
20.1.  Model: The wave is a traveling wave on a stretched string. 
Solve: The wave speed on a stretched string with linear density μ is string S / .v T μ=  The wave speed if the 
tension is doubled will be 

( )S
string string

2 2 2 200 m/s 283 m/sTv v
μ

′ = = = =  

 



20.2.  Model: The wave is a traveling wave on a stretched string. 
Solve: The wave speed on a stretched string with linear density μ is 

S
string

75 N150 m/s  Tv
μ μ

= ⇒ = 33.333 10  kg/mμ −⇒ = ×  

For a wave speed of 180 m/s, the required tension will be 
( )( )22 3

S string 3.333 10  kg/m 180 m/s 110 NT vμ −= = × =  
 



20.3.  Model: The wave pulse is a traveling wave on a stretched string. 
Solve: The wave speed on a stretched string with linear density μ is 

( )( )S S S
string 3

2.0 m 20 N2.0 m 0.025 kg 25 g
50 10  s

T T LTv m
m/L m mμ −= = = ⇒ = ⇒ = =

×
 



20.4.  Model: This is a wave traveling at constant speed. The pulse moves 1 m to the right every second. 
Visualize:  The snapshot graph shows the wave at all points on the x-axis at t = 0 s. The wave is just reaching x 
= 5.0. The first part of the wave causes an upward displacement of the medium. The rising portion of the wave is 
2 m wide, so it will take 2 s to pass the x = 5.0 m point. The constant part of the wave, whose width is 2 m, will 
take 2 seconds to pass x = 5.0 m and during this time the displacement of the medium will be a constant (Δy = 1 
cm). The trailing edge of the pulse arrives at t = 4 s at x = 5.0 m. The displacement now becomes zero and stays 
zero for all later times. 

 
 



20.5.  Model: This is a wave traveling at constant speed. The pulse moves 1 m to the left every second. 
Visualize:  This snapshot graph shows the wave at all points on the x-axis at t = 2 s. You can see that the 
leading edge of the wave at t = 2 s is precisely at x = 0 m. That is, in the first 2 seconds, the displacement is zero 
at x = 0 m. The first part of the wave causes a downward displacement of the medium, so immediately after t = 2 
s the displacement at x = 0 m will be negative. The negative portion of the wave pulse is 3 m wide and takes 3 s 
to pass x = 0 m. The positive portion begins to pass through x = 0 m at t = 5 s and until t = 8 s the displacement of 
the medium is positive. The displacement at x = 0 m returns to zero at t = 8 s and remains zero for all later times. 

 
 



20.6.  Model: This is a wave traveling at constant speed to the right at 1 m/s. 
Visualize:  This is the history graph of a wave at x = 0 m. The graph shows that the x = 0 m point of the 
medium first sees the negative portion of the pulse wave at t = 1.0 s. Thus, the snapshot graph of this wave at t = 
1.0 s must have the leading negative portion of the wave at x = 0 m. 

 
 



20.7.  Model: This is a wave traveling at constant speed to the left at 1 m/s. 
Visualize:  This is the history graph of a wave at x = 2 m. Because the wave is moving to the left at 1 m/s, the 
wave passes the x = 2 m position a distance of 1 m in 1 s. Because the flat part of the history graph takes 2 s to 
pass the x = 2 m position, its width is 2 m. Similarly, the width of the linearly increasing part of the history graph 
is 2 m. The center of the flat part of the history graph corresponds to both t = 0 s and x = 2 m. 

 
 



20.8. Visualize:  

 
Figure EX20.8 shows a snapshot graph at t = 0 s of a longitudinal wave. This diagram shows a row of particles 
with an inter-particle separation of 1.0 cm at equilibrium. Because the longitudinal wave has a positive amplitude 
of 0.5 cm between x = 3 cm and x = 8 cm, the particles at x = 3, 4, 5, 6, 7 and 8 cm are displaced to the right by 
0.5 cm. 
 



20.9. Visualize:  

 
We first draw the particles of the medium in the equilibrium positions, with an inter-particle spacing of 1.0 cm. Just 
underneath, the positions of the particles as a longitudinal wave is passing through are shown at time t = 0 s. It is 
clear that relative to the equilibrium the particle positions are displaced negatively on the left side and positively on 
the right side. For example, the particles at x = 0 cm and x = 1 cm are at equilibrium, the particle at x = 2 cm is 
displaced left by 0.5 cm, the particle at x = 3 cm is displaced left by 1.0 cm, the particle at x = 4 cm is displaced left 
by 0.5 cm, and the particle at x = 5 cm is undisplaced. The behavior of particles for x > 5 cm is opposite of that for x 
< 5 cm. 
 



20.10. Solve: (a) The wave number is 
2 2 3.1 rad/m

2.0 m
k π π

λ
= = =  

(b) The wave speed is 

30 rad/s(2.0 m) 9.5 m/s
2 2

v f ωλ λ
π π

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 



20.11. Solve: (a) The wavelength is 
2 2 4.2 m

1.5 rad/mk
π πλ = = =  

(b) The frequency is 
200 m/s 48 Hz
4.19 m

vf
λ

= = =  

 



20.12. Model: The wave is a traveling wave. 
Solve: (a) A comparison of the wave equation with Equation 20.14 yields: A = 3.5 cm, k = 2.7 rad/m, ω = 
124 rad/s, and 0 0 rad.φ =  The frequency is 

124 rad/s 19.7 Hz 20 Hz
2 2

f ω
π π

= = = ≈  

(b) The wavelength is 
2 2 2.33 m 2.3 m

2.7 rad/mk
π πλ = = = ≈  

(c) The wave speed 46 m/sv fλ= = . 

 



20.13. Model: The wave is a traveling wave. 
Solve: (a) A comparison of the wave equation with Equation 20.14 yields: A = 5.2 cm, k = 5.5 rad/m, ω = 72 
rad/s, and 0 0 rad.φ =  The frequency is 

72 rad/s 11.5 Hz 11 Hz
2 2

f ω
π π

= = = ≈  
(b) The wavelength is 

2 2 1.14 m 1.1 m
5.5 rad/mk

π πλ = = = ≈  

(c) The wave speed 13 m/s.v fλ= =  

 



20.14.  Solve: The amplitude of the wave is the maximum displacement, which is 6.0 cm. The period of the 
wave is 0.60 s, so the frequency 1 1 0.60 s 1.67 Hzf T= = = . The wavelength is 

2 m/s 1.2 m
1.667 Hz

v
f

λ = = =  

 



20.15.  Solve: According to Equation 20.28, the phase difference between two points on a wave is 

( )2 1 2 1
22 r r rπφ φ φ π

λ λ
Δ

Δ = − = = − ( ) ( )23  rad 0 rad 80 cm 20 cmππ
λ

⇒ − = − 40 cmλ⇒ =  

 



20.16.  Solve: According to Equation 20.28, the phase difference between two points on a wave is 

( )2 1 2 1
2 r rπφ φ φ
λ

Δ = − = −  

If 1  radφ π= at r1 = 4.0 m, we can determine 2φ  at any r value at the same instant using this equation. At r2 = 3.5 
m, 

( ) ( )2 1 2 1
2 2rad 3.5 m 4.0 m  rad

2.0 m 2
r rπ π πφ φ π

λ
= + − = + − =  

At r2 = 4.5 m, 3
2φ π= rad. 

