
14.1. Solve: The frequency generated by a guitar string is 440 Hz. The period is the inverse of the frequency, 
hence 

31 1 2.27 10  s 2.27 ms
440 Hz

T
f

−= = = × =  

 



14.2. Model: The air-track glider oscillating on a spring is in simple harmonic motion. 
Solve: The glider completes 10 oscillations in 33 s, and it oscillates between the 10 cm mark and the 60 cm mark.  

(a)   33 s 3.3 s oscillation 3.3 s
10 oscillations

T = = =   

(b)   1 1 0.303 Hz  0.30 Hz
3.3 s

f
T

= = = ≈   

(c)   ( )2 2 0.303 Hz 1.90 rad sfω π π= = =   
(d) The oscillation from one side to the other is equal to 60 cm 10 cm 50 cm 0.50 m.− = =  Thus, the amplitude is 

( )1
2 0.50 m 0.25 m.A = =   

(e) The maximum speed is  

( )( )max
2 1.90 rad s 0.25 m 0.48 m sv A A
T
πω ⎛ ⎞= = = =⎜ ⎟

⎝ ⎠
 

 



14.3. Model: The air-track glider attached to a spring is in simple harmonic motion.  
Visualize: The position of the glider can be represented as ( ) cos .x t A tω=  
Solve: The glider is pulled to the right and released from rest at 0 s.t =  It then oscillates with a period 

2.0 sT =  and a maximum speed max 40 cm s 0.40 m s.v = =   

(a) max
max

2 2 0.40 m s and  rad s 0.127 m 12.7 cm
2.0 s  rad s

vv A A
T
π πω ω π

ω π
= = = = ⇒ = = = =   

(b) The glider’s position at 0.25 st =  is 

( ) ( )( )0.25 s 0.127 m cos  rad s 0.25 s 0.090 m 9.0 cmx π= = =⎡ ⎤⎣ ⎦  

 



14.4. Model: The oscillation is the result of simple harmonic motion.  
Visualize: Please refer to Figure EX14.4.  
Solve: (a) The amplitude 10 cm.A =  
(b) The time to complete one cycle is the period, hence 2.0 sT =  and 

1 1 0.50 Hz
2.0 s

f
T

= = =  

(c) The position of an object undergoing simple harmonic motion is ( ) ( )0cos .x t A tω φ= +  

0At  0 s, 5 cm,t x= = −  thus 

( ) ( ) 0

1
0 0

5 cm 10 cm cos 0 s

5 cm 1 1 2cos cos  rad or 120
10 cm 2 2 3

ω φ

πφ φ −

− = +⎡ ⎤⎣ ⎦
− ⎛ ⎞⇒ = = − ⇒ = − = ± ± °⎜ ⎟

⎝ ⎠

 

Since the oscillation is originally moving to the left, 0 120 .φ = + °  

 



14.5. Model: The oscillation is the result of simple harmonic motion.  
Visualize: Please refer to Figure EX14.5.  
Solve: (a) The amplitude 20 cm.A =  
(b) The period 4.0 s,T =  thus 

1 1 0.25 Hz
4.0 s

f
T

= = =  

(c) The position of an object undergoing simple harmonic motion is ( ) ( )0cos .x t A tω φ= +  At 

00 s, 10 cm.t x= =  Thus, 

( ) 1 1
0 0

10 cm 110 cm  20 cm cos cos cos  rad 60
20 cm 2 3

πφ φ − −⎛ ⎞ ⎛ ⎞= ⇒ = = = ± = ± °⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Because the object is moving to the right at 0 s,t =  it is in the lower half of the circular motion diagram and thus 

must have a phase constant between π  and 2π  radians. Therefore, 0 rad 60 .
3
πφ = − = − °  

 



14.6. Visualize: The phase constant 2
3π  has a plus sign, which implies that the object undergoing simple 

harmonic motion is in the second quadrant of the circular motion diagram. That is, the object is moving to the 
left.  
Solve: The position of the object is  

( ) ( ) ( ) ( ) ( ) 2
0 0 3cos cos 2 4.0 cm cos 4  rad s  radx t A t A ft tω φ π φ π π= + = + = +⎡ ⎤⎣ ⎦  

The amplitude is 4 cmA = and the period is 1 0.50 s.T f= =  A phase constant 0 2 3 rad 120φ π= = °  (second 
quadrant) means that x starts at 1

2 A−  and is moving to the left (getting more negative). 

 
Assess: We can see from the graph that the object starts out moving to the left. 
 



14.7. Visualize: A phase constant of 
2
π

−  implies that the object that undergoes simple harmonic motion is 

in the lower half of the circular motion diagram. That is, the object is moving to the right.  
Solve: The position of the object is given by the equation  

( ) ( ) ( ) ( )0 0cos cos 2 8.0 cm cos  rad s  rad
2 2

x t A t A ft tπ πω φ π φ ⎡ ⎤⎛ ⎞= + = + = −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

The amplitude is 8.0 cmA =  and the period is 1 4.0 s.T f= =  With 0 2 rad,φ π= −  x starts at 0 cm and is 
moving to the right (getting more positive). 

 
Assess: As we see from the graph, the object starts out moving to the right.  
 



14.8. Solve: The position of the object is given by the equation  

( ) ( ) ( )0 0cos cos 2x t A t A ftω φ π φ= + = +  

We can find the phase constant 0φ  from the initial condition: 

( ) ( )1 1
0 0 0 20 cm 4.0 cm cos cos 0 cos 0  radφ φ φ π−= ⇒ = ⇒ = = ±  

Since the object is moving to the right, the object is in the lower half of the circular motion diagram. Hence, 
1

0 2  rad.φ π= −  The final result, with 4.0 Hz,f =  is 

( ) ( ) ( ) 1
24.0 cm cos 8.0  rad s  radx t tπ π= −⎡ ⎤⎣ ⎦  

 



14.9. Solve: The position of the object is given by the equation 

( ) ( )0cosx t A tω φ= +  

The amplitude 8.0 cm.A =  The angular frequency ( )2 2 0.50 Hz  rad/s.fω π π π= = =  Since at 0t =  it has its 

most negative velocity, it must be at the equilibrium point 0 cmx =  and moving to the left, so 0 .
2
πφ =  Thus 

( ) ( )8.0 cm cos[(  rad/s)  rad]
2

x t t ππ= +  

 



14.10. Model: The air-track glider is in simple harmonic motion. 
Solve: (a) We can find the phase constant from the initial conditions for position and velocity: 

0 0 0 0cos sinxx A v Aφ ω φ= = −  

Dividing the second by the first, we see that 

0 0
0

0 0

sin tan
cos

xv
x

φ φ
φ ω

= = −  

The glider starts to the left 0( 5.00 cm)x = −  and is moving to the right 0( 36.3 cm/s).xv = +  With a period of 
1.5 s =  3

2  s,  the angular frequency is 4
32 /  rad/s.Tω π π= =  Thus 

1 1 2
0 3 3

36.3 cm/stan  rad (60 ) or –  rad (–120 )
(4 /3  rad/s)( 5.00 cm)

φ π π
π

− ⎛ ⎞
= − = ° °⎜ ⎟−⎝ ⎠

 

The tangent function repeats every 180°, so there are always two possible values when evaluating the arctan 
function. We can distinguish between them because an object with a negative position but moving to the right is 
in the third quadrant of the corresponding circular motion. Thus 2

0 3 rad,φ π= −  or 120 .− °  
(b) At time t, the phase is 4 2

0 3 3(  rad/s)  rad.t tφ ω φ π π= + = −  This gives 2
3 rad,φ π= −  0 rad, 2

3  rad,π  and 
4
3  radπ  at, respectively, 0 s,t =  0.5 s, 1.0 s, and 1.5 s. This is one period of the motion. 

 



14.11. Model: The block attached to the spring is in simple harmonic motion.  
Solve: The period of an object attached to a spring is  

0 2 2.0 smT T
k

π= = =  

where m is the mass and k is the spring constant.  
(a) For mass 2 ,m=  

( ) 0
22 2 2.8 smT T
k

π= = =  

(b) For mass 1
2 ,m  

1
2

02 2 1.41 s
m

T T
k

π= = =  

(c) The period is independent of amplitude. Thus 0 2.0 sT T= =  
(d) For a spring constant 2 ,k=  

02 2 1.41 s
2
mT T
k

π= = =  

 



14.12. Model: The air-track glider attached to a spring is in simple harmonic motion.  
Solve: Experimentally, the period is ( ) ( )12.0 s 10 oscillations 1.20 s.T = =  Using the formula for the period,  

( )
2 22 22 0.200 kg 5.48 N m

1.20 s
mT k m
k T

π ππ ⎛ ⎞ ⎛ ⎞= ⇒ = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 



14.13. Model: The mass attached to the spring oscillates in simple harmonic motion.  
Solve: (a) The period 1 1 2.0 Hz 0.50 s.T f= = =   
(b) The angular frequency 2 2 (2.0 Hz) 4  rad/s.fω π π π= = =   
(c) Using energy conservation 

2 2 21 1 1
0 02 2 2 xkA kx mv= +  

Using 0 5.0 cm,x =  0 30 cm/sxv = −  and 2 2(0.200 kg)(4  rad/s) ,k mω π= =  we get 5.54 cm.A =  
(d) To calculate the phase constant 0 ,φ   

