disk by using the MSD class with the SCSI
transparent command set and the AT91 USB Framework. For more information about the frame-
work, please refer to the AT91 USB Framework Application Note; details about the USB and the
Mass Storage class can be found in the USB Specification 2.0 and the MSC Bulk-Only Trans-
port Specification 1.0 documents, respectively.

The software example provided with this document uses the internal flash of the chip as its stor-
age medium, but has been designed in a modular way to allow easy modification for any
medium, e.g. DataFlash®, SD card, external Flash chip.

Table 3-4. Command Status Wrapper

Offset Field Name Length Comment

0 dCSWSignature 4 bytes Signature to identify CSW, must be 53425355h

4 dCSWTag 4 bytes Copy of previous CBW tag

8 dCSWDataResidue 4 bytes Difference between expected and real transfer length

12 bCSWStatus 1 byte Indicates the success or failure of the command
5
6283B–ATARM–17-Jul-09

4.1 Architecture
The AT91 USB Framework offered by ATMEL makes it easy to create USB class drivers. The
example software described in the current chapter is based on this framework. Figure 4-1 shows
the application architecture:

Figure 4-1. Application Architecture Using the AT91 USB Framework

The internal architecture of the Application layers is slightly complex compared to other drivers
like HID or CDC. This is so because of three factors:

• The Command/Data/Status flow described in Section 3.4.5 on page 4 requires the use of a
state machine for non-blocking operation.

• The example software has been designed to be easily extended with support for other media.
• The example software has been designed to support multiple LUNs on one or more media.

Figure 4-2 shows the corresponding architecture:

Figure 4-2. Application Layer Architecture

These elements of the software will be described in the following sections.
6
6283B–ATARM–17-Jul-09

Application Note

Application Note
4.2 Descriptors
There are no class-specific descriptors for a device using the MSD class with the Bulk-only
transport protocol. This section thus only details the values which must be set in the standard
descriptors.

4.2.1 Device Descriptor
Since the MSD class code is only specified at the Interface level, the Device descriptor is very
basic:

Note that the Vendor ID is a special value attributed by the USB-IF organization. The product ID
can be chosen freely by the vendor.

Table 4-1. Device Descriptor for a Mass Storage SCSI Disk

Field Value Comment

bLength sizeof(USBDeviceDescriptor) Size of descriptor (18 bytes)

bDescriptorType USBGenericDescriptor_DEVICE Device descriptor type

bcdUSB USBDeviceDescriptor_USB2_00 Supports USB 2.00

bDeviceClass MSDeviceDescriptor_CLASS Class, interface and protocol are
specified at Interface level

bDeviceSubClass MSDeviceDescriptor_SUBCLASS No subclass at device level

bDeviceProtocol MSDeviceDescriptor_PROTOCOL No protocol at device level

bMaxPacketSize0 BOARD_USB_ENDPOINTS_MAXPAC
KETSIZE(0)

Maximum packet size for Control
endpoint 0 (depends on USB
controller)

idVendor MSDDriverDescriptors_VENDORID Vendor ID for ATMEL (03EBh)

idProduct MSDDriverDescriptors_PRODUCTID Product ID for the example (6202h)

bcdDevice MSDDriverDescriptors_RELEASE Device version number is 0.01

iManufacturer 1 Index of Manufacturer description
string

iProduct 2 Index of Product description string

iSerialNumber 3 Index of Serial Number string

bNumConfigurations 1 This device supports only one
configuration
7
6283B–ATARM–17-Jul-09

4.2.2 Configuration Descriptor
Since one interface is required by the MSD specification, this must be specified in the Configu-
ration descriptor. There is no other value of interest to put here.

When the Configuration descriptor is requested by the host (by using the GET_DESCRIPTOR
command), the device must also send all the related descriptors, i.e., Interface, Endpoint and
Class-Specific descriptors. It is convenient to create a single packed structure to hold all this
data, for sending everything in one chunk. In the example software, a MSDConfigurationDe-
scriptors structure has been declared to that end.

4.2.3 Interface Descriptor
As previously stated in Section 3.4.1 on page 3, the Interface descriptor must indicate several
features:

• Mass Storage Device class code (08h) in the bInterfaceClass field
• Data transport protocol code in the bInterfaceSubclass field
• Bulk-Only Transport protocol code (50h) in the bInterfaceProtocol field

This example uses the SCSI transparent command set (code 06h). This is the most appropriate
setting for a Flash device, given that the RBC command set is not supported by Microsoft
Windows.

Here is the complete Interface descriptor for the example:

Table 4-2. Configuration Descriptor for a Mass Storage SCSI Disk

Field Value Comment

bLength sizeof(USBConfigurationDescriptor) Size of descriptor (9 bytes)

bDescriptorType USBGenericDescriptor_CONFIGURATI
ON Configuration descriptor type

wTotalLength sizeof(MSDConfigurationDescriptors)
Total length of all descriptors
returned, including the
configuration descriptor itself

bNumInterfaces 1 This configuration has only one
interface

bConfigurationValue 1 This is configuration #1

iConfiguration 0 There is no string describing this
configuration

bmAttributes BOARD_USB_BMATTRIBUTES Device is self-powered and does
not support remote wakeup

bMaxPower USBConfigurationDescriptor_POWER(1
00)

Maximum power consumption of
device is 100 mA

Table 4-3. Interface Descriptor for a Mass Storage SCSI Disk

Field Value Comment

bLength sizeof(USBInterfaceDescriptor) Size of descriptor (9 bytes)

bDescriptorType USBGenericDescriptor_INTERFA
CE Interface descriptor type

bInterfaceNumber 0 This is interface #0
8
6283B–ATARM–17-Jul-09

Application Note

Application Note
4.2.4 Endpoint Descriptors
The two Bulk endpoints needed by the device (see Section 3.4.2 on page 3) must have the cor-
responding Endpoint descriptors. There is no special requirements on these apart from being
Bulk-IN and Bulk-OUT:

4.2.5 String Descriptors
Several descriptors can be commented with a String descriptor. The latter are completely
optional and do not influence the detection of the device by the operating system. Whether or
not to include them is entirely up to the programmer.

There is one exception to this rule when using the MSD class. According to the specification,
there must be a Serial Number string. It must contains at least 12 characters, and these charac-

bAlternateSetting 0 No alternate setting for this interface

bNumEndpoints 2 Two endpoints are used by this interface

bInterfaceClass MSInterfaceDescriptor_CLASS Mass Storage Device class

bInterfaceSubClass MSInterfaceDescriptor_SCSI Data transfer protocol used is SCSI
transparent command set

bInterfaceProtocol MSInterfaceDescriptor_BULKONL
Y

Transport protocol used is Bulk-Only
Transport

iInterface 0 No string describing this interface

Table 4-3. Interface Descriptor for a Mass Storage SCSI Disk

Field Value Comment

Table 4-4. Bulk-OUT Endpoint Descriptor for a Mass Storage SCSI Disk

Field Value Comment

bLength sizeof(USBEndpointDescriptor) Size of descriptor (7 bytes)

bDescriptorType USBGenericDescriptor_ENDPOIN
T Endpoint descriptor type

bEndpointAddress USBEndpointDescriptor_OUT |
MSDDriverDescriptors_BULKOUT This is an OUT endpoint with address 01h

bmAttributes USBEndpointDescriptor_BULK This is a Bulk endpoint

wMaxPacketSize 64 Endpoint max. packet size is 64 bytes

bInterval 0 Must be 0 for full-speed Bulk endpoints

Table 4-5. Bulk-IN Endpoint Descriptor for a Mass Storage SCSI Disk

Field Value Comment

bLength sizeof(USBEndpointDescriptor) Size of descriptor (7 bytes)

bDescriptorType USBGenericDescriptor_ENDPOIN
T Endpoint descriptor type

bEndpointAddress USBEndpointDescriptor_IN |
MSDDriverDescriptors_BULKIN This is an IN endpoint with address 02h

bmAttributes USBEndpointDescriptor_BULK This is a Bulk endpoint

wMaxPacketSize 64 Endpoint max. packet size is 64 bytes

bInterval 0 Must be 0 for full-speed Bulk endpoints
9
6283B–ATARM–17-Jul-09

ters must only be either letters (a-z, A-Z) or numbers (0-9). This cause no problem for the driver
in practice, but this is a strict requirement for certification. Also remember that string descriptors
use the Unicode format.