 



20.17. Visualize:  

 
Solve: For a sinusoidal wave, the phase difference between two points on the wave is given by Equation 20.28: 

( ) ( ) ( )2 1 2 1
2 2 240 m 30 m 10 mr rπ π πφ φ φ λ
λ λ φ

Δ = − = − = − ⇒ =
Δ

 

2φ πΔ =  for two points on adjacent wavefronts and 4φ πΔ =  for two points separated by 2λ. Thus, λ = 10 m 
when 2 ,φ πΔ =  and λ = 5 m when 4 .φ πΔ =  The crests corresponding to these two wavelengths are shown in 
the figure. One can see that a crest of the wave passes the 40 m–listener and the 30 m–listener simultaneously. 
The lowest two possible frequencies will occur for the largest two possible wavelengths, which are 10 m and 5 
m. Thus, the lowest frequency is 

1
340 m/s 34 Hz

10 m
vf
λ

= = =  

The next highest frequency is 2 68 Hz.f =  

 



20.18. Visualize:  

 
Solve: (a) Because the same wavefront simultaneously reaches listeners at x = −7.0 m and x = + 3.0 m, 

( )2 1 2 1
20 rad r r r rπφ
λ

Δ = = − ⇒ =  

Thus, the source is at x = −2.0 m, so that it is equidistant from the two listeners. 
(b) The third person is also 5.0 m away from the source. Her y-coordinate is thus 2 2(5 m) (2 m) 4.6 m .y = − =  

 



20.19.  Solve: Two pulses of sound are detected because one pulse travels through the metal to the 
microphone while the other travels through the air to the microphone. The time interval for the sound pulse 
traveling through the air is 

air
air

4.0 m 0.01166 s 11.66 ms
343 m/s

xt
v
Δ

Δ = = = =  

Sound travels faster through solids than gases, so the pulse traveling through the metal will reach the microphone 
before the pulse traveling through the air. Because the pulses are separated in time by 11.0 ms, the pulse 
traveling through the metal takes Δtmetal = 0.66 ms to travel the 4.0 m to the microphone. Thus, the speed of 
sound in the metal is 

metal
metal

4.0 m 6060 m/s 6100 m/s
0.00066 s

xv
t
Δ

= = = ≈
Δ

 

 



20.20.  Solve: (a) In aluminum, the speed of sound is 6420 m/s. The wavelength is thus equal to 

3
6

6420 m/s 3.21 10  m 3.21 mm 3.2 mm
2.0 10  Hz

v
f

λ −= = = × = ≈
×

 

(b) The speed of an electromagnetic wave is c. The frequency would be 
8

10
3

3.0 10  m/s 9.3 10  Hz
3.21 10  m

cf
λ −

×
= = = ×

×
 

 



20.21.  Solve: (a) The frequency is 

air 343 m/s 1715 Hz 1700 Hz
0.20 m

vf
λ

= = = ≈  

(b) The frequency is 
8

93.0 10  m/s 1.5 10  Hz 1.5 GHz
0.20 m

cf
λ

×
= = = × =  

(c) The speed of a sound wave in water is vwater = 1480 m/s. The wavelength of the sound wave would be 
7water

9

1480 m/s 9.87 10  m 990 nm
1.50 10  Hz

v
f

λ −= = = × ≈
×

 



20.22.  Model: Light is an electromagnetic wave that travels with a speed of 3 × 108 m/s. 

Solve: (a) The frequency of the blue light is 
8

14
blue 9

3.0 10  m/s 6.67 10  Hz
450 10  m

cf
λ −

×
= = = ×

×
 

(b) The frequency of the red light is 
8

14
red 9

3.0 10  m/s 4.62 10  Hz
650 10  m

f −

×
= = ×

×
 

(c) Using Equation 20.30 to calculate the index of refraction, 

vacuum
material n

λλ = vacuum

material

650 nm 1.44
450 nm

n λ
λ

⇒ = = =  

 



20.23.  Model: Microwaves are electromagnetic waves that travel with a speed of 3 × 108 m/s. 
Solve: (a) The frequency of the microwave is 

8
10

microwaves 2

3.0 10  m/s 1.0 10  Hz 10 GHz
3.0 10  m

cf
λ −

×
= = = × =

×
 

(b) The refractive index of air is 1.0003, so the speed of microwaves in air is air /1.00 c.v c= ≈  The time for the 
microwave signal to travel is 

( )
3

8
air

50 km 50 10  m 0.167 ms 0.17 ms
3.0 10  m 1.00

t
v

×
= = = ≈

×
 

Assess: A small time of 0.17 ms for the microwaves to cover a distance of 50 km shows that the 
electromagnetic waves travel very fast. 
 



20.24.  Model: Radio waves are electromagnetic waves that travel with speed c. 
Solve: (a) The wavelength is 

83.0 10  m/s 2.96 m
101.3 MHz

c
f

λ ×
= = =  

(b) The speed of sound in air at 20 C°  is 343 m/s. The frequency is 

sound 343 m/s 116 Hz
2.96 m

vf
λ

= = =  

 



20.25.  Model: Light is an electromagnetic wave. 
Solve: (a) The time light takes is 

( )
3 3

11
8

glass

3.0 mm 3.0 10  m 3.0 10  m 1.5 10  s
3.0 10  m/s 1.50

t
v c n

− −
−× ×

= = = = ×
×

 

(b) The thickness of water is 

( )
8

11
water

water

3.0 10  m/s 1.5 10  s 3.4 mm
1.33

cd v t t
n

−×
= = = × =  

 



20.26.  Solve: (a) The speed of light in a material is given by Equation 20.29: 

mat
mat

c cn v
v n

= ⇒ =  

The refractive index is 

( )8 8vac solid
solid

mat vac

420 nm3.0 10  m/s 1.88 10  m/s
670 nm

n v cλ λ
λ λ

= ⇒ = = × = ×  

(b) The frequency is 
8

14solid

solid

1.88 10  m/s 4.48 10  Hz
420 nm

vf
λ

×
= = = ×  

 



20.27. Model: Assume that the glass has index of refraction 1 5.n = .  This means that 
8

glass 2 10 m/s.v c n= / = ×  
Visualize: We apply v fλ=  twice, once in air and then in the glass. The frequency will be the same in both 
cases. 
Solve: (a) In the air 

8
8 8air

air
air

3 0 10 m/s 8 57 10  Hz 8 6 10  Hz
0 35 m

vf
λ

. ×
= = = . × ≈ . ×

.
 