0 0

1
0

 cos 5.0 cm
5.0 cmcos 0.45 rad
5.54 cm

A xφ

φ −

= =

⎛ ⎞⇒ = =⎜ ⎟
⎝ ⎠

 

(e) The maximum speed is ( )( )max 4  rad s 5.54 cm 70 cm s.v Aω π= = =   
(f) The maximum acceleration is  

( ) ( )( )2 2
max 4  rad s 70 cm s 8.8 m sa A Aω ω ω π= = = =  

(g) The total energy is ( )( )221 1
max2 2 0.200 kg 0.70 m s 0.049 J.E mv= = =   

(h) The position at 0.40 st =  is 

( ) ( )( )0.4 s 5.54 cm cos 4  rad s 0.40 s 0.45 rad 3.8 cmx π= + = +⎡ ⎤⎣ ⎦  

 



14.14. Model: The oscillating mass is in simple harmonic motion.  
Solve: (a) The amplitude 2.0 cm.A =  
(b) The period is calculated as follows: 

2 210 rad s 0.63 s
10 rad s

T
T
π πω = = ⇒ = =  

(c) The spring constant is calculated as follows: 

( )( )22 0.050 kg 10 rad s 5.0 N mk k m
m

ω ω= ⇒ = = =  

(d) The phase constant 1
0 4  rad.φ π= −  

(e) The initial conditions are obtained from the equations 

( ) ( ) ( ) ( ) ( ) ( )1 1
4 42.0 cm cos 10  and 20.0 cm s sin 10xx t t v t tπ π= − = − −  

At 0 s,t =  these equations become  

( ) ( ) ( ) ( )1 1
0 04 42.0 cm cos 1.41 cm and 20 cm s sin 14.1 cm sxx vπ π= − = = − − =  

In other words, the mass is at 1.41 cm+  and moving to the right with a velocity of 14.1 cm/s.  
(f) The maximum speed is ( )( )max 2.0 cm 10 rad s 20 cm s.v Aω= = =  

(g) The total energy ( )( )22 31 1
2 2 5.0 N m 0.020 m 1.00 10  J.E kA −= = = ×  

(h) At 0.41 s,t =  the velocity is 

( ) ( )( ) 1
0 420 cm s sin 10 rad s 0.40 s 1.46 cm sxv π= − − =⎡ ⎤⎣ ⎦  

 



14.15. Model: The block attached to the spring is in simple harmonic motion.  
Visualize:  

 
Solve: (a) The conservation of mechanical energy equation f sf i siK U K U+ = +  is 

( )

( )

22 2 2 21 1 1 1 1
1 0 02 2 2 2 2

0

0 J 0 J 0 J

1.0 kg 0.40 m s 0.10 m 10.0 cm
16 N m

mv k x mv kA mv

mA v
k

+ Δ = + ⇒ + = +

⇒ = = = =

 

(b) We have to find the velocity at a point where /2.x A=  The conservation of mechanical energy equation 
2 s2 i siK U K U+ = +  is  

( )

2
2 2 2 2 2 2 2 2
2 0 2 0 0 0 0

2 0

1 1 1 1 1 1 1 1 1 1 3 10 J
2 2 2 2 2 2 4 2 2 4 2 4 2

3 3 0.40 m s 0.346 m s
4 4

Amv k mv mv mv kA mv mv mv

v v

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = + ⇒ = − = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⇒ = = =

 

The velocity is 35 cm/s. 
 



14.16. Model: The vertical oscillations constitute simple harmonic motion.  
Visualize:  

 
Solve: (a) At equilibrium, Newton’s first law applied to the physics book is  

( )
( )( ) ( )

sp

2

0 N 0 N

0.500 kg 9.8 m s 0.20 m 24.5 N m
y

F mg k y mg

k mg y

− = ⇒ − Δ − =

⇒ = − Δ = − − =
 

(b) To calculate the period: 

24.5 N m 2 2  rad7.0 rad s  and 0.90 s
0.500 kg 7.0 rad s

k T
m

π πω
ω

= = = = = =  

(c) The maximum speed is 

( )( )max 0.10 m 7.0 rad s 0.70 m sv Aω= = =  

Maximum speed occurs as the book passes through the equilibrium position. 
 



14.17. Model: The vertical oscillations constitute simple harmonic motion. 
Solve: To find the oscillation frequency using 2 ,f k mω π= =  we first need to find the spring constant k. In 
equilibrium, the weight mg of the block and the spring force k LΔ  are equal and opposite. That is, 
mg k L k= Δ ⇒ = .mg LΔ The frequency of oscillation f is thus given as  

21 1 1 1 9.8 m s 3.5 Hz
2 2 2 2 0.020 m

k mg L gf
m m Lπ π π π

Δ
= = = = =

Δ
 

 



14.18. Model: The vertical oscillations constitute simple harmonic motion.  
Visualize:  

 
Solve: The period and angular frequency are  

20 s 2 20.6667 s and 9.425 rad s
30 oscillations 0.6667 s

T
T
π πω= = = = =  

(a) The mass can be found as follows: 

( )22

15 N/m 0.169 kg
9.425 rad s

k km
m

ω
ω

= ⇒ = = =  

(b) The maximum speed ( )( )max 9.425 rad s 0.060 m 0.57 m/s.v Aω= = =  

 



14.19. Model: Assume a small angle of oscillation so there is simple harmonic motion.  
Solve: The period of the pendulum is  

0
0 2 4.0 sLT

g
π= =  

(a) The period is independent of the mass and depends only on the length. Thus 0 4.0 s.T T= =  
(b) For a new length 02 ,L L=   

0
0

22 2 5.7 sLT T
g

π= = =  

(c) For a new length 0/2,L L=  

0
0

2 12 2.8 s
2

LT T
g

π= = =  

(d) The period is independent of the amplitude as long as there is simple harmonic motion. Thus 4.0 s.T =  
 



14.20. Model: The pendulum undergoes simple harmonic motion.  
Solve: (a) The amplitude is 0.10 rad.  
(b) The frequency of oscillations is  

5 Hz 0.796 Hz
2 2

f ω
π π

= = =  

(c) The phase constant  rad.φ π=  
(d) The length can be obtained from the period: 

( ) ( )
22

21 12 9.8 m s 0.392 m
2 2 0.796 Hz

gf L g
L f

ω π
π π

⎛ ⎞⎛ ⎞
= = ⇒ = = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

(e) At 0 s,t =  ( ) ( )0 0.10 rad cos 0.10 rad.θ π= = −  To find the initial condition for the angular velocity we take 
the derivative of the angular position: 

( ) ( ) ( ) ( ) ( )( ) ( )0.10 rad cos 5 0.10 rad 5 sin 5
d t

t t t
dt
θ

θ π π= + ⇒ = − +  

At 0 s,t =  ( ) ( ) ( )0
0.50 rad sin 0 rad s.d dtθ π= − =  

(f) ( ) ( )( )2.0At  2.0 s, 0.10 rad cos 5 2.0 s 0.084 rad.t θ π= = + =  

 



14.21. Model: Assume the small-angle approximation so there is simple harmonic motion.  
Solve: The period is 12 s 10 oscillations 1.20 sT = =  and is given by the formula 

( )
2 2

21.20 s2 9.8 m s 36 cm
2 2

L TT L g
g

π
π π

⎛ ⎞ ⎛ ⎞= ⇒ = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 



14.22. Model: Assume a small angle of oscillation so there is simple harmonic motion.  
Solve: (a) On the earth the period is 

earth 2

1.0 m2 2 2.0 s
9.80 m s

LT
g

π π= = =  

(b) On Venus the acceleration due to gravity is 

( )( )
( )

11 2 2 24
2Venus

Venus 22 6
Venus

Venus 2
Venus

6.67 10  N m kg 4.88 10  kg
8.86 m s

6.06 10  m

1.0 m2 2 2.1 s
8.86 m s

GMg
R

LT
g

π π

−× ⋅ ×
= = =

×

⇒ = = =

 

 



14.23. Model: Assume the pendulum to have small-angle oscillations. In this case, the pendulum undergoes 
simple harmonic motion.  
Solve: Using the formula 2 ,g GM R=  the periods of the pendulums on the moon and on the earth are 

2 2
earth earth moon moon

earth moon
earth moon

2 2  and 2L L R L RT T
g GM GM

π π π= = =  

Because earth moon ,T T=  

( )

22 2
earth earth moon moon moon earth

moon earth
earth moon earth moon

222 6

24 6

2 2

7.36 10  kg 6.37 10  m 2.0 m 33 cm
5.98 10  kg 1.74 10  m

L R L R M RL L
GM GM M R

π π
⎛ ⎞⎛ ⎞

= ⇒ = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞× ×
= =⎜ ⎟⎜ ⎟× ×⎝ ⎠⎝ ⎠

 

 



14.24. Model: Assume a small angle of oscillation so that the pendulum has simple harmonic motion.  
Solve: The time periods of the pendulums on the earth and on Mars are  

earth Mars
earth Mars

2   and 2L LT T
g g

π π= =  

Dividing these two equations,  

( )
2 2

2 2earth Mars earth
Mars earth

Mars earth Mars

1.50 s9.8 m s 3.67 m s
2.45 s

T g Tg g
T g T

⎛ ⎞ ⎛ ⎞= ⇒ = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 



14.25. Visualize: Please refer to Figure Ex14.25. 
Solve: The mass of the wrench can be obtained from the length that it stretches the spring. From Equation 14.41, 