4.3 Class-Specific Requests
There are two Mass Storage-specific requests that the driver must handle (see Section 3.4.4 on
page 4):

• GetMaxLUN
• Bulk-Only Mass Storage Reset

Standard requests can be forwarded to the STD_RequestHandler function, with one exception:
the CLEAR_FEATURE request must be treated separately. This is necessary because when
the device is waiting for a Reset Recovery (see Section 3.4.6 on page 5), a request to unhalt
Bulk endpoints must not be executed until a Bulk-Only Mass Storage Reset is received.

4.3.1 ClearFeature
As previously stated, the CLEAR_FEATURE request must be handled in a particular way,
depending on whether or not the device is waiting for a Reset Recovery sequence. If it is, then
CLEAR_FEATURE requests to unhalt a Bulk endpoint must be discarded.

In the example software, this behavior is indicated by a boolean field in the driver structure,
named isWaitResetRecovery. The handler only has to check this field value to decide whether to
forward the request to the standard handler or to discard it.

//---------------------

case USBGenericRequest_CLEARFEATURE:

//---------------------

switch (USBFeatureRequest_GetFeatureSelector(request)) {

//---------------------

case USBFeatureRequest_ENDPOINTHALT:

//---------------------

// Do not clear the endpoint halt status if the device is waiting

// for a reset recovery sequence

if (!msdDriver.waitResetRecovery) {

 // Forward the request to the standard handler

 USBDDriver_RequestHandler(&usbdDriver, request);

 }

USBD_Write(0, 0, 0, 0, 0);

 break;

 //------

 default:

 //------

 // Forward the request to the standard handler

 USBDDriver_RequestHandler(&usbdDriver, request);

 }
10
6283B–ATARM–17-Jul-09

Application Note

Application Note
break;

4.3.2 GetMaxLUN
Usually, the first request issued by the host right after the enumeration phase will be a
GET_MAX_LUN request. It enables it to discover how many different logical units the device
has; each of these LUNs can then be queried in turn by the host when needed.

After the request is received by the device, it should return one byte of data indicating the maxi-
mum Logical Unit Number (LUN). It is equal to the number of LUNs used by the device minus
one. For example, a device with three LUNs returns a GET_MAX_LUN value of two.

Sending this byte is done by calling the USBD_Write method on Control endpoint 0. Note that
the data must be held in a permanent buffer (since the transfer is asynchronous); in the software
provided with this application note, a dedicated field is used in the driver structure (S_bot) to
store this value.

In addition, the Mass Storage Bulk-Only Transport specification defines strict requirements on
the wValue, wIndex and wLength fields. They must have the following values:

In this case, there is only one interface, so the wIndex field shall have a value of zero. A request
which does not comply to these requirements must be STALLed.

Here is the corresponding code:

//-------------------

case MSD_GET_MAX_LUN:

//-------------------

// Check request parameters

 if ((request->wValue == 0)

 && (request->wIndex == 0)

 && (request->wLength == 1)) {

 USBD_Write(0, &(msdDriver.maxLun), 1, 0, 0);

}

 else {

USBD_Stall(0);

}

break;

4.3.3 Bulk-Only Mass Storage Reset
The host issues RESET requests to return the MSD driver of the device to its initial state, i.e.,
ready to receive a new command. However, this request does not impact the USB controller
state; in particular, endpoints must not be reset. This means the data toggle bit must not be
altered, and Halted endpoint must not be returned to a normal state. After processing the reset,
the device must return a Zero-Length Packet (ZLP) to acknowledge the SETUP transfer.

Table 4-6. Valid Values for GetMaxLUN Request Fields

wValue wIndex wLength

0000h Interface number (0) 0001h
11
6283B–ATARM–17-Jul-09

Like GET_MAX_LUN, this request must be issued with specific parameters. A request which
does not have valid values in its field must be acknowledged with a STALL handshake from the
device.

In the example, the handler for this request must return the state machine to its initial state. Also,
if the device was waiting for a Reset Recovery, this is not the case anymore.

//-----------------------

case MSD_BULK_ONLY_RESET:

//-----------------------

// Check parameters

 if ((request->wValue == 0)

 && (request->wIndex == 0)

 && (request->wLength == 0)) {

 // Reset the MSD driver

 MSDDriver_Reset();

 USBD_Write(0, 0, 0, 0, 0);

 }

 else {

USBD_Stall(0);

 }

 break;

4.4 State Machine

4.4.1 Rationale
A state machine is necessary for non-blocking operation of the driver. As previously stated,
there are three steps when processing a command:

• Reception of the CBW
• Processing of the command (with data transfers if required)
• Emission of the CSW

Without a state machine, the program execution would be stopped at each step to wait for trans-
fers completion or command processing. For example, reception of a CBW does not always
happen immediately (the host does not have to issue commands regularly) and can block the
system for a long time.

Developing an asynchronous design based on a state machine is made easier when using
Atmel AT91 USB framework, as most methods are asynchronous. For example, a write opera-
tion (using the USBD_Write function) returns immediately; a callback function can then be
invoked when the transfer actually completes.

Table 4-7. Valid Values for Bulk-Only Mass Storage Reset Request Fields

wValue wIndex wLength

0000h Interface number (0) 0000h
12
6283B–ATARM–17-Jul-09

Application Note

Application Note
4.4.2 States
Apart from the three states corresponding to the command processing flow (CBW, command
processing and CSW), two more can be identified. The reception/emission of CBW/CSW will be
broken down into two different states: the first state is used to issue the read/write operation,
while the second one waits for the transfer to finish. This can be done by monitoring a “transfer
complete” flag which is set using a callback function.

In addition, some commands can be quite complicated to process: they may require several
consecutive data transfers mixed with media access. Each command thus has its own second-
tier state machine. During execution of a command, the main state machine remains in the “pro-
cessing” state, and proceeds to the next one (CSW emission) only when the command is
complete.

Here is the states list:

• MSDD_STATE_READ_CBW: Start of CBW reception (initial state after reset)
• MSDD_STATE_WAIT_CBW: Waiting for CBW reception
• MSDD_STATE_PROCESS_CBW: Command processing
• MSDD_STATE_SEND_CSW: Start of CSW emission
• MSDD_STATE_WAIT_CSW: Waiting for CSW emission

A single function, named BOT_StateMachine, is provided by the driver. It must be called regu-
larly during the program execution. The following subsections describe the actions that must be
performed during each state.