The frequency is the same in both media, so 8
glass 8.6 10  Hz.f = ×  

(b) Now that we know glassf  and glass ,v  we can find glass.λ  

8
glass

glass 8
glass

2 0 10  m/s 23 cm
8 57 10  Hz

v
f

λ . ×
= = =

. ×
 

Assess: We get the same answer from glass air glass 35 cm/1 5 23 cmnλ λ= / = . = . 

 



20.28.  Solve: The energy delivered to the eardrum in time t is E = Pt, where P is the power of the wave. The 
intensity of the wave is /I P a=  where a is the area of the ear drum. Putting the above information together, we 
have 

( ) ( ) ( ) ( )
22 3 2 3 62.0 10  W/m 3.0 10  m 60 s 3.4 10  JE Pt Ia t I r tπ π− − −= = = = × × = ×  

 



20.29.  Solve: The energy delivered to an area a in time t is E = Pt, where the power P is related to the 
intensity I as / .I P a=  Thus, the energy received by your back is 

E = Pt = Iat = (0.80)(1400 W/m2)(0.30 × 0.50 m2)(3600 s) = 6.0 × 105 J 

 



20.30.  Solve: If a source of spherical waves radiates uniformly in all directions, the ratio of the intensities at 
distances r1 and r2 is 

2
1 2

2
2 1

I r
I r
=

2
350 m

2 m

2 m 1.6 10
50 m

I
I

−⎛ ⎞⇒ = = ×⎜ ⎟
⎝ ⎠

 

( ) ( )( )3 2 3 3 2
50 m 2 m 1.6 10 2.0 W/m 1.6 10 3.2 10  W/mI I − − −⇒ = × = × = ×  

Assess: The power generated by the sound source is P = I2m [4π(2 m)2] = (2.0 W/m2)(50.27) = 101 W. This is a 
significant amount of power. 
 



20.31.  Solve: (a) The intensity of a uniform spherical source of power Psource a distance r away is 
2

source / 4 .I P rπ=  Thus, the intensity at the position of the microphone is 

( )
3 2

50 m 2
35 W 1.1 10  W/m

4 50 m
I

π
−= = ×  

(b) The sound energy impinging on the microphone per second is 

( )( )3 2 4 2 7 71.1 10  W/m 1.0 10  m 1.1 10  W 1.1 10  J/sP Ia − − − −= = × × = × = ×  

⇒ Energy impinging on the microphone in 1 second = 71.1 10  J−×  
 



20.32.  Solve: Because the sun radiates waves uniformly in all directions, the intensity I of the sun’s rays 
when they impinge upon the earth is 

( )
26

2sun sun
earth 22 2 11

earth

4 10  W 1400 W/m
4 4 4 1.496 10  m

P PI I
r rπ π π

×
= ⇒ = = =

×
 

With rsun-Venus = 1.082 × 1011 m and rsun-Mars = 2.279 × 1011 m, the intensities of electromagnetic waves at these 
planets are 2 2

venus Mars2700 W/m  and 610 W/m .I I= =  

 



20.33. Visualize: Equation 20.35 gives the sound intensity level as 

10
0

(10 dB)log I
I

β
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

where 12 2
0 1 0 10  W/m .I −= . ×  

Solve: 
(a) 

8 2

10 10 12 2
0

5 0 10  W/m(10 dB)log (10 dB)log 47 dB
1 0 10  W/m

I
I

β
−

−

⎛ ⎞ ⎛ ⎞. ×
= = =⎜ ⎟ ⎜ ⎟. ×⎝ ⎠⎝ ⎠

 

(b) 
2 2

10 10 12 2
0

5 0 10  W/m(10 dB)log (10 dB)log 107 dB
1 0 10  W/m

I
I

β
−

−

⎛ ⎞ ⎛ ⎞. ×
= = =⎜ ⎟ ⎜ ⎟. ×⎝ ⎠⎝ ⎠

 

Assess: As mentioned in the chapter, each factor of 10 in intensity changes the sound intensity level by 10 dB; 
between the first and second parts of this problem the intensity changed by a factor of 610 ,  so we expect the 
sound intensity level to change by 60 dB. 
 



20.34. Visualize: We can solve Equation 20.35 for the sound intensity, finding /10dB
0 10I I β= × . 

Solve: 
(a) 

/10dB 12 2 3 6 9 2
0 10 (1 0 10  W/m ) 10 4 0 10  W/mI I β − . −= × = . × × = . ×  

(b) 
/10dB 12 2 9 6 3 2

0 10 (1 0 10  W/m ) 10 4 0 10  W/mI I β − . −= × = . × × = . ×  

Assess: Since the sound intensity levels in the two parts of this problem differ by 60dB  we expect the sound 

intensities to differ by a factor of 610 . 
 



20.35. Model: Assume the pole is tall enough that we don’t have to worry about the ground absorbing or 
reflecting sound. 
Visualize: The area of a sphere of radius R  is 24A Rπ= . Also recall that I P A= / ; we are given 5 0WP = . . 
We seek R  for 90dBβ = . 
Solve: 

2
10dB 12 2 90dB 10dB

0

5 0 W 5000 m
10 (1 0 10 W/m ) 10

P PA
I I β/ − /

.
= = = =

× . × ×
 

25000 m 20 m
4 4
AR
π π

= = =  

Assess: This is a reasonable distance from the loudspeaker for a moderately loud sound. 
 



20.36. Model: The frequency of the opera singer’s note is altered by the Doppler effect. 
Solve: (a) Using 90 km/h = 25 m/s, the frequency as her convertible approaches the stationary person is 

0

S

600 Hz 650 Hz25 m/s1 1
343 m/s

ff
v v+ = = =

− −
 

(b) The frequency as her convertible recedes from the stationary person is 
0

S

600 Hz 560 Hz25 m/s1 1
343 m/s

ff
v v− = = =

+ +
 



20.37.  Model: Your friend’s frequency is altered by the Doppler effect. The frequency of your friend’s note 
increases as he races towards you (moving source and a stationary observer). The frequency of your note for your 
approaching friend is also higher (stationary source and a moving observer). 
Solve: (a) The frequency of your friend’s note as heard by you is 

0

S

400 Hz 432 Hz25.0 m/s1 1
340 m/s

ff v
v

+ = = =
− −

 

(b) The frequency heard by your friend of your note is 

( )0
0

25.0 m/s1 400 Hz 1 429 Hz
340 m/s

vf f
v+

⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 



20.38. Model: Sound frequency is altered by the Doppler effect. The frequency increases for an observer 
approaching the source and decreases for an observer receding from a source. 
Solve: You need to ride your bicycle away from your friend to lower the frequency of the whistle. The 
minimum speed you need to travel is calculated as follows: 

( )0 0
01 20 kHz 1 21 kHz

343 m/s
v vf f
v−

⎛ ⎞ ⎛ ⎞= − ⇒ = − ⇒⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

0 16.3 m/s 16 m/sv = ≈  

Assess: A speed of 16.3 m/s corresponds to approximately 35 mph. This is a possible but very fast speed on a 
bicycle. 
 