( )
2

360 N/m 0.030 m
1.10 kg

9.8 m/s
mg k LL m
k g

Δ
Δ = ⇒ = = =  

When swinging on a hook the wrench is a physical pendulum. From Equation 14.52, 

22 mgl mglf
I T I

ππ = ⇒ =  

From the figure, 0.14 m.l =  Thus 

( )( )( )
2 2

2 2 20.90 s 1.10 kg 9.8 m/s 0.14 m 3.1 10  kg m
2 2
TI mgl
π π

−⎛ ⎞ ⎛ ⎞= = = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 



14.26. Model: The spider is in simple harmonic motion.  
Solve: Your tapping is a driving frequency. Largest amplitude at ext 1.0 Hzf =  means that this is the resonance 
frequency, so 0 ext 1.0 Hz.f f= =  That is, the spider’s natural frequency of oscillation 0f is 1.0 Hz and 

0 02 fω π= =  2  rad s.π  We have  

( )( )22
0 0 0.0020 kg 2  rad s 0.079 N mk k m

m
ω ω π= ⇒ = = =  

 



14.27. Model: The motion is a damped oscillation.  
Solve: The amplitude of the oscillation at time t is given by Equation 14.58: ( ) 2

0 ,tA t A e τ−=  where m bτ =  is 
the time constant. Using 0.368 Ax =  and 10.0 s,t =  we get  

( ) ( )
10.0 s 2 10 s 10.0 s0.368  ln 0.368 5.00 s

2 2ln 0.368
A Ae τ τ

τ
− −

= ⇒ = ⇒ = − =  

 



14.28. Model: The motion is a damped oscillation.  
Solve: The position of a damped oscillator is ( ) ( ) ( )2

0cos .tx t Ae tτ ω φ−= +  The frequency is 1.0 Hz and the 

damping time constant τ  is 4.0 s. Let us assume 0 0φ = rad and 1A =  with arbitrary units. Thus, 

( ) ( ) ( ) ( ) ( )t 8.0 s 0.125 tcos 2 1.0 Hz cos 2x t e t x t e tπ π− −= ⇒ =⎡ ⎤⎣ ⎦  

where t is in s. Values of x(t) at selected values of t are displayed in the following table: 

t(s) x(t)  t(s) x(t)  t(s) x(t) 

0      

0.25 

0.50 

0.75 

1.00 

1.25 

1.50 

1.75 

 

1 

0 

0.939−  

0 

0.882 

0 

0.829−  

0 

 

 2.00 

2.50 

3.00 

3.50 

4.00 

4.50 

5.00 

5.50 

 

0.779 

0.732−  

0.687 

0.646−  

0.607 

0.570−  

0.535 

0.503−  

 

  6.00 

 6.50 

 7.00 

 7.50 

 8.00 

 8.50 

 9.00 

 9.50 

10.00 

0.472 

− 0.444 

0.417 

− 0.392 

0.368 

− 0.346 

0.325 

− 0.305 

0.286 

 
 



14.29. Model: The pendulum is a damped oscillator.  
Solve: The period of the pendulum and the number of oscillations in 4 hours are calculated as follows:  

( )
osc2

4 3600 s15.0 m2 2 7.773 s 1853
9.8 m s 7.773 s

LT N
g

π π= = = ⇒ = =  

The amplitude of the pendulum as a function of time is ( ) / 2 .bt mA t Ae−=  The exponent of this expression can be 
calculated to be 

( )( )
( )

0.010 kg s 4 3600 s
0.6545

2 2 110 kg
bt
m

×
− = − = −  

We have ( ) ( ) 0.65451.50 m 0.780 m.A t e−= =  

 



14.30. Model: The vertical oscillations are damped and follow simple harmonic motion.  
Solve: The position of the ball is given by ( ) ( ) ( )2

0cos .tx t Ae tτ ω φ−= +  The amplitude ( ) ( )2tA t Ae τ−=  is a 
function of time. The angular frequency is 

( )15.0 N m 25.477 rad s 1.147 s
0.500 kg

k T
m

πω
ω

= = = ⇒ = =  

Because the ball’s amplitude decreases to 3.0 cm from 6.0 cm after 30 oscillations, that is, after 30 1.147 s× =  
34.41 s, we have 

( ) ( ) ( ) ( )34.414 s 2 34.41 s 2 34.41 s3.0 cm 6.0 cm 0.50 ln 0.50  25 s 
2

e eτ τ τ
τ

− − −
= ⇒ = ⇒ = ⇒ =  

 



14.31. Visualize: Please refer to Figure P14.31.  
Solve: The position and the velocity of a particle in simple harmonic motion are 

( ) ( ) ( ) ( ) ( )0 0 max 0cos  and sin sinxx t A t v t A t v tω φ ω ω φ ω φ= + = − + = − +  

(a) At 0 s,t =  the equation for x yields 

( ) ( ) ( ) ( )1 2
0 0 35.0 cm 10.0 cm cos cos 0.5  radφ φ π−− = ⇒ = − = ±  

Because the particle is moving to the left at 0 s,t =  it is in the upper half of the circular motion diagram, and the 
phase constant is between 0 and π  radians. Thus, 2

0 3 rad.φ π=   
(b) The period is 4.0 s. At 0 s,t =   

( )0 0
2 2sin 10.0 cm sin 13.6 cm/s

3xv A
T
π πω φ ⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

(c) The maximum speed is 

( )max
2 10.0 cm 15.7 cm s

4.0 s
v A πω ⎛ ⎞= = =⎜ ⎟

⎝ ⎠
 

Assess: The negative velocity at 0 st =  is consistent with the position-versus-time graph and the positive sign 
of the phase constant. 
 



14.32. Visualize: Please refer to Figure P14.32.  
Solve: The position and the velocity of a particle in simple harmonic motion are  

( ) ( ) ( ) ( ) ( )0 0 max 0cos  and sin sinxx t A t v t A t v tω φ ω ω φ ω φ= + = − + = − +  

From the graph, 12 sT =  and the angular frequency is  

2 2 rad s
12 s 6T

π π πω = = =  

(a) Because max 60 cm s,v Aω= =  we have  

60 cm s 60 cm s 115 cm
6 rad s

A
ω π

= = =  

(b) At 0 s,t =   

( )
( ) ( ) ( )

0 0 0

1 51
0 6 6

sin 30 cm/s 60 cm s sin 30 cm/s

sin 0.5 rad  rad 30  or  rad 150
xv Aω φ φ

φ π π−

= − = − ⇒ − = −

⇒ = = ° °

 

Because the velocity at 0 st =  is negative and the particle is slowing down, the particle is in the second quadrant 
of the circular motion diagram. Thus 5

0 6 rad.φ π=   

(c) At 0 s,t =  ( ) ( )5
0 6115 cm cos  rad 100 cm.x π= = −  

 



14.33. Model: The vertical mass/spring systems are in simple harmonic motion.  
Visualize: Please refer to Figure P14.33.  
Solve: (a) For system A, the maximum speed while traveling in the upward direction corresponds to the 
maximum positive slope, which is at 3.0 s.t =  The frequency of oscillation is 0.25 Hz. 
(b) For system B, all the energy is potential energy when the position is at maximum amplitude, which for the 
first time is at 1.5 s.t =  The time period of system B is thus 6.0 s. 
(c) Spring/mass A undergoes three oscillations in 12 s, giving it a period A 4.0 s.T =  Spring/mass B undergoes 2 
oscillations in 12 s, giving it a period B 6.0 s.T =  We have 

A B A A B
A B

A B B B A

4.0 s 22  and 2
6.0 s 3

m m T m kT T
k k T m k

π π
⎛ ⎞⎛ ⎞

= = ⇒ = = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

If A B,m m=  then 

B A

A B

4 9 2.25
9 4

k k
k k

= ⇒ = =  

 



14.34. Solve: The object’s position as a function of time is ( ) ( )0cos .x t A tω φ= +  Letting 0 mx =  at 0 s,t =  
gives 

1
0 0 20 cosA φ φ π= ⇒ = ±  

Since the object is traveling to the right, it is in the lower half of the circular motion diagram, giving a phase 
constant between π−  and 0 radians. Thus, 1

0 2φ π= −  and  

( ) ( ) ( ) ( ) ( )1 1
2 2cos sin 0.10 m sinx t A t x t A t tω π ω π= − ⇒ = =  

where we have used 0.10 mA =  and  

2 2  rad rad s
4.0 s 2T

π π πω = = =  

Let us now find t where 0.60 m:x =  

( ) 12 0.060 m0.060 m 0.10 m sin sin 0.41 s
2 0.10 m
t tπ

π
−⎛ ⎞ ⎛ ⎞= ⇒ = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

Assess: The answer is reasonable because it is approximately 1
8  of the period. 