Figure 4-3. MSD Driver State Machine

4.4.2.1 MSDD_STATE_READ_CBW
As said previously, this state is used to start the reception of a new Command Block Wrapper.
This is done using the USBD_Read method of the USB framework. The result code of the func-
tion is checked for any error; the USBD_STATUS_SUCCESS code indicates that the transfer
has been successfully started.

//----------------------
13
6283B–ATARM–17-Jul-09

case MSDD_STATE_READ_CBW:

//----------------------

 // Start the CBW read operation

 transfer->semaphore = 0;

 status = MSDD_Read(cbw,

 MSD_CBW_SIZE,

 (TransferCallback) MSDDriver_Callback,

 (void *) transfer);

 // Check operation result code

 if (status == USBD_STATUS_SUCCESS) {

 // If the command was successful, wait for transfer

 pMsdDriver->state = MSDD_STATE_WAIT_CBW;

 }

 break;

A callback function to invoke when the transfer is complete is provided to the USBD_Read
method, to update a transfer status structure. This structure indicates the transfer completion,
the returned result code and the number of transferred and remaining bytes.

The callback function is trivial and thus not listed here.

4.4.2.2 MSDD_STATE_WAIT_CBW
The first step here is to monitor the bSemaphore field of the transfer status structure (see
above); this will enable detection of the transfer end. Please note that this field must be declared
as volatile in C, or accesses to it might get optimized by the compiler; this can result in endless
loops.

If the transfer is complete, then the result code must be checked to see if there was an error. If
the operation is successful, the state machine can proceed to command processing. Otherwise,
it returns to the READ_CBW state.

//----------------------

case MSDD_STATE_WAIT_CBW:

//----------------------

 // Check transfer semaphore

 if (transfer->semaphore > 0) {

 // Take semaphore and terminate transfer

 transfer->semaphore--;

 // Check if transfer was successful

 if (transfer->status == USBD_STATUS_SUCCESS) {

// Process received command

 pMsdDriver->state = MSDD_STATE_PROCESS_CBW;

Table 4-8. Transfer Status Structure (MSDTransfer)

Field Length Comment

dBytesTransferred 4 bytes Number of bytes received or emitted by the device

dBytesRemaining 4 bytes Number of bytes remaining to send or receive

bSemaphore 1 byte Increased by the callback function to indicate transfer completion.

bStatus 1 byte Status code returned by the transfer function
14
6283B–ATARM–17-Jul-09

Application Note

Application Note
 }

 else if (transfer->status == USBD_STATUS_RESET) {

pMsdDriver->state = MSDD_STATE_READ_CBW;

 }

 else {

pMsdDriver->state = MSDD_STATE_READ_CBW;

 }

 }

 break;

4.4.2.3 MSDD_STATE_PROCESS_CBW
Once the CBW has been received, its validity must be checked. According to Section 3.4.6 on
page 5, a CBW is not valid if:

• it has not been received right after a CSW was sent or a reset occurred or
• it is not exactly 31 bytes long or
• its signature field is not equal to 43425355h

The state machine prevents the first case from happening, so only the two other cases have to
be verified.

The number of bytes transferred during a USBD_Read operation is passed as an argument to
the callback function, if one has been specified. As stated previously, such a function is used to
fill a transfer status structure (Section 4.4.2 on page 13). Therefore, it is trivial to check that the
CBW is indeed 31 bytes by verifying that the number of bytes transferred is 31, and that there
are no remaining bytes. The following table illustrates the three cases which may happen:

Checking the signature is simply done by comparing the dCBWSignature field with the expected
value (43425355h).

If the CBW is not valid, then the device must immediately halt both Bulk endpoints, to STALL fur-
ther traffic from the host. In addition, it should stay in this state until a Reset Recovery is
performed by the host. This is done by setting the isWaitResetRecovery flag in the driver struc-
ture. Finally, the CSW status is set to report an error, and the state machine is returned to
MSDD_STATE_READ_CBW.

Otherwise, if the CBW is correct, then the command can be processed. Command processing is
described in Section 4.6 on page 20. Remember the CBW tag must be copied regardless of the
validity of the CBW.

Note that these steps are only necessary for a new command (remember commands are asyn-
chronous and are carried out in several calls, see Section 4.4.2 on page 13), so a check can be
performed to avoid useless processing. A value of zero for the internal command state indicates
a new command.

//-------------------------

Table 4-9. CBW Length Cases

Number of bytes transferred Number of bytes remaining Meaning

dBytesTransferred < 31 dBytesRemaining == 0 CBW is too short

dBytesTransferred == 31 dBytesRemaining > 0 CBW is too long

dBytesTransferred == 31 dBytesRemaining == 0 CBW length is correct
15
6283B–ATARM–17-Jul-09

case MSDD_STATE_PROCESS_CBW:

//-------------------------

// Check if this is a new command

 if (commandState->state == 0) {

 // Copy the CBW tag

 csw->dCSWTag = cbw->dCBWTag;

 // Check that the CBW is 31 bytes long

 if ((transfer->transferred != MSD_CBW_SIZE) ||

 (transfer->remaining != 0)) {

// Wait for a reset recovery

 pMsdDriver->waitResetRecovery = 1;

 // Halt the Bulk-IN and Bulk-OUT pipes

 MSDD_Halt(MSDD_CASE_STALL_OUT | MSDD_CASE_STALL_IN);

 csw->bCSWStatus = MSD_CSW_COMMAND_FAILED;

 pMsdDriver->state = MSDD_STATE_READ_CBW;

 }

 // Check the CBW Signature

 else if (cbw->dCBWSignature != MSD_CBW_SIGNATURE) {

// Wait for a reset recovery

 pMsdDriver->waitResetRecovery = 1;

 // Halt the Bulk-IN and Bulk-OUT pipes

 MSDD_Halt(MSDD_CASE_STALL_OUT | MSDD_CASE_STALL_IN);

 csw->bCSWStatus = MSD_CSW_COMMAND_FAILED;

 pMsdDriver->state = MSDD_STATE_READ_CBW;

 }

 else {

 // Pre-process command

 MSDD_PreProcessCommand(pMsdDriver);

 }

 }

 // Process command

 if (csw->bCSWStatus == MSDD_STATUS_SUCCESS) {

 if (MSDD_ProcessCommand(pMsdDriver)) {

// Post-process command if it is finished

 MSDD_PostProcessCommand(pMsdDriver);

 pMsdDriver->state = MSDD_STATE_SEND_CSW;

 }

}

break;

4.4.2.4 MSDD_STATE_SEND_CSW
This state is similar to MSDD_STATE_READ_CBW, except that a write operation is performed
instead of a read and the CSW is sent, not the CBW. The same callback function is used to fill
the transfer structure, which is checked in the next state:

//----------------------

case MSDD_STATE_SEND_CSW:
16
6283B–ATARM–17-Jul-09

Application Note

Application Note
//----------------------

 // Set signature

 csw->dCSWSignature = MSD_CSW_SIGNATURE;

// Start the CSW write operation

 status = MSDD_Write(csw,

 MSD_CSW_SIZE,

 (TransferCallback) MSDDriver_Callback,

 (void *) transfer);

// Check operation result code

 if (status == USBD_STATUS_SUCCESS) {

// Wait for end of transfer

 pMsdDriver->state = MSDD_STATE_WAIT_CSW;

 }

 break;

4.4.2.5 MSDD_STATE_WAIT_CSW
Again, this state is very similar to MSDD_STATE_WAIT_CBW. The only difference is that the
state machine is set to MSDD_STATE_READ_CBW regardless of the operation result code:

//----------------------

case MSDD_STATE_WAIT_CSW:

//----------------------

 // Check transfer semaphore

 if (transfer->semaphore > 0) {

// Take semaphore and terminate transfer

 transfer->semaphore--;

// Check if transfer was successful

 // Read new CBW

 pMsdDriver->state = MSDD_STATE_READ_CBW;

 }

 break;

4.5 Media

4.5.1 Architecture
Media access is done using a three-level abstraction, as shown in Figure 4-4:

Figure 4-4. Media Architecture
17
6283B–ATARM–17-Jul-09

At the bottom level is the specific driver for each media type.