20.39.  Model: The mother hawk’s frequency is altered by the Doppler effect. 
Solve: The frequency is f+  as the hawk approaches you is 

0

SS

800 Hz900 Hz
1 1

343 m/s

ff vv v+ = ⇒ = ⇒
− −

S 38.1 m/sv =  

Assess: The mother hawk’s speed of 38.1 m/s ≈ 80 mph is reasonable. 
 



20.40. Visualize: The function D(x, t) represents a pulse that travels in the positive x-direction without 
changing shape. 
Solve: (a)  

 
(b) The leading edge of the pulse moves forward 3 m each second. Thus, the wave speed is 3 m/s. 
(c) 3x t−  is a function of the form D(x – vt), so the pulse moves to the right at v = 3 m/s. 

 



20.41.  Solve: (a) We see from the history graph that the period T = 0.20 s and the wave speed v = 4.0 m/s. 
Thus, the wavelength is 

( )( )4.0 m/s 0.20 s 0.80 mv vT
f

λ = = = =  

(b) The phase constant 0φ  is obtained as follows: 

( ) 00 m, 0 s sinD A φ= ( ) 0 02 mm 2 mm sin sin 1φ φ⇒ − = ⇒ = − 1
0 2φ π⇒ = − rad 

(c) The displacement equation for the wave is 

( ) ( ) ( ) ( )1
0 2

2 2 2,  sin 2 2.0 mm sin 2.0 mm sin 2.5 10
0.80 m 0.20 s 2

x x tD x t A ft x tπ π π ππ φ π π π
λ

⎛ ⎞ ⎛ ⎞= − + = − − = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

where x and t are in m and s, respectively. 
 



20.42. Solve: (a) We can see from the graph that the wavelength is λ = 2.0 m. We are given that the wave’s 
frequency is f = 5.0 Hz. Thus, the wave speed is v = λf = 10 m/s. 
(b) The snapshot graph was made at t = 0 s. Reading the graph at x = 0 m, we see that the displacement is 

( ) ( ) 1
20 m,  0 s 0 m,  0 s 0.5 mmD x t D A= = = = =  

Thus 

( ) 1
020 m,0 s sinD A A φ= = ( )1 1

0 2
5sin rad or rad

6 6
π πφ −⇒ = =  

Note that the value of D(0 m, 0 s) alone gives two possible values of the phase constant. One of the values will 
cause the displacement to start at 0.5 mm and increase with distance—as the graph shows—while the other will 
cause the displacement to start at 0.5 mm but decrease with distance. Which is which? The wave equation for t = 
0 s is 

( ) 0
2,  0 sin xD x t A π φ
λ

⎛ ⎞= = +⎜ ⎟
⎝ ⎠

 

If x is a point just to the right of the origin and is very small, the angle 0(2 / )xπ λ φ+  is just slightly bigger than 
the angle 0.φ  Now sin31 sin30 ,° > °  but sin151 sin150 ,° < °  so the value 1

0 6φ π=  rad is the phase constant for 
which the displacement increases as x increases. 
(c) The equation for a sinusoidal traveling wave can be written as 

( ) 0 0
2, sin 2 sin 2x xD x t A ft A ftπ π φ π φ
λ λ

⎡ ⎤⎛ ⎞ ⎛ ⎞= − + = − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

Substituting in the values found above, 

( ) ( ) ( )1,  1.0 mm sin 2 5.0 s
2.0 m 6

xD x t t ππ −⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

 



20.43.  Solve: The time for the sound wave to travel down the tube and back is 440 t sμ=  since 1 division 
is equal to 100 μs. So, the speed of the sound wave in the liquid is 

2 25 cm 1140 m/s 1100 m/s
440 s

v
μ

×
= = ≈  

 



20.44.  Model: The wave is a traveling wave on a stretched string. 
Solve: The wave speed on a string whose radius is R, length is L, and mass density is ρ is string S /v T μ=  with 

2
2m V R L R

L L L
ρ ρπμ ρπ= = = =  

If the string radius doubles, then 

( )
stringS

string 2
280 m/s 140 m/s

2 22

vTv
Rρπ

′ = = = =  

 



20.45.  Model: The wave pulse is a traveling wave on a stretched string. 
Solve: While the tension TS is the same in both the strings, the wave speeds in the two strings are not. We have 

S
1

1

Tv
μ

=  and S
2

2

Tv
μ

= 2 2
1 1 2 2 Sv v Tμ μ⇒ = =  

Because 1 1 1 2 2 2/  and / ,v L t v L t= =  and because the pulses are to reach the ends of the string simultaneously, the 
above equation can be simplified to 

2 2
1 1 2 2

2 2

L L
t t
μ μ

= 1 2

2 1

4.0 g/m 2
2.0 g/m

L
L

μ
μ

⇒ = = = 1 22L L⇒ =  

Since L1 + L2 = 4 m, 

2 2 22 4 m 1.66 m 1.7 mL L L+ = ⇒ = ≈  and ( )1 2 1.66 m 2.34 m 2.3 mL = = ≈  

 



20.46.  Solve: Δt is the time the sound wave takes to travel down to the bottom of the ocean and then up to 
the ocean surface. The depth of the ocean is 

( ) ( )sound  in  water2 750 m/sd v t d t= Δ ⇒ = Δ  

Using this relation and the data from Figure P20.46, we can generate the following table for the ocean depth (d ) 
at various positions (x) of the ship. 

x (km) Δt (s) d (km) 

0 
20 
40 
45 
50 
60 

6 
4 
4 
8 
4 
2 

4.5 
3.0 
3.0 
6.0 
3.0 
1.5 

 
 



20.47. Visualize:  

 
Solve: The explosive’s sound travels down the lake and into the granite, and then it is reflected by the oil 
surface. The echo time is thus equal to 

echo water  down granite  down granite  up water  up

granite granite
granite

500 m 500 m0.94 s 790 m
1480 m/s 6000 m/s 6000 m/s 1480 m/s

t t t t t

d d
d

= + + +

= + + + ⇒ =
 

 