 



14.35. Model: The block attached to the spring is in simple harmonic motion.  
Visualize: The position and the velocity of the block are given by the equations 

( ) ( ) ( ) ( )0 0cos  and sinxx t A t v t A tω φ ω ω φ= + = − +  

Solve: To graph x(t) we need to determine ,ω  0,φ  and A. These quantities will be found by using the initial 
( 0 s)t =  conditions on x(t) and ( ).xv t  The period is 

1.0 kg 2 2  rad2 2 1.405 s 4.472 rad s
20 N m 1.405 s

mT
k T

π ππ π ω= = = ⇒ = = =  

At 0 s,t =  0 0 0 0cos  and sin .xx A v Aφ ω φ= = −  Dividing these equations, 

( )
( )( )

0
0 0

0

1.0 m s
tan 1.1181 0.841 rad

4.472 rad s 0.20 m
xv
x

φ φ
ω

−
= − = − = ⇒ =  

From the initial conditions,  

( )
22

22 0
0

1.0 m s0.20 m 0.300 m
4.472 rad s

xvA x
ω

⎛ ⎞−⎛ ⎞= + = + =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

The position-versus-time graph can now be plotted using the equation  

( ) ( ) ( )0.300 m cos 4.472 rad s 0.841 radx t t= +⎡ ⎤⎣ ⎦  

 
 



14.36. Model: The astronaut attached to the spring is in simple harmonic motion.  
Visualize: Please refer to Figure P14.36.  
Solve: (a) From the graph, 3.0 s,T =  so we have 

( )
2 23.0 s2 240 N m 55 kg

2 2
m TT m k
k

π
π π

⎛ ⎞ ⎛ ⎞= ⇒ = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) Oscillations occur about an equilibrium position of 1.0 m. From the graph, ( )1
02 0.80 m 0.40 m, A φ= = =  

0 rad, and   

2 2 2.1 rad s
3.0 sT

π πω = = =  

The equation for the position of the astronaut is 

( ) ( ) ( )
( ) ( ) ( )

cos 1.0 m 0.4 m  cos 2.1 rad s 1.0 m

1.2 m= 0.4 m cos 2.1 rad s 1.0 m cos 2.1 rad s 0.5 0.50 s

x t A t t

t t t

ω= + = +⎡ ⎤⎣ ⎦
⇒ + ⇒ = ⇒ =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 

The equation for the velocity of the astronaut is 

( ) ( )
( )( ) ( )( )0.5 s

sin

0.4 m 2.1 rad s sin 2.1 rad s 0.50 s 0.73 m s
xv t A t

v

ω ω= −

⇒ = − = −⎡ ⎤⎣ ⎦

 

Thus her speed is 0.73 m/s. 
 



14.37. Model: The particle is in simple harmonic motion.  
Solve: The equation for the velocity of the particle is  

( ) ( )( ) ( )25 cm 10 rad s sin 10 txv t = −  

Substituting into 2K U=  gives 

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )

( ) ( )

2 22 2

22
2 2

22

22 2 1

1 1 12 250 cm s sin 10 t 25 cm cos 10 t
2 2 2

sin 10 t 25 cm 12 2  s
cos 10 t 100250 cm s

1 1tan 10 t 2 10 rad s  s 2.0 tan 2.0 0.096 s
100 10

xmv t kx t m k

k
m

t

ω

−

⎛ ⎞= ⇒ − =⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎝ ⎠

⎛ ⎞ ⎛ ⎞⇒ = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⇒ = = ⇒ = =⎜ ⎟
⎝ ⎠

 

 



14.38. Model: The spring undergoes simple harmonic motion. 
Solve: (a) Total energy is 21

2 .E kA=  When the displacement is 1
2 ,x A=  the potential energy is 

( )2 2 2 31 1 1 1 1 1
2 2 2 4 2 4 4( )U kx k A kA E K E U E= = = = ⇒ = − =  

One quarter of the energy is potential and three-quarters is kinetic. 
(b) To have 1

2U E=  requires 

( )2 21 1 1 1
2 2 2 2 2

AU kx E kA x= = = ⇒ =  

 



14.39. Solve: Average speed is avg / .v x t= Δ Δ  During half a period 1
2( ),t TΔ =  the particle moves from 

x A= −  to ( 2 ).x A x A= + Δ =  Thus 

avg max max avg
2 4 4 2 2( )

/2 2 / 2
x A A Av A v v v
t T T

πω
π ω π π

Δ
= = = = = = ⇒ =
Δ

 

 



14.40. Model: The ball attached to a spring is in simple harmonic motion.  
Solve: (a) Let 0 st =  be the instant when 0 5.0 cmx = −  and 0 20 cm/s.v =  The oscillation frequency is  

2.5 N m 5.0 rad / s
0.100 kg

k
m

ω = = =  

Using Equation 14.27, the amplitude of the oscillation is  

( )
22

22 0
0

20 cm /s5.0 cm 6.4 cm
5.0 rad / s

vA x
ω

⎛ ⎞⎛ ⎞= + = − + =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) The maximum acceleration is 2 2
max 160 cm s .a Aω= =   

(c) For an oscillator, the acceleration is most positive ( )maxa a=  when the displacement is most negative 

( )max .x x A= − = −  So the acceleration is maximum when 6.4 cm.x = −   

(d) We can use the conservation of energy between 0 5.0 cmx = −  and 1 3.0 cm:x =  

( )2 2 2 2 2 2 21 1 1 1
0 0 1 1 1 0 0 12 2 2 2 0.283 m skmv kx mv kx v v x x

m
+ = + ⇒ = + − =  

The speed is 28 cm/s. Because k is known in SI units of N/m, the energy calculation must be done using SI units 
of m, m/s, and kg. 
 



14.41. Model: The block on a spring is in simple harmonic motion.  

Solve: (a) The position of the block is given by ( ) ( )0cos .x t A tω φ= +  Because ( )x t A=  at 0 s,t =  we have 

0 0 rad,φ =  and the position equation becomes ( ) cos .x t A tω=  At 0.685 s,t =  ( )3.00 cm cos 0.685A ω=  and at 

0.886 s,t =  ( )3.00 cm cos 0.886 .A ω− =  These two equations give  

( ) ( ) ( )cos 0.685 cos 0.886 cos 0.886
0.685 0.886 2.00 rad s

ω ω π ω
ω π ω ω
= − = −

⇒ = − ⇒ =
 

(b) Substituting into the position equation,  

( )( )( ) ( ) 3.00 cm3.00 cm cos 2.00 rad s 0.685 s cos 1.370 0.20 15.0 cm
0.20

A A A A= = = ⇒ = =  

 



14.42. Model: The oscillator is in simple harmonic motion. Energy is conserved. 
Solve: The energy conservation equation 1 2E E=  is 

( )( ) ( ) ( )( ) ( )

2 2 2 21 1 1 1
1 1 2 22 2 2 2

2 2 2 21 1 1 10.30 kg 0.954 m s 0.030 m 0.30 kg 0.714 m s 0.060 m
2 2 2 2

44.48 N m

mv kx mv kx

k k

k

+ = +

+ = +

⇒ =

 

The total energy of the oscillator is 

( )( ) ( )( )2 22 2
total 1 1

1 1 1 10.30 kg 0.954 m s 44.48 N m 0.030 m 0.1565 J
2 2 2 2

E mv kx= + = + =  

Because 21
total max2 ,E mv=  

( ) 2
max  max

10.1565 J 0.300 kg 1.02 m s
2

v v= ⇒ =  

Assess: A maximum speed of 1.02 m/s is reasonable. 
 



14.43. Model: The transducer undergoes simple harmonic motion. 
Solve: Newton’s second law for the transducer is 

( )3 8 2
restoring  max max max40,000 N 0.10 10  kg 4.0 10  m sF ma a a−= ⇒ = × ⇒ = ×  

Because 2
max ,a Aω=  

( )
8 2

5max
22 6

4.0 10  m s 1.01 10  m 10.1 m
2 1.0 10  Hz

aA μ
ω π

−×
= = = × =

⎡ ⎤×⎣ ⎦

 

(b) The maximum velocity is 

( )( )6 5
max 2 1.0 10  Hz 1.01 10  m 64 m sv Aω π −= = × × =  

 



14.44. Model: The block attached to the spring is in simple harmonic motion.  
Solve: (a) The frequency is 

1 1 2000 N m 3.183 Hz
2 2 5.0 kg

kf
mπ π

= = =  

The frequency is 3.2 Hz. 
(b) From energy conservation,  

2 2
2 20
0

1.0 m/s(0.050 m) 0.0707 m
2 3.183 Hz

vA x
ω π

⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠
 

The amplitude is 7.1 cm. 
(c) The total mechanical energy is 

( )( )221 1
2 2 2000 N m 0.0707 m 5.0 JE kA= = =  

 



14.45. Model: The tips of the tuning fork are in simple harmonic oscillation. 
Solve: (a) The maximum speed is related to the amplitude. 

( )( )4
max 2 2 440 Hz 5.0 10  m 1.38 m/sv A fAω π π −= = = × =  

(b) The acceleration of the flea can not be greater than that allowed by the maximum force with which it can hold 
on. From Newton’s second law, the maximum acceleration that the flea can withstand is 

3
2

flea 6

1.0 10  N 100 m/s
10 10  kg

Fa
m

−

−

×
= = =

×
 

The maximum acceleration at the tip of the prong is 

( ) ( )( ) ( )222 4 2
max 2 2 440 Hz 5.0 10  m 382 m/sa A f Aω π π −= = = × =  

The flea will not be able to hold on to the tuning fork. 
 