In the middle, a structure named Media is used to hide which specific driver a media instance is
using. This enables transparent use of any media driver once it has been initialized. The struc-
ture has the following format:

Finally, a LUN abstraction is made over the media structure to allow multiple partitions over one
media. This also makes it possible to place the LUN at any address and use any block size.
When performing a write or read operation on a LUN, it forwards the operation to the underlying
media while translating it to the correct address and length.

4.5.2 Drivers

4.5.2.1 Requirements
As suggested by the Media structure above, a media driver must provide several functions for:

• Reading data from the media
• Writing data on the media
• Handling interrupts on the media

The last function may be empty if the media does not require interrupts for asynchronous opera-
tion, or if synchronous operation produces an acceptable delay.

In addition, it should also define a function for initializing a Media structure with the correct val-
ues, as well as perform the necessary step for the media to be useable.

4.5.2.2 Internal Flash Driver
This section describes how the internal Flash driver used in the example software has been
implemented. This is done by detailing the content of the five necessary functions, as defined
previously.

• Initialization Function (FLA_Initialize)
The first step of the initialization function is to setup the values of the Media structure. The 4
function pointers are set to the corresponding Flash methods; Flash parameters (base
address, size, physical interface) are the ones defined for the chip in the Lib v3. Since most
Atmel ARM® Thumb®-based AT91SAM chips have only one internal Flash bank, the periph-

Table 4-10. Media Data Format

Field Comment

fWrite Pointer to the media Write function

fRead Pointer to the media Read function

fFlush Pointer to the media Flush function

fHandler Pointer to the media Interrupt Handler function

dBaseAddress Base address of media

dSize Size of media in bytes

sTransfer Current transfer status

pInterface Pointer to the physical interface used

bState Status of the media (MED_STATE_READY or MED_STATE_BUSY)
18
6283B–ATARM–17-Jul-09

Application Note

Application Note
eral interface value is hardcoded; it can however be easily passed as an argument of the
initialization function. The transfer status structure is initialized with default values.

The next stage is to initialize the media so it is functional. In the case of the internal Flash,
there is almost nothing to do; the only required operation is to configure the Mode register of
the Embedded Flash Controller with the correct Microsecond Cycle Number. This value can
be inferred given the frequency of the master clock:

// Configure Flash Mode register

SET(pFlash->FLA_FMR, (BOARD_MCK / 666666) << 16);

• Read Function (FLA_Read)
Reading from the internal Flash is as simple as reading from the SRAM, given the address
to access. The function should still verify that the target address and length are valid, and
make sure that the media is not busy (i.e., another operation is already in progress). If every-
thing is correct, then the specified number of bytes can be read from the Flash into the
provided buffer. If a callback has been specified, it is invoked when the transfer finishes.

• Write Function (FLA_Write)
Performing a write operation is a more complex than reading. First of all, since the internal
Flash on most AT91SAM chips is single-plane, it cannot be read and written simultaneously.
This means the software must actually run from the SRAM while writing the Flash. The sim-
plest method is to copy the entire software to SRAM, set the remap bit in the memory
controller and run from there.

The actual Write function should first check the parameters. Since the Embedded Flash
Controller only supports memory writes of exactly one double-word (4 bytes), any access
with an address not aligned on a 4-bytes boundary or a length not multiple of 4 must be
rejected. Of course, the data must not be bigger than the size of the media and the media
must be in the ready state.

If input parameters are correct, actual writing can begin. The internal Flash is divided into
chunks of bytes called pages, which are generally between 64 and 256 bytes in length. A
Write operation must be done one page at a time, and the page must be cleared before writ-
ing. This can lead to problems if only part of the page is altered; in this case, the remaining
data can simply be copied before writing. A second function is used to write one page of
data at a time; the Write method starts the whole transfer by writing the first page and initial-
izing the transfer status.

Each page write takes some time to complete, so the interrupt on the Flash Ready status bit
is used to avoid blocking the system while waiting for the operation.

• Interrupt Handler Function (FLA_Handler)
This interrupt handler is invoked when a Flash page has been written. It should check the
transfer status to see if there is more data to write; if there is, then it calls the page write
function again with new parameters. Otherwise, the transfer is finished and the callback
function invoked if one has been defined. In any case, the Flash Ready interrupt must be
disabled to avoid continuous interruption, and re-enabled when the page write operation
starts.
19
6283B–ATARM–17-Jul-09

4.5.2.3 Virtual RAM Disk Driver
This section describes how the Virtual RAM Disk driver of SDRAM used in the example software
has been implemented. This is done by detailing the content of the three necessary functions, as
defined previously.

• Initialization Function (FLA_Initialize)
Usually the SDRAM is initialized when the binary starts to run. This function will check if the
SDRAM is work ing , i f no t , i t j us t invokes the s tandard in i t i a l i ze func t ion
BOARD_ConfigureSdram to initialize it. You can also refer to the AT91SAM datasheets for
SDRAM initialize sequence.

• Read Function (MEDSdram_Read)
Just reading from SDRAM. The media state and address is checked. If everything is OK the
address is translated to a SDRAM address by adding to the base address of the ram disk
and number of bytes specified is copied from that address to the assigned buffer.

• Write Function (MEDSdram_Write)
Just writing to the SDRAM. If the media state and address check is passed, the actual
address is calculated by the base address of the ram disk, and the number of bytes speci-
fied is copied from the input buffer to there.

4.6 SCSI Commands
The example software described in this application note uses SCSI commands with the MSD
class, since this is the most appropriate setting for a Flash device. This section details how SCSI
commands are processed.

4.6.1 Documents
There are several documents covering SCSI commands. In this application note, the reference
document used is SCSI Block Commands - 3 (SBC-3). However, it makes many references to
another SCSI document, SCSI Primary Commands - 4 (SPC-4). Both are needed for full details
on required commands.

4.6.2 Endianness
SCSI commands use the big-endian format for storing word- and double word-sized data. This
means the Most Significant Bit (MSB) is stored at the lowest address, and the Least Significant
Bit (LSB) at the highest one.

On ARM Thumb microcontrollers, the endianness of the core is selectable. However, the little-
endian mode is most often used. Therefore, SCSI command data must be converted before
being usable. This is done by declaring word- and dword-sized fields as byte arrays, and then
using a macro for loading or storing data. Several of them are available in the provided software:

• Load
– WORDB: Converts a big-endian word value to little-endian
– DWORDB: Converts a big-endian double-word value to little-endian

• Store
– STORE_WORDB: Stores a little-endian word value in big-endian format
– STORE_DWORDB: Stores a little-endian double-word value in big-endian format
20
6283B–ATARM–17-Jul-09

Application Note

Application Note
4.6.3 Sense Data
When an error happens during the execution of a command, it is recorded by the device. The
host may then issue a Request Sense command to retrieve Sense Data, i.e., information about
previous errors.