20.48.  Model: Assume a room temperature of 20 C.°  
Visualize:  

 
Solve: The distance between the source and the left ear (EL) is 

( ) ( ) ( )2 222
L 0.1 m  5.0 m cos45 5.0 m sin45   0.1 m 5.0712 md x y= + + = ° + ° + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

Similarly R 4.9298 m.d =  Thus, 

L R 0.1414 md d d− = Δ =  
For the sound wave with a speed of 343 m/s, the difference in arrival times at your left and right ears is 

0.1414 m 410 s
343 m/s 343 m/s

dt μΔ
Δ = = =  

 



20.49.  Model: The laser beam is an electromagnetic wave that travels with the speed of light. 
Solve: The speed of light in the liquid is 

2
8

liquid 9

30 10  m 2.174 10  m/s
1.38 10  s

v
−

−

×
= = ×

×
 

The liquid’s index of refraction is 
8

8
liquid

3.0 10 1.38
2.174 10

cn
v

×
= = =

×
 

Thus the wavelength of the laser beam in the liquid is 

vac
liquid

633 nm 459 nm
1.38n

λλ = = =  

 



20.50.  Model: The temperature is 20 C°  for both air and water. 
Solve: For the sound speed of vair = 343 m/s, the wavelength of the sound wave in air is 

air
343 m/s 1.340 m
256 Hz

λ = =  

On entering water the frequency does not change, so fwater = fair and fwater /fair = 1. The wave speed in water is vwater 
=  
1480 m/s, so 

water

air

1480 m/s 4.31
343 m/s

v
v

= =  

Finally, the wavelength in water is 

water water
water

water air

1480 m/s 5.781 m5.781 m 4.31
256 Hz 1.340 m

v
f

λλ
λ

= = = ⇒ = =  

Assess: This last result is expected because v f λ=  and the frequency remains unchanged as the wave enters 
from air into water. 
 



20.51.  Solve: The difference in the arrival times for the P and S waves is 

S P
S P

d dt t t
v v

Δ = − = −
1 1120 s

4500 m/s 8000 m/s
d ⎛ ⎞⇒ = −⎜ ⎟
⎝ ⎠

61.23 10  m=1230 kmd⇒ = ×  

Assess: d is approximately one-fifth of the radius of the earth and is reasonable. 
 



20.52.  Model: This is a sinusoidal wave. 
Solve: (a) The equation is of the form 0( , ) sin( ),D y t A ky tω φ= + +  so the wave is traveling along the y-axis. 
Because it is tω+ rather than −ωt the wave is traveling in the negative y-direction. 
(b) Sound is a longitudinal wave, meaning that the medium is displaced parallel to the direction of travel. So the 
air molecules are oscillating back and forth along the y-axis. 
(c) The wave number is -18.96 m ,k =  so the wavelength is 

1

2 2 0.701 m
8.96 mk

π πλ −= = =  

The angular frequency is 13140 sω −= , so the wave’s frequency is 
13140 s 500 Hz

2 2
f ω

π π

−

= = =  

Thus, the wave speed v = λf = (0.70 m)(500 Hz) = 350 m/s. The period T = 1/f = 0.00200 s = 2.00 ms. 
(d) The interval t = 0 s to t = 4 ms is exactly 2 cycles of the wave. The initial value at y = 1 m is 

( ) ( ) ( )1
41 m, 0 s 0.02 mm sin 8.96D y t π= = = + = −0.0063 mm 

 
Assess: The wave is a sound wave with speed v = 350 m/s. This is greater than the room-temperature speed of 
343 m/s, so the air temperature must be greater than 20°. 
 



20.53.  Model: This is a sinusoidal wave. 
Solve: (a) The displacement of a wave traveling in the positive x-direction with wave speed v must be of the form 
D(x, t) = D(x− vt). Since the variables x and t in the given wave equation appear together as x + vt, the wave is 
traveling toward the left, that is, in the −x direction. 
(b) The speed of the wave is 

2 0.20 s 12 m/s
2  rad 2.4 m

v
k
ω π

π
= = =  

The frequency is 
2  rad 0.20 s 5.0 Hz

2 2
f ω π

π π
= = =  

The wave number is 
2  rad 2.6 rad/m
2.4 m

k π
= =  

(c) The displacement is 

( ) ( ) 0.20 m 0.50 s0.20 m, 0.50 s 3.0 cm sin 2 1 1.5 cm
2.4 m 0.20 s

D π⎡ ⎤⎛ ⎞= + + = −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 



20.54.  Model: This is a sinusoidal wave traveling on a stretched string in the +x direction. 
Solve: (a) From the displacement equation of the wave, A = 2.0 cm, k = 12.57 rad/m, and ω = 638 rad/s. Using 
the equation for the wave speed in a stretched string, 

( )
2 2

2 3 3S
string S string

638 rad/s5.00 10  kg/m 12.6 N
12.57 rad/m

Tv T v
k
ωμ μ

μ
−⎛ ⎞ ⎛ ⎞= ⇒ = = = × =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

(b) The maximum displacement is the amplitude ( )max ,  2.00 cmD x t = . 
(c) From Equation 20.17, 

( )( )2
  max 638 rad/s 2.0 10  m 12.8 m/syv Aω −= = × =  



20.55.  Solve: The wave number and frequency are calculated as follows: 

( )( )2 2  rad 4   rad/m 4.0 m/s 4  rad/m 16  rad/s
0.50 m

k vkπ π π ω π π
λ

= = = ⇒ = = =  

Thus, the displacement equation for the wave is 

( ) ( ) ( ) ( ),  5.0 cm sin 4  rad/m 16  rad/sD y t y tπ π= +⎡ ⎤⎣ ⎦  
Assess: The positive sign in the sine function’s argument indicates motion along the −y direction. 
 



20.56.  Solve: The angular frequency and wave number are calculated as follows: 

( ) 400  rad/s2 2 200 Hz 400   rad/s  rad/m
400 m/s

f k
v
ω πω π π π π= = = ⇒ = = =  

The displacement equation for the wave is 

( ) ( ) ( ) ( ) 1
2,  0.010 mm sin  rad/m 400  rad/s  radD x t x tπ π π= − +⎡ ⎤⎣ ⎦  

Assess: Note the negative sign with tω  in the sine function’s argument. This indicates motion along the +x 
direction. 
 