14.46. Model: The block undergoes simple harmonic motion. 
Visualize:  

 
Solve: (a) The frequency of oscillation is 

1 1 10 N/m 1.125 Hz
2 2 0.20 kg

kf
mπ π

= = =  

The frequency is 1.13 Hz. 
(b) Using conservation of energy, 2 2 2 21 1 1 1

1 1 0 02 2 2 2 ,mv kx mv kx+ = +  we find 

2 2 2 2 2 2
1 0 0 1

0.20 kg( ) ( 0.20 m) ((1.00 m/s) (0.50 m/s) )
10 N/m

0.2345 m or 23 cm

mx x v v
k

= + − = − + −

=
 

(c) At time t, the displacement is 0cos( ).x A tω φ= +  The angular frequency is 2 7.071 rad/s.fω π= =  The 
amplitude is 

2 2
2 20

0
1.00 m/s( 0.20 m) 0.245 m

7.071 rad/s
vA x
ω

⎛ ⎞ ⎛ ⎞= + = − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

The phase constant is 
1 10

0
0.200 mcos cos 2.526 rad or 145

0.245 m
x
A

φ − − −⎛ ⎞ ⎛ ⎞= = = ± ± °⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

A negative displacement (below the equilibrium point) and positive velocity (upward motion) indicate that the 
corresponding circular motion is in the third quadrant, so 0 2.526 rad.φ = −  Thus at 1.0 s,t =  

( )(0.245 m)cos (7.071 rad/s)(1.0 s) 2.526 rad 0.0409 m 4.09 cmx = − = − = −  

The block is 4.1 cm below the equilibrium point. 
 



14.47. Model: The mass is in simple harmonic motion.  
Visualize:  

 
The high point of the oscillation is at the point of release. This conclusion is based on energy conservation. 
Gravitational potential energy is converted to the spring’s elastic potential energy as the mass falls and stretches 
the spring, then the elastic potential energy is converted 100% back into gravitational potential energy as the 
mass rises, bringing the mass back to exactly its starting height. The total displacement of the oscillation—high 
point to low point—is 20 cm. Because the oscillations are symmetrical about the equilibrium point, we can 
deduce that the equilibrium point of the spring is 10 cm below the point where the mass is released. The mass 
oscillates about this equilibrium point with an amplitude of 10 cm, that is, the mass oscillates between 10 cm 
above and 10 cm below the equilibrium point. 
Solve: The equilibrium point is the point where the mass would hang at rest, with sp G .F F mg= =  At the 

equilibrium point, the spring is stretched by 10 cm 0.10 m.yΔ = =  Hooke’s law is sp ,F k y= Δ  so the equilibrium 
condition is  

[ ]
2

2
sp G

9.8 m s 98 s
0.10 m

k gF k y F mg
m y

−⎡ ⎤= Δ = = ⇒ = = =⎣ ⎦ Δ
 

The ratio k m  is all we need to find the oscillation frequency:  

21 1 98 s 1.58 Hz
2 2

kf
mπ π

−= = =  

 



14.48. Model: The spring is ideal, so the apples undergo SHM. 
Solve: The spring constant of the scale can be found by considering how far the pan goes down when the 
apples are added. 

20 N 222 N/m
0.090 m

mg mgL k
k L

Δ = ⇒ = = =
Δ

 

The frequency of oscillation is 

2

1 1 222 N/m 1.66 Hz
2 2 (20 N 9.8 m/s )

kf
mπ π

= = =  

Assess: An oscillation of fewer than twice per second is reasonable. 
 



14.49. Model: The compact car is in simple harmonic motion.  
Solve: (a) The mass on each spring is ( )1200 kg 4 300 kg.=  The spring constant can be calculated as follows:  

( ) ( ) ( ) 222 2 42 300 kg 2 2.0 Hz 4.74 10  N mk k m m f
m

ω ω π π= ⇒ = = = = ×⎡ ⎤⎣ ⎦  

The spring constant is 44.7 10  N/m.×  
(b) The car carrying four persons means that each spring has, on the average, an additional mass of 70 kg. That 
is, 300 kg 70 kg 370 kg.m = + =  Thus, 

41 1 4.74 10  N m 1.80 Hz
2 2 2 370 kg

kf
m

ω
π π π

×
= = = =  

Assess: A small frequency change from the additional mass is reasonable because frequency is inversely 
proportional to the square root of the mass. 
 



14.50. Model: Hooke’s law for the spring. The spring’s compression and decompression constitutes simple 
harmonic motion.  
Visualize:  

 
Solve: (a) The spring’s compression or decompression is one-half of the oscillation cycle. This means the 
contact time is 1

2 ,t TΔ =  where T is the period. The period is calculated as follows: 

50 N m 1 2 210 rad s 0.628 s
0.500 kg 10 rad s

0.31 s
2

k T
m f

Tt

π πω
ω

= = = ⇒ = = = =

⇒ Δ = =

 

(b) There is no change in contact time, because period of oscillation is independent of the amplitude or the 
maximum speed. 
 



14.51. Model: The two blocks are in simple harmonic motion, without the upper block slipping. We will 
also apply the model of static friction between the two blocks.  
Visualize:  

 
Solve: The net force acting on the upper block 1m  is the force of friction due to the lower block 2.m  The 
model of static friction gives the maximum force of static friction as  

( ) ( )s s s 1 1 max max smax
f n m g m a a gμ μ μ= = = ⇒ =  

Using s 0.5,μ =  ( )( )2 2
max S 0.5 9.8 m s 4.9 m s .a gμ= = =  That is, the two blocks will ride together if the 

maximum acceleration of the system is equal to or less than max.a  We can calculate the maximum value of A as 
follows:  

( ) ( )( )2
max 1 22

max max max max
1 2

4.9 m s 1.0 kg 5.0 kg
0.59 m

50 N m
a m mka A A A

m m k
ω

++
= = ⇒ = = =

+
 

 



14.52. Model: Assume simple harmonic motion for the two-block system without the upper block slipping. 
We will also use the model of static friction between the two blocks.  
Visualize:  

 
Solve: The net force on the upper block 1m  is the force of static friction due to the lower block 2.m  The two 
blocks ride together as long as the static friction doesn’t exceed its maximum possible value. The model of static 
friction gives the maximum force of static friction as 

( ) ( )s s s 1 1 max max smax

2 22
max max max

s 2

2 2 0.40 m 0.72
1.5 s 9.8 m s

f n m g m a a g

a A A
g g T g

μ μ μ

ω π πμ

= = = ⇒ =

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⇒ = = = = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

Assess: Because the period is given, we did not need to use the block masses or the spring constant in our 
calculation. 
 



14.53. Model: The DNA and cantilever undergo SHM. 
Visualize: Please refer to figure P14.53. 
Solve: The cantilever has the same spring constant with and without the DNA molecule. The frequency of 
oscillation without the DNA is 

1 1
3

k
M

ω =  

With the DNA, the frequency of oscillation is 

2 1
3

k
M m

ω =
+

 

where m is the mass of the DNA. 
Divide the two equations, and express 2 1 ,ω ω ω= −Δ  where ( )2 2 50 Hz .fω π πΔ = Δ =  

1 1
1 1 1 3 3

1
2 2 1 3

1
3

( )

( )

k
M M mf f
kf f f M

M m

ω
ω

+
= = = =

− Δ
+

 

Thus 
( ) ( ) ( )

( )( )
( ) ( )

22 1 1
1 13 3

22 21 1 11 1
3 2 3 2

1 1

1

f M f f M m

f f f fm M M
f f f f

= − Δ +

− − Δ ⎛ ⎞
= = −⎜ ⎟⎜ ⎟− Δ − Δ⎝ ⎠

 

Since 1,f fΔ  (50 Hz 12MHz),  ( )
2

2 2 2
1 1 1

1 1

1 1 2 .f ff f f f
f f

−
− − −Δ Δ⎛ ⎞ ⎛ ⎞− Δ = − ≈ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 Thus 

1 2
3 3

1 1

1 2 1f fm M M
f f

⎛ ⎞Δ Δ
= + − =⎜ ⎟

⎝ ⎠
 

The mass of the cantilever 
3 9 9 16(2300 kg/m )(4000 10  m)(100 10  m) 3.68 10  kgM − − −= × × = ×  

Thus the mass of the DNA molecule is 

( )16 21
6

2 50 Hz3.68 10  kg 1.02 10  kg
3 12 10  Hz

m − −⎛ ⎞= × = ×⎜ ⎟×⎝ ⎠
 

Assess: The mass of the DNA molecule is about 56.2 10×  atomic mass units, which is reasonable for such a large 
molecule. 
 