While the sense data structure has many fields, only three are really important. The first one is
the Sense Key. It indicates the result of the last command performed: success, media not ready,
hardware error, etc. Two other fields can then be specified to give a more accurate description of
the problem. They are named Additional Sense Code and Additional Sense Code Qualifier.

In the example application, each LUN has its own sense data. It is updated during command
execution if there is any error.

4.6.4 Commands
The SBC-3 specification gives a list of mandatory and optional commands that are relevant for a
block device (like a Flash drive). In practice, only a subset of the mandatory commands is effec-
tively used by operating systems; conversely, several commands which are supposed to be
optional are required. The software provided with this application note implements the following
list of commands:

• SBC-3
– Prevent/Allow Medium Removal
– Read (10)
– Read Capacity (10)
– Verify (10)
– Write (10)

• SPC-4
– Inquiry
– Mode Sense (6)
– Request Sense
– Test Unit Ready

These commands are described in the following paragraphs.

4.6.4.1 Internal State Machine
As previously stated, most commands have an internal state machine to prevent blocking the
whole system during a data transfer (on the USB or when accessing a media). A result code is
used to indicate that the corresponding function must be called again for the command to com-
plete (BOT_STATUS_INCOMPLETE).

A command state structure is used by the driver to record several parameters during command
processing:

Table 4-11. MSDCommandState Data Format

Field Comment

sTransfer Current transfer status

sCbw CBW of the current command

sCsw CSW to be returned when the current command is complete
21
6283B–ATARM–17-Jul-09

Note that the bState field must be initialized when the command is first called. A value of 0
means that no command is currently being executed.

4.6.4.2 Inquiry
The host usually issues an Inquiry command right after the enumeration phase to get more
information about the device. In particular, the Peripheral Device Type (PDT) and Version fields
will determine which commands will be issued by the host.

In practice, there is no need to check any of the fields except for Allocation Length, since this is
the maximum transfer length. The device shall simply return the standard Inquiry data; please
refer to the SPC-4 specification for the exact format to use, and to the software example for
basic values.

The function for handling this command has a simple internal state machine, with only two
states. It must be initialized to the first state (SBC_STATE_WRITE), and the value of the Addi-
tional Length field set correctly (depending on the dLength field of the command state structure).
Note that there should be no data transfer when dLength is zero; the function can return immedi-
ately in this case. Otherwise, a zero-length packet will be emitted, which is considered an error.
Here is the initialization code:

// Check if required length is 0

if (commandState->length == 0) {

// Nothing to do

 result = MSDD_STATUS_SUCCESS;

}

// Initialize command state if needed

else if (commandState->state == 0) {

 commandState->state = SBC_STATE_WRITE;

bState Current internal state of executing command

bPostprocess Indicates post-processing actions to take (see Section 4.6.5 on page 31)

dLength Remaining number of bytes that the command must process

Table 4-11. MSDCommandState Data Format

Field Comment

Table 4-12. Inquiry Command Block

Offset Field Length Comment

0 Operation Code 1 byte Inquiry operation code (12h)

1 EPVD 1 bit Enable Product Vital Data bit. When set, the device should
return vital product data instead of standard values.

1.1 Obsolete 1 bit Obsolete bit

1.2 Reserved 6 bits Reserved bits

2 Page Code 1 byte Page code of vital product data to return (when EPVD set)

3 Allocation Length 2 bytes Maximum number of bytes to send

5 Control 1 byte Unused, should be 00h
22
6283B–ATARM–17-Jul-09

Application Note

Application Note
 // Change additional length field of inquiry data

 lun->inquiryData->bAdditionalLength

 = (unsigned char) (commandState->length - 5);

}

The function can then check the current command state. The first state, SBC_STATE_WRITE,
is used to start the transfer using the USBD_Write method. Once again the BOT_Callback func-
tion is used with the driver transfer structure. See “MSDD_STATE_READ_CBW” on page 13.

//-------------------

case SBC_STATE_WRITE:

//-------------------

// Start write operation

 status = MSDD_Write((void *) lun->inquiryData,

 commandState->length,

 (TransferCallback) MSDDriver_Callback,

 (void *) transfer);

 // Check operation result code

 if (status != USBD_STATUS_SUCCESS) {

result = MSDD_STATUS_ERROR;

 }

 else {

 // Proceed to next state

 commandState->state = SBC_STATE_WAIT_WRITE;

}

 break;

The second state (SBC_STATE_WAIT_WRITE) is used to check for the transfer completion and
terminate the command execution. Since the dLength field of the command state structure is
used to calculate the data residue, it must be decremented by the amount of data sent.

//------------------------

case SBC_STATE_WAIT_WRITE:

//------------------------

// Check the semaphore value

 if (transfer->semaphore > 0) {

 // Take semaphore and terminate command

 transfer->semaphore--;

 if (transfer->status != USBD_STATUS_SUCCESS) {

 result = MSDD_STATUS_ERROR;

 }

 else {
23
6283B–ATARM–17-Jul-09

 result = MSDD_STATUS_SUCCESS;

 }

 // Update length field

 commandState->length -= transfer->transferred;

 }

 break;

4.6.4.3 Read (10)
As its name suggests, the Read (10) command is issued by the host to read data from one LUN.
It can also retrieve protection information about the logical unit; read/write protection is not sup-
ported in the provided software example however. Here is the associated data format for the
command:

Several bits of the command can be set to specify where the data should be read from, i.e.,
directly from the media or from volatile/non-volatile cache. Since caching is out of the scope of
this application note, these bits are not used in the example software.

The internal state machine for this command is made up of five different states. First, the
requested data must be read from the media. This is done using two stages, one for starting the
asynchronous read operation and one for waiting for the operation to complete. If an error
occurs when trying to start the transfer, the operation is aborted and the LUN sense data
updated. Note that only one block of data is read and sent at a time, so multiple iterations of the
state machine may be needed to fulfill the request.

//------------------

case SBC_STATE_READ:

//------------------

 // Read one block of data from the media

 status = LUN_Read(lun,

 DWORDB(command->pLogicalBlockAddress),

Table 4-13. Read (10) Command Block

Offset Field Length Comment

0 Operation Code 1 byte Read (10) operation code (28h)

1 Obsolete 1 bit Obsolete bit

1.1 FUA_NV 1 bit Cache control bit

1.2 Reserved 1 bit Reserved bit

1.3 FUA 1 bit Cache control bit

1.4 DPO 1 bit Cache control bit

1.5 RDProtect 3 bits Protection information checking

2 Logical Block Address 4 bytes Address of the first block to read

6 Group Number 5 bytes Information group

6.5 Reserved 3 bits Reserved bits

7 Transfer Length 2 bytes Number of blocks to read

9 Control 1 byte Unused, should be 00h
24
6283B–ATARM–17-Jul-09

Application Note

Application Note
 lun->readWriteBuffer, 1,

 (TransferCallback) MSDDriver_Callback, (void *) transfer);

 // Check operation result code

 if (status != LUN_STATUS_SUCCESS) {

 SBC_UpdateSenseData(&(lun->requestSenseData),

 SBC_SENSE_KEY_NOT_READY,

 SBC_ASC_LOGICAL_UNIT_NOT_READY, 0);

 result = MSDD_STATUS_ERROR;

 }

 else {

 // Move to next command state

 commandState->state = SBC_STATE_WAIT_READ;

 }

 break;

//-----------------------

case SBC_STATE_WAIT_READ:

//-----------------------

 // Check semaphore value

 if (transfer->semaphore > 0) {

// Take semaphore and move to next state

 transfer->semaphore--;

 commandState->state = SBC_STATE_WRITE;

 }

 break;

After the data has been read correctly, it can be sent to the host through the Bulk-IN endpoint.
Again, this must be done using two states, the first one for starting the transfer and the other one
for waiting for its completion. Result of the read operation if also verified prior to beginning the
write transfer, adjusting the LUN sense data if an error occured.