20.57.  Solve: A sinusoidal traveling wave is represented as ( ) ( ),  sinD x t A kx tω= − . Replacing t with t + T 
and using the relationship ω = 2π/T between the angular frequency and period, 

( ) ( )( ),  sinD x t T A kx t Tω+ = − + ( )sinA kx t Tω ω= − − ( )sin 2A kx tω π= − −  
( ) ( ) ( ) ( )sin cos 2 cos sin 2A kx t kx tω π ω π= − − −⎡ ⎤⎣ ⎦ ( )sinA kx tω= −  = ( ),  D x t  

 



20.58.  Solve: According to Equation 20.28, the phase difference between two points on a wave is φΔ =  

( )2 12 r rπ λ− . For the first point and second point, 

( ) ( ) ( )

( ) ( ) ( )

2 2 2
1

2 2 2
2

1.00 cm 0 cm 3.00 cm 0 cm 2.00 cm 0 cm 3.742 cm

1.00 cm 0 cm 1.50 cm 0 cm 2.50 cm 0 cm 3.082 cm

r

r

= − + − + − =

= − − + − + − =
 

The wavelength is 
346 m/s 0.02641 m

13,100 Hz
v
f

λ = = = = 2.641 cm 

( )2 3.742 cm 3.082 cm 180rad  rad 90
2.641 cm 2 2  rad

π π πφ
π

− °
⇒ Δ = = = × = °  

 



20.59.  Model: We have a sinusoidal traveling wave on a stretched string. 
Solve: (a) The wave speed on a string and the wavelength are calculated as follows: 

S 20 N 100.0 m/s100 m/s 1.0 m
0.002 kg/m 100 Hz

T vv
f

λ
μ

= = = ⇒ = = =  

(b) The amplitude is determined by the oscillator at the end of the string and is A = 1.0 mm. The phase constant 
can be obtained from Equation 20.15 as follows: 

( ) 00 m, 0 s sinD A φ= ( ) 01.0 mm 1.0 mm sinφ⇒ − = 0 rad
2
πφ⇒ = −  

(c) The wave (as distinct from the oscillator) is described by ( ) ( )0,  sinD x t A kx tω φ= − + . In this equation the 
wave number and angular frequency are 

2 2 2  rad/m
1.0 m

k π π π
λ

= = =   ( )( )100.0 m/s 2  rad/m 200  rad/svkω π π= = =  

Thus, the wave’s displacement equation is 

( ) ( ) ( ) ( ) 1
2,  1.0 mm sin 2  rad/m 200  rad/s  radD x t x tπ π π= − −⎡ ⎤⎣ ⎦  

(d) The displacement is 

( ) ( ) ( )( ) ( )( ) 1
20.50 m, 0.015 s 1.0 mm sin 2  rad/s 0.50 m 200  rad/s 0.015 sD π π π= − −⎡ ⎤⎣ ⎦  = −1.0 mm 

 



20.60.  Model: We have a wave traveling to the right on a string. 
Visualize:  

 
Solve: The snapshot of the wave as it travels to the right for an infinitesimally small time Δt shows that the 
velocity at point 1 is downward, at point 3 is upward, and at point 2 is zero. Furthermore, the speed at points 1 
and 3 is the maximum speed given by Equation 20.17: 1 3v v Aω= = . The frequency of the wave is 

( ) ( )( )22 45 m/s
2 2 300  rad/s 300  rad/s 2.0 10  m 19 m/s

0.30 m
vf A

π
ω π π π ω π

λ
−= = = = ⇒ = × =  

Thus, v1 = −19 m/s, v2 = 0 m/s, and v3 = +19 m/s. 
 



20.61.  Model: This is a wave traveling to the left at a constant speed of 50 cm/s. 
Solve: The particles at positions between x = 2 cm and x = 7 cm have a speed of 10 cm/s, and the particles 
between x = 7 cm and x = 9 cm have a speed of −25 cm/s. That is, at the time the snapshot of the velocity is shown, 
the particles of the medium have upward motion for 2 cm ≤ x ≤ 7 cm, but downward motion for 7 cm ≤ x ≤ 9 cm. 
The width of the front section of the wave pulse is 7 cm – 2 cm = 5 cm and the width of the rear section is 9 cm – 7 
cm = 2 cm. With a wave speed of 50 cm/s, the time taken by the front section to pass through a particular point is 
5 cm 50 cm/s 0.1 s=  and the time taken by the rear section of the wave to pass through a point is 
2 cm 50 cm/s 0.04 s= . Thus the wave causes the upward moving particles to go through a displacement of 

( )( )10 cm/s 0.1 s 1.0 cmA = = . The downward moving particles have a maximum displacement of 

( )( )25 cm/s 0.04 s 1.0 cm− = − . 

 
 



20.62.  Model: The wave is traveling on a stretched string. 
Solve: The wave speed on the string is 

S 50 N 100 m/s
0.005 kg/m

Tv
μ

= = =  

The speed of the particle on the string, however, is given by Equation 20.17. The maximum speed is calculated 
as follows: 

( )0cosyv A kx tω ω φ= − − +   max 2 2y
vv A fA Aω π π
λ

⇒ = = = ( )100 m/s2 0.030 m 9.4 m/s
2.0 m

π ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

 



20.63.  Model: A sinusoidal wave is traveling along a stretched string. 
Solve: From Equation 20.17 and Equation 20.20, vy max = ωA and ay max = ω2A. These two equations can be 
combined to give 

2
max

max

200 m/s 100 rad/s 15.9 Hz 16 Hz
2.0 m/s 2

y

y

a
f

v
ωω
π

= = = ⇒ = = ≈ max 2.0 m/s 2.0 cm
100 rad/s

yvA
ω

⇒ = = =  

 



20.64.  Solve: (a) At a distance r from the bulb, the 5 watts of visible light have spread out to cover the 
surface of a sphere of radius r. The surface area of a sphere is a = 4πr2. Thus, the intensity at a distance of 2 m is 

( )
2

22

5.0 W 0.095 W/m
4 4 2.0 m

P PI
a rπ π

= = = =  

Note that the presence of the wall has nothing to do with the intensity. The wall allows you to see the light, but 
the light wave has the same intensity at all points 2 m from the bulb whether it is striking a surface or moving 
through empty space. 
(b) Unlike the light from a light bulb, a laser beam does not spread out. We ignore the small diffraction spread of 
the beam. The laser beam creates a dot of light on the wall that is 2 mm in diameter. The full 5 watts of light is 
concentrated in this dot of area ( )22 0.001 ma rπ π= = =  6 23.14 10  m−× . The intensity is 

2
6 2

5 W 1.6 MW/m
3.14 10  m

PI
a −= = =

×
 

Although the power of the light source is the same in both cases, the laser produces light on the wall whose 
intensity is over 16 million times that of the light bulb. 
 