14.54. Model: Assume that the swinging lamp makes a small angle with the vertical so that there is simple 
harmonic motion.  
Visualize:  

 
Solve: (a) Using the formula for the period of a pendulum,  

( )
2 2

2 5.5 s2 9.8 m s 7.5 m
2 2

L TT L g
g

π
π π

⎛ ⎞ ⎛ ⎞= ⇒ = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) The conservation of mechanical energy equation 0 g0 1 g1K U K U+ = +  for the swinging lamp is 

( )

( )( )( )

2 2 21 1 1
0 0 1 1 max2 2 2

max

2

0 J 0 J

2 2 cos3

2 9.8 m s 7.5 m 1 cos3 0.45 m s

mv mgy mv mgy mgh mv

v gh g L L

+ = + ⇒ + = +

⇒ = = − °

= − ° =

 

 



14.55. Model: Assume that the angle with the vertical that the pendulum makes is small enough so that there 
is simple harmonic motion.  
Solve: The angle θ  made by the string with the vertical as a function of time is  

( ) ( )max 0cost tθ θ ω φ= +  

The pendulum starts from maximum displacement, thus 0 0.φ =  Thus, ( ) max cos .t tθ θ ω=  To find the time t when 
the pendulum reaches 4.0° on the opposite side:  

( ) ( ) ( )14.0 8.0 cos cos 0.5 2.094 radt tω ω −− ° = ° ⇒ = − =  

Using the formula for the angular frequency,  
29.8 m s 2.0944 rad 2.094 rad3.130 rad s 0.669 s

1.0 m 3.130 rad s
g t
L

ω
ω

= = = ⇒ = = =  

The time 0.67 s.t =  
Assess: Because 2 2.0 s,T π ω= =  a value of 0.67 s for the pendulum to cover a little less than half the 
oscillation is reasonable. 
 



14.56. Model: Assume a small angle oscillation of the pendulum so that it has simple harmonic motion.  
Solve: (a) At the equator, the period of the pendulum is 

equator 2

1.000 m2 2.009 s
9.78 m s

T π= =  

The time for 100 oscillations is 200.9 s.  
(b) At the north pole, the period is 

pole 2

1.000 m2 2.004 s
9.83 m s

T π= =  

The time for 100 oscillations is 200.4 s.  
(c) The difference between the two answers is 0.5 s, and this difference is quite measurable with a hand-operated 
stopwatch. 
(d) The period on the top of the mountain is 2.010 s. The acceleration due to gravity can be calculated by 
rearranging the formula for the period: 

( )
2 2

2
mountain

mountain

2 21.000 m 9.772 m s
2.010 s

g L
T

π π⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

Assess: This last result is reasonable because g decreases with altitude. 
 



14.57. Model: The mass is a particle and the string is massless. 
Solve: Equation 14.52 is 

Mgl
I

ω =  

The moment of inertia of the mass on a string is 2 ,I Ml=  where l is the length of the string. Thus 

2

Mgl g
Ml l

ω = =  

This is Equation 14.49 with .L l=  
Assess: Equation 14.49 is really a specific case of the more general physical pendulum described by 
Equation 14.52. 
 



14.58. Model: The rod is thin and uniform with moment of inertia described in Table 12.2. The clay ball is a 
particle located at the end of the rod. The ball and rod together form a physical pendulum. The oscillations are 
small. 
Visualize:  

 
Solve: The moment of inertia of the composite pendulum formed by the rod and clay ball is 

( )( ) ( )( )

2 2
rod + ball rod ball rod ball

2 2 3 2

1
3

1 0.200 kg 0.15 m 0.020 kg 0.15 m 1.95 10  kg m
3

I I I m L m L

−

= + = +

= + = ×
 

The center of mass of the rod and ball is located at a distance from the pivot point of  

( ) ( )( )

( )
2

cm

0.150.200 kg  m 0.020 kg 0.15 m
2 8.18 10  m

0.200 kg 0.020 kg
y −

⎛ ⎞ +⎜ ⎟
⎝ ⎠= = ×

+
 

The frequency of oscillation of a physical pendulum is 

( )( )( )2 2

3 2

0.220 kg 9.8 m/s 8.18 10  m1 1 1.51 Hz
2 2 1.95 10  kg m

Mglf
Iπ π

−

−

×
= = =

×
 

The period of oscillation 1T
f

= = 0.66 s. 

 



14.59. Model: The circular hoop can be modeled as a cylindrical hoop and its moment of inertia about the 
point of rotation found with the parallel-axis theorem. 
Visualize: Please refer to Figure P14.59. 
Solve: Using the parallel-axis theorem, the moment of inertia of the cylindrical hoop about the rotation point is 

2 2 22I MR MR MR= + =  
The frequency of small oscillations is given by Equation 14.52. 

1
2

Mglf
Iπ

=  

The center of mass of the hoop is its center, so .l R=  Thus 

2

1 1
2 2 2 2

MgR gf
MR Rπ π

= =  

 



14.60. Model: The motion is a damped oscillation.  
Solve: The position of the air-track glider is ( ) ( ) ( )2

0cos ,tx t Ae tτ ω φ−= +  where m bτ =  and  

2

24
k b
m m

ω = −  

Using 0.20 m,A =  0 0 rad,φ =  and 0.015 kg/s,b =  

( )
( )

2
4

2

0.015 kg s4.0 N m 16 9 10  rad s 4.0 rad s
0.250 kg 4 0.250 kg

ω −= − = − × =  

Thus the period is 
2 2  rad 1.57 s

4.0 rad s
T π π

ω
= = =  

The amplitude at 0 st =  is 0x A=  and the amplitude will be equal to 1e A−  at a time given by  

( )21 2 2 33.3 st mA Ae t
e b

τ τ−= ⇒ = = =  

The number of oscillations in a time of 33.3 s is (33.3 s)/(1.57 s) 21.=  

 



14.61. Model: A completely inelastic collision between the two gliders resulting in simple harmonic motion.  
Visualize:  

 

Let us denote the 250 g and 500 g masses as 1m  and 2,m  which have initial velocities i1v  and i2.v  After 1m  
collides with and sticks to 2,m  the two masses move together with velocity f .v  
Solve: The momentum conservation equation f ip p=  for the completely inelastic collision is ( )1 2 fm m v+ =  

1 i1 2 i2.m v m v+  Substituting the given values, 

( ) ( )( ) ( )( )f f0.750 kg 0.250 kg 1.20 m s 0.500 kg 0 m s 0.400 m sv v= + ⇒ =  

We now use the conservation of mechanical energy equation: 

( ) ( ) ( )

( )

2 21 1
s s 1 2 f2 2compressed equilibrium

1 2
f

0 J 0 J

0.750 kg 0.400 m s 0.110 m
10 N m

K U K U kA m m v

m mA v
k

+ = + ⇒ + = + +

+
⇒ = = =

 

The period is 

1 2 0.750 kg2 2 1.72 s
10 N m

m mT
k

π π+
= = =  

 



14.62. Model: The block attached to the spring is oscillating in simple harmonic motion.  
Solve: (a) Because the frequency of an object in simple harmonic motion is independent of the amplitude 
and/or the maximum velocity, the new frequency is equal to the old frequency of 2.0 Hz.  
(b) The speed 0v  of the block just before it is given a blow can be obtained by using the conservation of 
mechanical energy equation as follows:  

( ) ( )( )( )

2 2 21 1 1
max 02 2 2

0 2 2 2.0 Hz 0.02 m 0.25 m s

kA mv mv

kv A A f A
m

ω π π

= =

⇒ = = = = =
 

The blow to the block provides an impulse that changes the velocity of the block:  

( )( ) ( ) ( )( )
f 0

3
f f20 N 1.0 10  s 0.200 kg 0.200 kg 0.25 m s 0.150 m s

x xJ F t p mv mv

v v−

= Δ = Δ = −

− × = − ⇒ =
 

Since fv  is the new maximum velocity of the block at the equilibrium position, it is equal to .Aω  Thus,  

( )
0.150 m s 0.150 m s 0.012 m 1.19 cm

2 2.0 Hz
A

ω π
= = = =  

Assess: Because fv  is positive, the block continues to move to the right even after the blow. 

 



14.63. Model: The pendulum falls, then undergoes small-amplitude oscillations in simple harmonic motion.  
Visualize: 

 
We placed the origin of the coordinate system at the bottom of the arc.  
Solve: We need to find the length of the pendulum. The conservation of mechanical energy equation for the 
pendulum’s fall is ( ) ( )g gtop bottom

:K U K U+ = +  

( ) ( )
( )

22 21 1 1
0 0 1 12 2 2

2

0 J 2 5.0 m s 0 J

5.0 m s1 0.6377 m
4

mv mgy mv mgy mg L m

L
g

+ = + ⇒ + = +

⇒ = =
 

Using 0.6377 m,L =  we can find the frequency f as  
21 1 9.8 m s 0.62 Hz

2 2 0.6377 m
gf
Lπ π

= = =  

 



14.64. Model: Assume the small-angle approximation. 
Visualize: 

 

 

Solve: The tension in the two strings pulls downward at angle .θ  Thus Newton’s second law is 
2 siny yF T maθ= − =∑  

From the geometry of the figure we can see that  

2 2
sin y

L y
θ =

+
 

If the oscillation is small, then y L  and we can approximate sin / .y Lθ ≈  Since y/L is tan ,θ  this 
approximation is equivalent to the small-angle approximation sin tanθ θ≈  if 1 rad.θ  With this 
approximation, Newton’s second law becomes 

2 2

2 2

2 22 sin y
T d y d y TT y ma m y
L dt dt mL

θ− ≈ − = = ⇒ = −  

This is the equation of motion for simple harmonic motion (see Equations 14.33 and 14.47). The constants 
2T/mL are equivalent to k/m in the spring equation or g/L in the pendulum equation. Thus the oscillation 
frequency is 

1 2
2

Tf
mLπ

=  

 