//-------------------

case SBC_STATE_WRITE:

//-------------------

 // Check the operation result code

 if (transfer->status != USBD_STATUS_SUCCESS) {

 SBC_UpdateSenseData(&(lun->requestSenseData),

 SBC_SENSE_KEY_RECOVERED_ERROR,

 SBC_ASC_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE, 0);

 result = MSDD_STATUS_ERROR;

 }

 else {

 // Send the block to the host

 status = MSDD_Write((void*)lun->readWriteBuffer,

 lun->blockSize,

 (TransferCallback) MSDDriver_Callback, (void *)
transfer);

// Check operation result code
25
6283B–ATARM–17-Jul-09

 if (status != USBD_STATUS_SUCCESS) {

 SBC_UpdateSenseData(&(lun->requestSenseData),

 SBC_SENSE_KEY_HARDWARE_ERROR,

 0, 0);

 result = MSDD_STATUS_ERROR;

 }

 else {

// Move to next command state

 commandState->state = SBC_STATE_WAIT_WRITE;

 }

 }

 break;

//------------------------

case SBC_STATE_WAIT_WRITE:

//------------------------

 // Check semaphore value

 if (transfer->semaphore > 0) {

// Take semaphore and move to next state

 transfer->semaphore--;

 commandState->state = SBC_STATE_NEXT_BLOCK;

 }

 break;

Finally, the last state checks whether the write operation was successful, and whether or not
there are more blocks to send to the host. In any case, the dLength field of the command status
is decremented by one, to account for the block which has just been sent. The state machine is
either reset to the first state to send more blocks, or returns a success/error code.

//------------------------------

case SBC_STATE_NEXT_BLOCK:

//------------------------------

 // Check operation result code

 if (transfer->status != USBD_STATUS_SUCCESS) {

SBC_UpdateSenseData(&(lun->requestSenseData),

 SBC_SENSE_KEY_HARDWARE_ERROR,

 0, 0);

 result = MSDD_STATUS_ERROR;

 }

 else {

// Update transfer length and block address

 STORE_DWORDB(DWORDB(command->pLogicalBlockAddress) + 1,

 command->pLogicalBlockAddress);

 commandState->length--;

 // Check if transfer is finished

 if (commandState->length == 0) {

result = MSDD_STATUS_SUCCESS;

 }
26
6283B–ATARM–17-Jul-09

Application Note

Application Note
 else {

commandState->state = SBC_STATE_READ;

 }

 }

 break;

4.6.4.4 Read Capacity (10)
The Read Capacity (10) command enables the host to retrieve the number of block present on a
media, as well as their size.

After receiving this command, the device must respond by sending back the previously men-
tioned data using the following format:

The function for handling this command uses a two-states internal machine. It is very similar to
the Inquiry command, so it is not detailed here. See “Inquiry” on page 22. The PMI bit is not
taken into account in the example software; refer to the SBC-3 specification for more information
about its functionality.

4.6.4.5 Request Sense
After an error has occured during the execution of a command block, the host will issue a
Request Sense to get more information about the problem. The command has the following
format:

Table 4-14. Read Capacity (10) Command Block

Offset Field Length Comment

0 Operation Code 1 byte Read capacity (10) operation code (25h)

1 Obsolete 1 bit Obsolete bit

1.1 Reserved 7 bits Reserved bits

2 Logical Block Address 4 bytes Address of the block to examinate if PMI is set

6 Reserved 2 bytes Reserved bytes

8 PMI 1 bit Partial Medium Indicator bit

8.1 Reserved 7 bits Reserved bits

9 Control 1 byte Unused, should be 00h

Table 4-15. Read Capacity (10) Parameter Data Format

Offset Field Length Comment

0 Returned Logical Block Address 4 bytes Address of last logical block on LUN

4 Logical Block Length 4 bytes Block size of last logical block on LUN

Table 4-16. Request Sense Command Block

Offset Field Length Comment

0 Operation Code 1 byte Request sense operation code (03h)

1 Desc 1 bit Type of data returned
27
6283B–ATARM–17-Jul-09

The Desc bit is used to specify whether the sense data must be in fixed format or in descriptor
format. Since the former is easier to deal with, it is the only format supported by the example
driver. If a Request Sense command is received with the Desc bit set (descriptor-format data
requested), it is treated as an illegal request.

Most of the fields contained in the previous structure are not strictly necessary. In the example
software, only the Response Code, Sense Key, Additional Sense Length, Additional Sense
Code and Additional Sense Code Qualifier fields are set to non-zero values.

Handling this command is done in a similar way as the Inquiry command. See “Inquiry” on page
22.

4.6.4.6 Test Unit Ready
This command provides a way to check if a logical unit is ready. The device should perform a
self-test and report to the USB host either with a “passed” status code (indicating that the unit is

1.1 Reserved 23 bits Reserved bits

4 Allocation Length 1 byte Maximum length of returned data

5 Control 1 byte Unused, should be 00h

Table 4-17. Fixed Format Request Sense Data

Offset Field Length Comment

0 Response Code 7 bits Should be 70h or 71h

0.7 Valid 1 bit Indicates if the value contained in the
Information field is defined by SPC-4

1 Obsolete 1 byte Obsolete byte

2 Sense Key 4 bits Information about error

2.4 Reserved 1 bit Reserved bit

2.5 ILI 1 bit Indicates if requested logical block length does
not match LUN block length

2.6 EOM 1 bit Indicates if end-of-medium has been reached

2.7 Filemark 1 bit Indicates that a filemark has been encountered

3 Information 4 bytes Device type- and command-specific data

7 Additional Sense Length 1 byte Size of returned data - 8

8 Command-Specific Information 4 bytes Command-specific information

12 Additional Sense Code 1 byte Information about error

13 Additional Sense Code Qualifier 1 byte Information about error

14 Field Replaceable Unit Code 1 byte Information about a component failure

15 Sense Key Specific 15 bits Sense key specific data

17.7 SKSV 1 bit Indicates if Sense Key Specific field is valid

18 Additional Sense Bytes Any Vendor-specific additional data

Table 4-16. Request Sense Command Block

Offset Field Length Comment
28
6283B–ATARM–17-Jul-09

Application Note

Application Note
ready), or with an error. In this case, the request sense data shall indicate the current state of the
LUN.

This command does not require an internal state machine, as it does not perform any data trans-
fer. It only checks the status of the specified LUN, adjusting its request sense data if it is not
ready.

4.6.4.7 Write (10)
The Write (10) command enables the host to write one or several blocks of data on a particular
LUN of the device. Like Read (10), this command may also provide protection information for
each block but this is not supported in the software example.

This command is handled just like Read (10) (see “Read (10)” on page 24) except the read oper-
ation is done on the USB and the write operation on the LUN. They are performed in the same
order however (read then write).