20.65.  Model: The radio wave is an electromagnetic wave. 
Solve: At a distance r, the 25 kW power station spreads out waves to cover the surface of a sphere of radius r. 
The surface area of a sphere is 4πr2. Thus, the intensity of the radio waves is 

( )
3

5 2source
22 3

25 10  W 2.0 10  W/m
4 4 10 10  m

PI
rπ π

−×
= = = ×

×
 

 



20.66.  Solve: (a) The peak power of the light pulse is 

7
peak 8

500 mJ 0.50 J 5.0 10  W
10 ns 1.0 10  s

EP
t −

Δ
= = = = ×
Δ ×

 

(b) The average power is 

total
avg

10 500 mJ 5.0 J 5.0 W
1.0 s 1.0 s 1.0 s
EP ×

= = = =  

The laser delivers pulses of very high power. But the laser spends most of its time “off,” so the average power is 
very much less than the peak power. 
(c) The intensity is 

( )

7 7
17 2

laser 2 11 2

5.0 10  W 5.0 10  W 6.4 10  W/m
7.85 10  m5.0 m

PI
a π μ −

× ×
= = = = ×

×
 

(d) The ratio is 
17 2

14laser
3 2

sun

6.4 10  W/m 5.8 10
1.1 10  W/m

I
I

×
= = ×

×
 

 



20.67.  Model: We have a traveling wave radiated by the tornado siren. 
Solve: (a) The power of the source is calculated as follows: 

( )
2 source source

50 m 220.10 W/m
4 4 50 m
P PI
rπ π

= = = ( ) ( ) ( )22
source 0.10 W/m 4 50 m 1000  WP π π⇒ = =  

The intensity at 1000 m is 

( )
( )
( )

2source
1000 m 2 2

1000  W
250 W m

4 1000 m 4 1000 m
PI

π
μ

π π
= = =  

(b) The maximum distance is calculated as follows: 

( )6 2source
2 2

1000  W
1.0 10  W/m 16 km

4 4
PI r
r r

π
π π

−= ⇒ × = ⇒ =  

 



20.68. Model: Assume the saw is far enough off the ground that we don’t have to worry about reflected 
sound. 
Visualize: First note that 1 2 1 220dB 10 10 100I Iβ β− = ⇒ / = ⋅ =  (a change of 10 dB  corresponds to a change in 
intensity by a factor of 10). Then use 1 1I A P=  and then 2 2 2 2P I A A P I= ⇒ = / , and finally solve for 

2 2 4R A π= / . 
Solve: Put all of the above together. 

1 1 1

2 2 2

2
12 1

2 1 1
2

(4 )
100 (5 0 m)(10) 50 m

4 4 4 4

I A IP
I I I RA IR R R

I
π

π π π π
= = = = = = = . =  

Assess: The scaling laws help and the answer is reasonable. 
 



20.69. Model: Assume the two loudspeakers broadcast the same power and that the platforms are high 
enough off the ground that we don’t have to worry about reflected sound. 
Visualize: Call the distance between the loudspeakers .d  Call the intensity halfway between the speakers (at 

2d / ) 1I  and the sound intensity level there 1( 75 );dBβ =  call them 2I  and 2β  at 1/4 the distance from one pole 
and 3/4 the distance from the other pole on the line between them. We seek 2β . 
We first apply a general approach for different sound intensity levels: 

2 1 2 0 2
2 1 10 10 10 10

0 0 1 0 1

(10dB) log log (10 dB)log (10 dB)logI I I I I
I I I I I

β β β
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞/

Δ = − = − = =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟/⎢ ⎥ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 

Solve: Recall that for the general case of spherical symmetry I P A= / , where P  is the power emitted by the 
source and 24A Rπ=  is the area of the sphere. Now we find the ratio of the intensities 2 1I I/  and then plug it in 
the formula above and add it to 75 dB.  

1 2 2 2

2
4 ( 2) 4 ( 2)
P P PI
d d dπ π π

= + =
/ /

 

2 12 2 2 2 2 2

4 4 (36 4) 40 20
4 ( 4) 4 (3 4) 9 9 9 9
P P P P P PI I
d d d d d dπ π π π π π

+
= + = + = = =

/ /
 

2
10 10

1

20(10 dB)log (10 dB)log 3 48 dB
9

I
I

β
⎛ ⎞ ⎛ ⎞Δ = = = .⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

2 1 75 dB 3 48 dB 78 dBβ β β= + Δ = + . =  

Assess: An increase of about 3dB  corresponds to a doubling of the intensity. 20/9 is close to double. 

 



20.70. Model: As suggested, model the bald head as a hemisphere with radius 0 080m.R = .  This means the 

surface area of the bald head (hemisphere) is 2 22 0 0402m .A Rπ= = .  

Visualize: We are given 93 dBβ =  and 0 10 JEΔ = . . We also know that 10 dB
0 10I I β /= ×  and P IA= . Also 

recall P E t= Δ Δ . 
Solve: Put all of the above together to find tΔ . 

10 dB 2 12 2 9 3 2
0

0 10 J 1250 s 21 min
( 10 )(2 ) (10  W/m 10 )(0 0402 m )

E E Et
P IA I Rβ π/ − .

Δ Δ Δ .
Δ = = = = = ≈

× × .
 

Assess: 21 min seems like quite a while to deliver 0.10 J of energy, but sounds waves don’t carry a lot of 
energy unless the intensity is high. 
 



20.71.  Model: The bat’s chirping frequency is altered by the Doppler effect. The frequency is increased as 
the bat approaches and it decreases as the bat recedes away. 
Solve: The bat must fly away from you, so that the chirp frequency observed by you is less than 25 kHz. From  
Equation 20.38, 

0

S1 /
ff
v v− = + S

25,000 Hz20,000 Hz
1

343 m/s
v

⇒ =
⎛ ⎞+ ⎜ ⎟
⎝ ⎠

S 85.8 m/s 86 m/sv⇒ = ≈  

Assess: This is a rather large speed: 85.8 m/s ≈ 180 mph. This is not possible for a bat. 
 



20.72.  Model: The sound generator’s frequency is altered by the Doppler effect. The frequency increases as 
the generator approaches the student, and it decreases as the generator recedes from the student. 
Solve: The generator’s speed is 

( ) ( )S
1002 1.0 m 2  rev/s 10.47 m/s
60

v r r fω π π ⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 

The frequency of the approaching generator is 

0

S

600 Hz 619 Hz 620 Hz10.47 m/s1 1
343 m/s

ff
v v+ = = = ≈

− −
 

Doppler effect for the receding generator, on the other hand, is 

0

S

600 Hz 582 Hz 580 Hz10.47 m/s1 1
343 m/s

ff
v v− = = = ≈

+ +
 

Thus, the highest and the lowest frequencies heard by the student are 620 Hz and 580 Hz. 
 