14.65. Visualize: Please refer to Figure P14.65.  
Solve: The potential energy curve of a simple harmonic oscillator is described by ( )21

2 ,U k x= Δ  where 

0x x xΔ = −  is the displacement from equilibrium. From the graph, we see that the equilibrium bond length is 

0x =  0.13 nm. We can find the bond’s spring constant by reading the value of the potential energy U at a 
displacement xΔ  and using the potential energy formula to calculate k. 

x (nm) xΔ  (nm) U (J) k (N/m) 

0.11 
0.10 
0.09 

0.02 
0.03 
0.04 

190.8 10  J−×  
191.9 10  J−×  
193.4 10  J−×  

400 
422 
425 

The three values of k are all very similar, as they should be, with an average value of 416 N/m. Knowing the 
spring constant, we can now calculate the oscillation frequency of a hydrogen atom on this “spring” to be  

13
27

1 1 416 N m 7.9 10  Hz
2 2 1.67 10  kg

kf
mπ π −= = = ×

×
 

 



14.66. Model: Assume that the size of the ice cube is much less than R and that θ  is a small angle. 
Visualize:  

 
Solve: The ice cube is like an object on an inclined plane. The net force on the ice cube in the tangential direction 
is  

( )
2 2

G 2 2sin sind dF ma mR mR mg mR
dt dt
θ θθ α θ− = = = ⇒ − =  

where α  is the angular acceleration. With the small-angle approximation sin ,θ θ≈  this becomes  
2

2
2

d g
dt R
θ θ ω θ= − = −  

This is the equation of motion of an object in simple harmonic motion with a period of 

2 2 RT
g

π π
ω

= =  

 



14.67. Visualize:  

 
Solve: (a) Newton’s second law applied to the penny along the y-axis is 

net yF n mg ma= − =  

netF  is upward at the bottom of the cycle (positive ),ya  so .n mg>  The speed is maximum when passing 

through equilibrium, but 0ya =  so .n mg=  The critical point is the highest point. netF  points down and ya  is 

negative. If ya  becomes sufficiently negative, n drops to zero and the penny is no longer in contact with the 
surface. 
(b) When the penny loses contact ( 0),n =  the equation for Newton’s law becomes max .a g=  For simple 
harmonic motion, 

2
2

max
9.8 m s 15.65 rad
0.040 m

15.65 rad s 2.5 Hz
2 2

ga A
A

f

ω ω

ω
π π

= ⇒ = = =

⇒ = = =

 

 



14.68. Model: The vertical oscillations constitute simple harmonic motion.  
Visualize:  

 
Solve: At the equilibrium position, the net force on mass m on Planet X is:  

X
net X 0 N k gF k L mg

m L
= Δ − = ⇒ =

Δ
 

For simple harmonic motion 2,k m ω=  thus  

( )
22

2 2X X
X

2 2 2 0.312 m 5.86 m s
14.5 s 10

g g g L
L L T T

π π πω ω
⎛ ⎞⎛ ⎞= ⇒ = = ⇒ = Δ = =⎜ ⎟⎜ ⎟Δ Δ ⎝ ⎠ ⎝ ⎠

 

 



14.69. Model: The doll’s head is in simple harmonic motion and is damped. 
Solve: (a) The oscillation frequency is  

( ) ( )( ) ( )2 2 21 2 0.015 kg 2 4.0 Hz 9.475 N m
2

kf k m f
m

π π
π

= ⇒ = = =  

The spring constant is 9.5 N/m. 
(b) The maximum speed is 

( )max
9.475 N m 0.020 m 0.50 m s

0.015 kg
kv A A
m

ω= = = =  

(c) Using ( ) / 2
0 ,bt mA t A e−=  we get  

( ) ( )
( )

(4.0 s)/(2 0.015 kg) (133.3 s/kg)0.5 cm 2.0 cm 0.25

133.33 s kg ln 0.25 0.0104 kg /s

b be e

b b

− × −= ⇒ =

⇒ − = ⇒ =
 

 



14.70. Model: The oscillator is in simple harmonic motion.  
Solve: (a) The maximum displacement at time t of a damped oscillator is  

( ) ( )max2
max ln

2
t x ttx t Ae

A
τ

τ
− ⎛ ⎞

= ⇒ − = ⎜ ⎟
⎝ ⎠

 

Using max 0.98x A=  at 0.50 s,t =  we can find the time constant τ  to be  

( )
0.50 s 12.375 s

2ln 0.98
τ = − =  

25 oscillations will be completed at 25 12.5 s.t T= =  At that time, the amplitude will be 

( ) ( )( )12.5 s 2 12.375 s
max, 12.5 s 10 cm 6.0 cmx e−= =  

(b) The energy of a damped oscillator decays more rapidly than the amplitude: 1/
0( ) .E t E e τ−=  When the energy 

is 60% of its initial value, 0( )/ 0.60.E t E =  We can find the time this occurs as follows: 

( ) ( ) ( ) ( )
0 0

ln ln 12.375 s ln 0.60 6.3 s
E t E tt t
E E

τ
τ

⎛ ⎞ ⎛ ⎞
− = ⇒ = − = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 



14.71. Model: The oscillator is in simple harmonic motion.  
Solve: The maximum displacement, or amplitude, of a damped oscillator decreases as 2

max ( ) ,tx t Ae τ−=  where 
τ  is the time constant. We know max 0.60x A =  at 50 s,t =  so we can find τ  as follows:  

( )
( )

max 50 sln 48.9 s
2 2ln 0.60

x tt
A

τ
τ

⎛ ⎞
− = ⇒ = − =⎜ ⎟

⎝ ⎠
 

Now we can find the time 30t  at which max 0.30 :x A =   

( ) ( ) ( )max
30 2 ln 2 48.9 s ln 0.30 118 s

x t
t

A
τ

⎛ ⎞
= − = − =⎜ ⎟

⎝ ⎠
 

The undamped oscillator has a frequency 2 Hz 2f = =  oscillations per second. Damping changes the oscillation 
frequency slightly, but the text notes that the change is negligible for “light damping.” Damping by air, which 
allows the oscillations to continue for well over 100 s, is certainly light damping, so we will use 2.0 Hz.f =  
Then the number of oscillations before the spring decays to 30% of its initial amplitude is  

( ) ( )30 2 oscillations s 118 s 236 oscillationsN f t= ⋅ = ⋅ =  

 



14.72. Solve: The solution of the equation 
2

2 0d x b dx k x
dt m dt m

+ + =  

is ( ) ( )2 
0cos .bt mx t Ae tω φ−= +  The first and second derivatives of x(t) are 

( ) ( )

( ) ( )

/ 2 / 2
0 0

2 2
2 / 2

0 02 2

cos sin
2

cos sin
4

bt m bt m

bt m

dx Ab e t A e t
dt m
d x Ab AbA t t e
dt m m

ω φ ω ω φ

ωω ω φ ω φ

− −

−

= − + − +

⎡ ⎤⎛ ⎞
= − + + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

 

Substituting these expressions into the differential equation, the terms involving 0sin( )tω φ+  cancel and we 
obtain the simplified result 

( )
2

2
02 cos 0

4
b k t
m m

ω ω φ
⎛ ⎞−

− + + =⎜ ⎟
⎝ ⎠

 

Because ( )0cos tω φ+  is not equal to zero in general,  

2 2
2

2 20
4 4
b k k b
m m m m

ω ω−
− + = ⇒ = −  

 



14.73. Model: The two springs obey Hooke’s law.  
Visualize:  

 
Solve: There are two restoring forces on the block. If the block’s displacement x is positive, both restoring 
forces—one pushing, the other pulling—are directed to the left and have negative values:  

( ) ( ) ( ) ( )net sp 1 sp 2 1 2 1 2 effx x x
F F F k x k x k k x k x= + = − − = − + = −  

where eff 1 2k k k= +  is the effective spring constant. This means the oscillatory motion of the block under the 
influence of the two springs will be the same as if the block were attached to a single spring with spring constant 

eff .k  The frequency of the blocks, therefore, is  

2 2eff 1 2 1 2
1 22 2

1 1
2 2 4 4

k k k k kf f f
m m m mπ π π π

+
= = = + = +  

 



14.74. Model: The two springs obey Hooke’s law. Assume massless springs. 
Visualize: Each spring is shown separately. Note that 1 2.x x xΔ = Δ + Δ  

 

Solve: Only spring 2 touches the mass, so the net force on the mass is 2 on .m mF F=  Newton’s third law tells us 
that 2 on  on 2m mF F=  and that 2 on 1 1 on 2.F F=  From net ,F ma=  the net force on a massless spring is zero. Thus 

w on 1F =  2 on 1 1 1F k x= Δ  and  on 2 1 on 2 2 2.mF F k x= = Δ  Combining these pieces of information,  

1 1 2 2mF k x k x= Δ = Δ  

The net displacement of the mass is 1 2 ,x x xΔ = Δ + Δ  so 

1 2
1 2

1 2 1 2 1 2

1 1m m
m m

F F k kx x x F F
k k k k k k

⎛ ⎞ +
Δ = Δ + Δ = + = + =⎜ ⎟

⎝ ⎠
 

Turning this around, the net force on the mass is 

1 2 1 2
eff eff

1 2 1 2

  where m
k k k kF x k x k

k k k k
= Δ = Δ =

+ +
 

eff ,k  the proportionality constant between the force on the mass and the mass’s displacement, is the effective 
spring constant. Thus the mass’s angular frequency of oscillation is 

eff 1 2

1 2

1k k k
m m k k

ω = =
+

 