Table 4-18. Test Unit Ready Command Block

Offset Field Length Comment

0 Operation Code 1 byte Test unit ready operation code (00h)

1 Reserved 4 bytes Reserved bytes

5 Control 1 byte Unused, should be 00h

Table 4-19. Write (10) Command Block

Offset Field Length Comment

0 Operation Code 1 byte Write (10) operation code (2Ah)

1 Obsolete 1 bit Obsolete bit

1.1 FUA_NV 1 bit Cache control bit

1.2 Reserved 1 bit Reserved bit

1.3 FUA 1 bit Cache control bit

1.4 DPO 1 bit Cache control bit

1.5 WRProtect 3 bits Protection information

2 Logical Block Address 4 bytes Index of first block to write

6 Group number 5 bits Grouping function

6.5 Reserved 3 bits Reserved bits

7 Transfer Length 2 bytes Number of blocks to write

9 Control 1 byte Unused, should be 00h
29
6283B–ATARM–17-Jul-09

4.6.4.8 Prevent/Allow Medium Removal
This request notifies the device that it should prevent or allow removal of the media associated
with the specified LUN. It has the following data format:

This command is not relevant for an internal Flash disk, as such a media cannot be removed. As
such, the corresponding handler function simply returns with a BOT_STATUS_SUCCESS result
code.

4.6.4.9 Mode Sense (6)
The Mode Sense (6) command tells the device to return its parameters for one or more mode
pages. Each mode page covers a functional area of the device, e.g., exception handling, power
management, and so on. The host can request either a particular page (or subpage), or all of
them at once.

After receiving this command, the device must answer with the corresponding mode pages, pre-
fixed with a particular header. Optionally, information about blocks on the media can be returned
by the mean of block descriptors. The mode parameter header (6) has the following format:

Table 4-20. Prevent/Allow Medium Removal Command Block

Offset Field Length Comment

0 Operation Code 1 byte Prevent/allow medium removal operation code (1Eh)

1 Reserved 3 bytes Reserved bytes

4 Prevent 2 bits Indicates if medium removal is allowed or prevented

4.2 Reserved 6 bits Reserved bits

5 Control 1 byte Unused, should be 00h

Table 4-21. Mode Sense (6) Command Block

Offset Field Length Comment

0 Operation Code 1 byte Mode sense (6) operation code (1Ah)

1 Reserved 3 bits Reserved bits

1.3 DBD 1 bit Disable block descriptors bit

1.4 Reserved 4 bits Reserved bits

2 Page Code 6 bits Requested page code

2.6 PC 2 bits Values to return (Current, changeable, default, etc.)

3 Subpage Code 1 byte Requested subpage code

4 Allocation Length 1 byte Maximum number of bytes to return

5 Control 1 byte Unused, should be 00h

Table 4-22. Mode Parameter Header (6) Data Format

Offset Field Length Comment

0 Mode Data Length 1 byte Number of bytes returned by the device minus 1

1 Medium Type 1 byte Should be 00h for block devices

2 Reserved 4 bits Reserved bits

2.4 DPOFUA 1 bit Indicates if DPO and FUA bits are supported
30
6283B–ATARM–17-Jul-09

Application Note

Application Note
In practice, it is not necessary to return any mode page or block descriptor. This is because this
request is primarily issued by hosts to get the write-protection bit state. As such, it is possible to
only return the mode parameter header information when the request is issued with the “return
all” page code, which is what is done in the example software.

The function for handling the Mode Sense (6) command is similar as the one for the Inquiry com-
mand. Refer to “Inquiry” on page 22 for more information.

4.6.4.10 Verify (10)
The Verify (10) command instructs the device to verify the data written on one or more blocks of
a LUN. This is done either by comparing it to data sent by the host, or by simply looking for cor-
rupted blocks. Protection information can also be checked via this command. Finally, if the
media uses a caching strategy, it should synchronize the data in cache and on the media.

This command is not implemented in the example provided with this document. This is not nec-
essary because the BytChk flag is almost never set, meaning the check is done without
comparing data sent by the host; since the internal Flash on AT91SAM chips cannot have cor-
rupted blocks, the Verify operation always succeed.

4.6.5 Command Processing

4.6.5.1 Flow
Command processing is actually divided into three phases in the example software:

• Pre-processing

2.5 Reserved 2 bits Reserved bits

2.7 WP 1 bit Indicates if media is write protected

3 Block Descriptors Length 1 byte Length of all block descriptors returned

Table 4-22. Mode Parameter Header (6) Data Format

Offset Field Length Comment

Table 4-23. Verify (10) Command Block

Offset Field Length Comment

0 Operation Code 1 byte Verify (10) operation code (2Fh)

1 Obsolete 1 bti Obsolete bit

1.1 BytChk 1 bit Verification mode

1.2 Reserved 2 bits Reserved bits

1.4 DPO 1 bit Cache control bit

1.5 VRProtect 3 bits Protection information

2 Logical Block Address 4 bytes Index of first block to verify

6 Group Number 5 bits Grouping function

6.5 Reserved 2 bits Reserved bits

6.7 Restricted for MMC-4 1 bit Restricted bit for MMC-4

7 Verification Length 2 bytes Number of blocks to verify

9 Control 1 byte Unused, should be 00h
31
6283B–ATARM–17-Jul-09

• Processing
• Post-processing

Since the command length and direction is replicated in both the CBW and the encapsulted
command block, there may be differences between these values. The Mass Storage Bulk-Only
Transport 1.0 document list the 13 possible cases and the actions to perform when encountering
them.

During the pre-processing stage, the program checks the command length and direction values
contained in the CBW and the command block for any difference. This makes it possible to iden-
tify which case the transaction falls in, as well as set the correct length/direction.

The command is then processed normally. The number of bytes to process, if any, is updated
each time the command is called. This enable the program to get the number of remaining
bytes, in order to set the dCSWDataResidue field of the CSW.

Once the command is complete, the post-processing stage performs the necessary actions
depending on the case which was identified during pre-processing.

4.6.5.2 The Thirteen Cases
There are basically three actions that should be performed depending on the case:

• STALL the Bulk-IN endpoint
• STALL the Bulk-OUT endpoint
• Report a Phase Error in the CSW

The table below lists all cases along with the actions which must be taken after the command,
including the correct length/direction of the transfer. The following notation is used to character-
ize host and device expectations:

Table 4-24. Data Transfer Characterization

Notation Meaning Notation Meaning

Hn Host expects no data transfer Dn Device expects no data transfer

Hi Host expects to receive data Di Device expects to send data

Ho Host expects to send data Do Device expects to receive data

Lh Length of data expected by the host Ld Length of data expected by the device

Hx = Dx Host and device agree on transfer length and direction (x is either n, i or o)

Hx > Dx Host and device agree on transfer direction, host expects a larger transfer than device

Hx < Dx Host and device agree on transfer direction, device expects a larger transfer than host

Hx <> Dy Host and device disagree on transfer direction

Table 4-25. The Thirteen Cases

Case Length Residue Direction STALL IN? STALL OUT? Phase Error?

1 Hn = Dn 0 0 Irrelevant

2 Hn < Di 0 Ld - Lh Irrelevant X

3 Hn < Do 0 Ld - Lh Irrelevant X

4 Hi > Dn 0 Lh Irrelevant X

5 Hi > Di Ld Lh - Ld In X
32
6283B–ATARM–17-Jul-09

Application Note

Application Note
4.7 Main Application
After the MSD driver and the media have been initialized using the corresponding functions, the
only requirement for the main application is to regularly call the state machine function. This is
necessary for processing received commands in a fully asynchronous way.