20.73. Solve: We will closely follow the details of section 20.7 in the textbook. Figure 20.29 shows that the 
wave crests are stretched out behind the source. The wavelength detected by Pablo is 1

3 dλ− = , where d is the 
distance the wave has moved plus the distance the source has moved at time t = 3T. These distances are 

wave 3x vt vTΔ = =  and source S S3 .x v t v TΔ = =  The wavelength of the wave emitted by a receding source is thus 

( )wave source S
S

3 3
3 3 3
d x x vT v T v v Tλ−

Δ + Δ +
= = = = +  

The frequency detected in Pablo’s direction is thus 

( )
0

s S1
v v ff

v v T v vλ−
−

= = =
+ +

 

 



20.74. Model: We are looking at the Doppler effect for the light of an approaching source. 
Solve: (a) The time is 

6

5

54 10  km 180 s 3.0 min
3 10  km/s

t ×
= = =

×
 

(b) Using Equation 20.40, the observed wavelength is 

( )s
0

s

1 1 0.1 540 nm
1 1 0.1
v c c c
v c c c

λ λ− −
= =

+ +
 = (0.9045)(540 nm) = 488 nm 490 nm≈  

Assess: 490 nm is slightly blue shifted from green. 
 



20.75. Model: We are looking at the Doppler effect for the light of a receding source. 
Visualize:  

 
Note that the daredevil’s tail lights are receding away from your rocket’s light detector with a relative speed of 0.2c. 
Solve: Using Equation 20.40, the observed wavelength is 

( )S
0

S

1 1 0.2 650 nm
1 1 0.2
v c c c
v c c c

λ λ+ +
= =

− −
 = 796 nm 800 nm≈  

This wavelength is in the infrared region. 
 



20.76. Model: The Doppler effect for light of a receding source yields an increased wavelength. 
Solve: Because the measured wavelengths are 5% longer, that is, λ = 1.05λ0, the distant galaxy is receding 
away from the earth. Using Equation 20.40, 

( )2 7s s
0 0 s

s s

1 11.05 1.05 0.049 1.47 10  m/s
1 1

v c v c v c
v c v c

λ λ λ+ +
= = ⇒ = ⇒ = = ×

− −
 

 



20.77. Model: The Doppler effect for light of an approaching source leads to a decreased wavelength. 
Solve: The red wavelength (λ0 = 650 nm) is Doppler shifted to green (λ = 540 nm) due to the approaching light 
source. In relativity theory, the distinction between the motion of the source and the motion of the observer 
disappears. What matters is the relative approaching or receding motion between the source and the observer. 
Thus, we can use Equation 20.40 as follows: 

( )s s
0

s s

4 8
s

1 1540 nm 650 nm
1 1

5.5 10  km/s 2.0 10  km/h

v c v c
v c v c

v

λ λ − −
= ⇒ =

+ +

⇒ = × = ×

 

The fine will be 

( )8 1 $2.0 10  km/hr  50 km/hr  $200 million
1 km/hr
⎛ ⎞× − =⎜ ⎟
⎝ ⎠

 

Assess: The police officer knew his physics. 
 



20.78. Model: The wave pulse is a traveling wave on a stretched string. The two masses hanging from the 
steel wire are in static equilibrium. 
Visualize:  

 
Solve: The wave speed along the wire is 

wire
4.0 m 166.7 m/s

0.024 s
v = =  

Using Equation 20.2, 

( )
1 1

wire 1166.7 m/s=  208.4 N
0.060 kg 8.0 m

T Tv T
μ

= = ⇒ =  

Because point 1 is in static equilibrium, with net 0,F =  

( )

( ) ( )

1
net 1 2 2

net 2 2 2

cos40 2721 N
cos40

272.1 N sin 40
sin 40 0 N sin 40 17.8 kg

9.8 m/s

x

y

TF T T T

F T w w mg T m

= − °⇒ = =
°

°
= ° − = ⇒ = = °⇒ = =

 

 



20.79. Solve: The time for the wave to travel from California to the South Pacific is 
68.00 10  m 5405.4 s

1480 m/s
dt
v

×
= = =  

A time decrease to 5404.4 s implies the speed has changed to 1480.28 m/s.dv
t

= =  

Since the 4.0 m/s increase in velocity is due to an increase of 1°C, an increase of 0.28 m/s occurs due to a 
temperature increase of 

( )1 C 0.28 m/s 0.07 C
4.0 m/s

°⎛ ⎞ = °⎜ ⎟
⎝ ⎠

 

Thus, a temperature increase of approximately 0.07°C can be detected by the researchers. 
 



20.80. Solve: The wave speeds along the two metal wires are 

1 2
1 2

2250 N 2250 N500 m/s 300 m/s
0.009 kg/m 0.025 kg/m

T Tv v
μ μ

= = = = = =  

The wavelengths along the two wires are 

1 2
1 2

500 m/s 1 300 m/s 1m  m
1500 Hz 3 1500 Hz 5

v v
f f

λ λ= = = = = =  

Thus, the number of wavelengths over two sections of the wire are 

( ) ( )1 1
1 23 5

1.0 m 1.0 m 1.0 m 1.0 m3 5
 m  mλ λ

= = = =  

The number of complete cycles of the wave in the 2.00-m-long wire is 8. 
 



20.81. Model: The wave pulse is a traveling wave on a stretched wire. 
Visualize:  

 
Solve: (a) At a distance y above the lower end of the rope, the point P is in static equilibrium. The upward 
tension in the rope must balance the weight of the rope that hangs below this point. Thus, at this point 

( )T w Mg y gμ= = =  

where μ = m/L is the linear density of the entire rope. Using Equation 20.2, we get 

T ygv gyμ
μ μ

= = =  

(b) The time to travel a distance dy at y, where the wave speed is ,v gy=  is 

dy dydt
v gy

= =  

Finding the time for a pulse to travel the length of the rope requires integrating from one end of the rope to the other: 

( )0
0 0

1 22
T L Ldyt dt y L

gy g g
Δ = = = =∫ ∫ 2 Lt

g
⇒Δ =  



20.82. Visualize:  

 
Solve: (a) Using the graph, the refractive index n as a function of distance x can be mathematically expressed 
as 

2 1
1
n nn n x
L
−

= +  

At position x, the light speed is / .v c n=  The time for the light to travel a distance dx at x is 

2 1
1

1dx n n ndt dx n x dx
v c c L

−⎛ ⎞= = = +⎜ ⎟
⎝ ⎠

 

To find the total time for the light to cover a thickness L of a glass we integrate as follows: 

2 1
1

0 0

1T L n nT dt n x dx
c L

−⎛ ⎞= = +⎜ ⎟
⎝ ⎠∫ ∫

( )2 11

0 0

L Ln nn dx x dx
c cL

−
= +∫ ∫

2
1 2 1 1 2

2 2
n n n L n nL L
c cL c

− +⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) Substituting the given values into this equation, 
( )
( )

11
8

1.50 1.60
0.010 m  5.17 10  s

2 3.0 10  m/s
T −+
= × = ×

×
 