Using 2
1 1/k mω =  and 2

2 2 /k mω =  for the angular frequencies of either spring acting alone on m, we have 

2 2
1 2 1 2

2 2
1 2 1 2

( / ) ( / )
( / ) ( / )

k m k m
k m k m

ω ωω
ω ω

= =
+ +

 

Since the actual frequency f is simply a multiple of ,ω  this same relationship holds for f: 

2 2
1 2

2 2
1 2

f ff
f f

=
+

 

 



14.75. Model: The blocks undergo simple harmonic motion.  
Visualize:  

 
The length of the stretched spring due to a block of mass m is 1.LΔ  In the case of the two block system, the spring 
is further stretched by an amount 2.LΔ  
Solve: The equilibrium equations from Newton’s second law for the single block and double block systems are 

( ) ( ) ( )1 1 2 and 2L k mg L L k m gΔ = Δ + Δ =  

Using 2 5.0 cm,LΔ =  and subtracting these two equations, gives us 

( ) ( ) ( )1 2 1 2 0.05 mL L k L k m g mg k mgΔ + Δ − Δ = − ⇒ =  

2
–29.8 m/s 196 s

0.05 m
k
m

⇒ = =  

With both blocks attached, giving total mass 2m, the angular frequency of oscillation is 

–21 1196 s 9.90 rad/s
2 2 2
k k
m m

ω = = = =  

Thus the oscillation frequency is /2 1.58 Hz.f ω π= =  

 



14.76. Model: A completely inelastic collision between the bullet and the block resulting in simple harmonic 
motion.  
Visualize:  

 
Solve: (a) The equation for conservation of energy after the collision is 

( ) ( )2 2
b B f f

b B

1 1 2500 N m 0.10 m 5.0 m s
2 2 1.010 kg

kkA m m v v A
m m

= + ⇒ = = =
+

 

The momentum conservation equation for the perfectly inelastic collision after beforep p=  is  

( )
( )( ) ( ) ( )( )

b B f b b B B

2
b b1.010 kg 5.0 m s 0.010 kg 1.00 kg 0 m s 5.0 10  m s

m m v m v m v

v v

+ = +

= + ⇒ = ×
 

(b) No. The oscillation frequency ( )b Bk m m+  depends on the masses but not on the speeds. 

 



14.77. Model: The block undergoes SHM after sticking to the spring. Energy is conserved throughout the 
motion. 
Visualize:  

 
It’s essential to carefully visualize the motion. At the highest point of the oscillation the spring is stretched 
upward. 
Solve: We’ve placed the origin of the coordinate system at the equilibrium position, where the block would sit 
on the spring at rest. The spring is compressed by LΔ  at this point. Balancing the forces requires .k L mgΔ =  The 

angular frequency is 2 / / ,w k m g L= = Δ  so we can find the oscillation frequency by finding .LΔ  The block hits 
the spring (1) with kinetic energy. At the lowest point (3), kinetic energy and gravitational potential energy have 
been transformed into the spring’s elastic energy. Equate the energies at these points: 

2 21 1
1 1g 3s 3g 12 2 ( ) ( )K U U U mv mg L k L A mg A+ = + ⇒ + Δ = Δ + + −  

We’ve used 1y L= Δ  as the block hits and 3y A= −  at the bottom. The spring has been compressed by 

.y L AΔ = Δ +  Speed 1v  is the speed after falling distance h, which from free-fall kinematics is 2
1 2 .v gh=  

Substitute this expression for 2
1v  and /mg LΔ  for k, giving 

2( ) ( )
2( )
mgmgh mg L L A mg A
L

+ Δ = Δ + + −
Δ

 

The mg term cancels, and the equation can be rearranged into the quadratic equation 
2 2( ) 2 ( ) 0L h L AΔ + Δ − =  

The positive solution is 
2 2 2 2(0.030 m) (0.100 m) 0.030 m 0.0744 mL h A hΔ = + − = + − =  

Now that LΔ  is known, we can find 
29.80 m/s 11.48 rad/s 1.83 Hz

0.0744 m 2
g f
L

ωω
π

= = = ⇒ = =
Δ

 

 



14.78. Model: Model the bungee cord as a spring. The motion is damped SHM. 
Visualize:  

 
Solve: (a) For light damping, the oscillation period is 

2 22 22 (75 kg) 185 N/m
4.0 s

mT k m
k T

π ππ ⎛ ⎞ ⎛ ⎞= ⇒ = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) The maximum speed is max (2 /4.0 s)(11.0 m) 17.3 m/s.v Aω π= = =  
(c) Jose oscillates about the equilibrium position at which he would hang at rest. Balancing the forces, 

/L mg kΔ = = 2(75 kg)(9.80 m/s )(185 N/m) 3.97 m.=  Jose’s lowest point is 11.0 m below this point, so the 
bungee cord is stretched by max 14.97 m.y L AΔ = Δ + =  Choose this lowest point as 0.y =  Because Jose is 
instantaneously at rest at this point, his energy is entirely the elastic potential energy of the stretched bungee 
cord. Initially, his energy was entirely gravitational potential energy. Equating his initial energy to his energy at 
the lowest point, 

21
lowest point highest point max2

2 2
max

2

( )

( ) (185 N/m)(14.97 m) 28.2 m
2 2(75 kg)(9.80 m/s )

U U k y mgh

k yh
mg

= ⇒ Δ =

Δ
= = =

 

Jose jumped 28 m above the lowest point. 
(d) The amplitude decreases due to damping as /2m( ) .btA t Ae−=  At the time when the amplitude has decreased 
from 11.0 m to 2.0 m, 

/ 22.0 m 2 2 2(75 kg)ln ( 1.705) 42.6 s
11.0 m 11 6.0 kg/s

bt m me t
b

− ⎛ ⎞= ⇒ = − = − − =⎜ ⎟
⎝ ⎠

 

With a period of 4.0 s, the number of oscillations is osc (42.6 s)/(4.0 s) 10.7 oscillations.N = =  

 



14.79. Model: The vertical movement of the car is simple harmonic motion. 
Visualize:  

 
The fact that the car has a maximum oscillation amplitude at 5 m/s implies a resonance. The bumps in the road 
provide a periodic external force to the car’s suspension system, and a resonance will occur when the “bump 
frequency” extf  matches the car’s natural oscillation frequency 0.f  
Solve: Now the 5.0 m/s is not a frequency, but we can convert it to a frequency because we know the bumps 
are spaced every 3.0 meters. The time to drive 3.0 m at 5.0 m/s is the period: 

3.0 m 0.60 s
5.0 m s

xT
v
Δ

= = =  

The external frequency due to the bumps is thus ext 1 1.667 Hz.f T= =  This matches the car’s natural frequency 

0,f  which is the frequency the car oscillates up and down if you push the car down and release it. This is enough 
information to deduce the spring constant of the car’s suspension: 

( )2
ext

1 N1.667 Hz  2 131,600 
2 m

k k m f
m

π
π

= ⇒ = =  

where we used total car passenger2 1200 kg.m m m m= = + =  When at rest, the car is in static equilibrium with 

net 0 N.F =  The downward weight totalm g  of the car and passengers is balanced by the upward spring force k yΔ  
of the suspension. Thus the compression yΔ  of the suspension is 

totalm gy
k

Δ =  

Initially total car passenger2 1200 kg,m m m= + =  causing an initial compression i 0.0894 m 8.94 cm.yΔ = =  When three 

additional passengers get in, the mass increases to total car passenger5 1500 kg.m m m= + =  The final compression is 

fyΔ =  0.1117 m 11.17 cm.=  Thus the three new passengers cause the suspension to “sag” by 
11.17 cm 8.94 cm− =  2.23 cm. 
 



14-1 

14.80. Model: The rod is thin and uniform. 
Visualize: Please refer to Figure CP14.80. 

 
Solve: We must derive our own equation for this combination of a pendulum and spring. For small oscillations, sF  
remains horizontal. The net torque around the pivot point is 

Gcos sin
2net s
LI F L Fτ α θ θ⎛ ⎞= = − − ⎜ ⎟

⎝ ⎠
 

With 
2

2 ,d
dt
θα =  G ,F mg=  s sin ,F k x kL θ= Δ = and 21 ,

3
I mL=  

2

2

3 3sin cos sin
2

d k g
dt m L
θ θ θ θ= − −  

We can use 1sin cos sin 2 .
2

θ θ θ=  For small angles, sinθ θ≈  and sin 2 2 .θ θ≈  So 

2

2

3 3
2

d k g
dt m L
θ θ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
 

This is the same as Equations 14.33 and 14.47 with 

3 3
2

k g
m L

ω = +  

The frequency of oscillation is thus 

( )
( )

( )
( )

23 9.8 m/s3 3.0 N/m1 1.73 Hz
2 0.200 kg 2 0.20 m

f
π

= + =  

The period 1T
f

= = 0.58 s. 

Assess: Fewer than two oscillations per second is reasonable. The rod’s angle from the vertical must be small 
enough that sin 2 2 .θ θ≈  This is more restrictive than other examples, which only require that sin .θ θ≈  
 