The application is otherwise free of doing any other task; for example, it could implement a file-
system and a serial port interface to be accessed with a standard terminal. An MP3 player could
also continue playing a song while its memory is accessed like an external hard disk.

Figure 4-5. Driver Class Diagram

4.8 Example Software Usage

4.8.1 File Architecture
The software example provided along with this application note is divided into several groups:

• at91lib\usb\common\massstorage: Folder with generic Mass Storage definitions.
• MSDeviceDescriptor.h: Definitions for Mass Storage Device Descriptor.

6 Hi = Di Ld 0 In

7 Hi < Di Lh Ld - Lh In X

8 Hi <> Do 0 0 Irrelevant X X

9 Ho > Dn 0 Lh Irrelevant X

10 Ho <> Di 0 0 Irrelevant X X

11 Ho > Do Ld Lh - Ld Out X

12 Ho = Do Ld 0 Out

13 Ho < Do Lh Lh - Ld Out X

Table 4-25. The Thirteen Cases

Case Length Residue Direction STALL IN? STALL OUT? Phase Error?
33
6283B–ATARM–17-Jul-09

• MSInterfaceDescriptor.h: Definitions for Mass Storage Interface Descriptor.
• at91lib\usb\device\massstorage: Folder with definitions for Mass Storage Device Driver.
• MSD.h: header file with general definitions for MSD driver.
• MSDDriver.h: header file with definitions for the MSD Bulk-Only Transport driver.
• MSDDriver.c: source file for the MSD driver.
• MSDDriverDescriptors.h: header file with definitions for MSD driver descriptors.
• MSDDriverDescriptots.c: source code for the MSD driver descriptors.
• MSDDStateMachine.h: header file with definitions for MSD state machine to process.
• MSDDstateMachine.c: source file for MSD state machine to process.
• MSDLun.h: header file wih definitions for MSD LUN.
• MSDLun.c: source code for MSD LUN operations.
• SBC.h: header file generic SCSI definitions.
• SBCMethods.h: header file for SBC function definitions.
• SBCMethods.c: source file for SBC function implementation.
• at91lib\memories: folder with media interface definition and storage drivers.
• Media.h: header file with media definitions.
• Media.c: source file for media interrupt handling.
• MEDFlash.h: header file for the internal flash media driver.
• MEDFlash.c: source file for the internal flash media driver.
• MEDSdram.h: header file for the SDRAM virtual ram disk driver.
• MEDSdram.c: source file for the SDRAM virtual ram disk driver.
• usb-device-massstorage-project: Folder for application main functions.
• main.c: source file for MSD example application.

4.8.2 Compilation
The software is provided with a Makefile to build it. It requires the GNU make utility, which is
available on www.GNU.org. Please refer to the AT91 USB Device Framework application note
for more information on general options and parameters of the Makefile.

To build the USB to serial converter example just run “make” in directory usb-device-massstor-
age-project, and two parameters may be assigned in command line, the CHIP= and BOARD=,
the default value of these parameters are “at91sam7s256” and “at91sam7s-ek”:

make CHIP=at91sam7se512 BOARD=at91sam7se-ek

In this case, the resulting binary will be named usb-device-massstorage-project-at91sam7se-ek-
at91sam7se512-flash.bin and will be located in the usb-device-massstorage-project/bin
directory.

4.9 Using a Generic Host Driver
Most operating systems have a generic driver for the Mass Storage class. They may however
have different requirements in term of SCSI commands that must be supported by the device.
This example driver should be fully functional under Microsoft Windows and Linux®.
34
6283B–ATARM–17-Jul-09

Application Note

http://www.gnu.org/software/make/

Application Note
5. Revision History

Table 5-1.

Document Ref. Date Comments Change Request Ref.

6283A 08-Jan-07 First issue.

6238B 02-Jul-09 Updated source file
35
6283B–ATARM–17-Jul-09

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com
www.atmel.com/AT91SAM

Technical Support
AT91SAM Support
Atmel techincal support

Sales Contacts
www.atmel.com/contacts/

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, and others are registered trademarks or trade-
marks of Atmel Corporation or its subsidiaries. ARM® and Thumb® are registered trademarks of ARM Ltd. Windows® and others are registered
trademarks or trademarks of Microsoft Corporation in U.S. and/or other countries.. Other terms and product names may be trademarks of others.

6283B–ATARM–17-Jul-09

http://www.atmel.com/
www.atmel.com
http://www.atmel.com/products/AT91CAP/
http://www.atmel.com/products/AT91/
http://www.atmel.com/dyn/products/ip_blocks.asp?family_id=615
http://www.atmel.com/products/PowerManage/
http://www.atmel.com/products/Dream/
http://www.atmel.com/products/Dream/
http://support.atmel.no/bin/customer
http://support.atmel.no/bin/customer
mailto:info@dream.fr <info@dream.fr>
mailto:asic@atmel.com <asic@atmel.com>
http://www.atmel.com/dyn/products/support.asp
http://www.atmel.com/contacts/
http://www.atmel.com/contacts/

	1. Introduction
	2. Related Documents
	3. Mass Storage Class Basics
	3.1 Purpose
	3.2 Data Transfer Protocols
	3.3 Transport Protocols
	3.4 Architecture
	3.4.1 Interfaces
	3.4.2 Endpoints
	3.4.3 Class-Specific Descriptors
	3.4.4 Class-specific Requests
	3.4.4.1 GetMaxLUN
	3.4.4.2 Bulk-Only Mass Storage Reset

	3.4.5 Command/Data/Status
	3.4.6 Reset Recovery

	3.5 Host Drivers

	4. Mass Storage SCSI Disk
	4.1 Architecture
	4.2 Descriptors
	4.2.1 Device Descriptor
	4.2.2 Configuration Descriptor
	4.2.3 Interface Descriptor
	4.2.4 Endpoint Descriptors
	4.2.5 String Descriptors

	4.3 Class-Specific Requests
	4.3.1 ClearFeature
	4.3.2 GetMaxLUN
	4.3.3 Bulk-Only Mass Storage Reset

	4.4 State Machine
	4.4.1 Rationale
	4.4.2 States
	4.4.2.1 MSDD_STATE_READ_CBW
	4.4.2.2 MSDD_STATE_WAIT_CBW
	4.4.2.3 MSDD_STATE_PROCESS_CBW
	4.4.2.4 MSDD_STATE_SEND_CSW
	4.4.2.5 MSDD_STATE_WAIT_CSW

	4.5 Media
	4.5.1 Architecture
	4.5.2 Drivers
	4.5.2.1 Requirements
	4.5.2.2 Internal Flash Driver
	4.5.2.3 Virtual RAM Disk Driver

	4.6 SCSI Commands
	4.6.1 Documents
	4.6.2 Endianness
	4.6.3 Sense Data
	4.6.4 Commands
	4.6.4.1 Internal State Machine
	4.6.4.2 Inquiry
	4.6.4.3 Read (10)
	4.6.4.4 Read Capacity (10)
	4.6.4.5 Request Sense
	4.6.4.6 Test Unit Ready
	4.6.4.7 Write (10)
	4.6.4.8 Prevent/Allow Medium Removal
	4.6.4.9 Mode Sense (6)
	4.6.4.10 Verify (10)

	4.6.5 Command Processing
	4.6.5.1 Flow
	4.6.5.2 The Thirteen Cases

	4.7 Main Application
	4.8 Example Software Usage
	4.8.1 File Architecture
	4.8.2 Compilation

	4.9 Using a Generic Host Driver

	5. Revision History

