
21.1. Model: The principle of superposition comes into play whenever the waves overlap. 
Visualize:  

 
The graph at t = 1.0 s differs from the graph at t = 0.0 s in that the left wave has moved to the right by 1.0 m and 
the right wave has moved to the left by 1.0 m. This is because the distance covered by the wave pulse in 1.0 s is 
1.0 m. The snapshot graphs at t = 2.0 s, 3.0 s, and 4.0 s are a superposition of the left and the right moving waves. 
The overlapping parts of the two waves are shown by the dotted lines. 
 



21.2. Model: The principle of superposition comes into play whenever the waves overlap. 
Visualize:  

 
The snapshot graph at t = 1.0 s differs from the graph t = 0.0 s in that the left wave has moved to the right by 1.0 
m and the right wave has moved to the left by 1.0 m. This is because the distance covered by each wave in 1.0 s 
is 1.0 m. The snapshot graphs at t = 2.0 s, 3.0 s, and 4.0 s are a superposition of the left and the right moving 
waves. The overlapping parts of the two waves are shown by the dotted lines. 



21.3. Model: The principle of superposition comes into play whenever the waves overlap. 
Visualize:  

 
At t = 4.0 s the shorter pulses overlap and cancel. At t = 6.0 s the longer pulses overlap and cancel. 
 



21.4. Model: The principle of superposition comes into play whenever the waves overlap. 
Solve: (a) As graphically illustrated in the figure below, the snapshot graph of Figure EX21.5b was taken at t = 
4 s.  

 
(b)  

 

 



21.5. Model: A wave pulse reflected from the string-wall boundary is inverted and its amplitude is 
unchanged. 
Visualize:  

 
The graph at t = 2 s differs from the graph at t = 0 s in that both waves have moved to the right by 2 m. This is 
because the distance covered by the wave pulse in 2 s is 2 m. The shorter pulse wave encounters the boundary 
wall at 2.0 s and is inverted on reflection. This reflected pulse wave overlaps with the broader pulse wave, as 
shown in the snapshot graph at t = 4 s. At t = 6 s, only half of the broad pulse is reflected and hence inverted; the 
shorter pulse wave continues to move to the left with a speed of 1 m/s. Finally, at t = 8 s both the reflected pulse 
waves are inverted and they are both moving to the left. 
 



21.6. Model: Reflections at both ends of the string cause the formation of a standing wave. 
Solve: Figure EX21.6 indicates 5/2 wavelengths on the 2.0-m-long string. Thus, the wavelength of the standing 
wave is ( )2

5 2.0 m 0.80 mλ = = . The frequency of the standing wave is 

40 m/s 50 Hz
0.80 m

vf
λ

= = =  

 



21.7. Model: Reflections at the string boundaries cause a standing wave on the string. 
Solve: Figure EX21.7 indicates two full wavelengths on the string. Hence 1

2 (60 cm) 30 cm 0.30 m.λ = = =  
Thus 

( )( )0.30 m 100 Hz 30 m/sv fλ= = =  

 



21.8. Model: Reflections at the string boundaries cause a standing wave on the string. 
Solve: (a) When the frequency is doubled ( )02f f′ = , the wavelength is halved ( )1

02λ λ′ = . This halving of the 
wavelength will increase the number of antinodes to six. 
(b) Increasing the tension by a factor of 4 means  

4 2T T Tv v v
μ μ μ

′
′= ⇒ = = =  

For the string to continue to oscillate as a standing wave with three antinodes means 0λ λ′ = . Hence, 

0 0 0 0 0 02 2 2 2v v f f f f f fλ λ λ λ′ ′ ′ ′ ′= ⇒ = ⇒ = ⇒ =  

That is, the new frequency is twice the original frequency. 
 



21.9. Model: A string fixed at both ends supports standing waves. 
Solve: (a) We have fa = 24 Hz = mf1 where f1 is the fundamental frequency that corresponds to m = 1. The next 
successive frequency is fb = 36 Hz = (m + 1) f1. Thus, 

( ) 1b

a 1

1 1 36 Hz 1.5
24 Hz

m ff m
f mf m

+ +
= = = = 1 1.5 2m m m⇒ + = ⇒ = ⇒ 1

24 Hz 12 Hz
2

f = =  

The wave speed is 

( )( )1 1 1
2 2.0 m 12 Hz 24 m/s
1
Lv f fλ= = = =  

(b) The frequency of the third harmonic is 36 Hz. For m = 3, the wavelength is 

( )2 1 m2 2 m
3 3m

L
m

λ = = =  

 
 



21.10. Model: A string fixed at both ends supports standing waves. 
Solve: (a) A standing wave can exist on the string only if its wavelength is 

2       1, 2, 3, m
L m
m

λ = = …  

The three longest wavelengths for standing waves will therefore correspond to m = 1, 2, and 3. Thus, 

( ) ( ) ( )
1 2 3

2 2.40 m 2 2.40 m 2 2.40 m
4.80 m      2.40 m       1.60 m

1 2 3
λ λ λ= = = = = =  

(b) Because the wave speed on the string is unchanged from one m value to the other,  

( )( )2 2
2 2 3 3 3

3

50 Hz 2.40 m
75 Hz

1.60 m
ff f f λλ λ
λ

= ⇒ = = =  

 



21.11. Model: A string fixed at both ends forms standing waves. 
Solve: (a) The wavelength of the third harmonic is calculated as follows: 

3
2 2 2.42 m 0.807 m 0.81 m

3 3m
L L
m

λ λ= ⇒ = = = ≈  

(b) The speed of waves on the string is 3 3v fλ= = (0.807 m)(180 Hz) = 145.3 m/s. The speed is also given by 

S / ,v T μ=  so the tension is 

( )22 2
S

0.004 kg 145.3 m/s 69.7 N 70 m
1.21 m

mT v v
L

μ= = = = ≈  

 



21.12. Model: For the stretched wire vibrating at its fundamental frequency, the wavelength of the standing 
wave is 1 2 .Lλ =  
Visualize: 

 
Solve: The wave speed on the steel wire is 

( ) ( )( )wire 2 80 Hz 2 0.90 m 144 m/sv f f Lλ= = = × =  

and is also equal to S ,T μ  where 
3

3mass 5.0 10  kg 5.555 10  kg/m
length 0.90 m

μ
−

−×
= = = ×  

The tension TS  in the wire equals the weight of the sculpture or Mg. Thus,  

wire
Mgv
μ

=
( )( )232

wire
2

5.555 10  kg/m 144 m/s
12 kg

9.8 m/s
vM
g

μ −×
⇒ = = =  



21.13. Model: The laser light forms a standing wave inside the cavity. 
Solve: The wavelength of the laser beam is  

( )
100,000

2 0.5300 m2 10.60 m
100,000m

L
m

λ λ μ= ⇒ = =  

The frequency is 
8

13
100,000 6

100,000

3.000 10  m/s 2.830 10  Hz
10.60 10  m

cf
λ −

×
= = = ×

×
 

 



21.14. Solve: (a) For the open-open tube, the two open ends exhibit antinodes of a standing wave. The 
possible wavelengths for this case are  

2       1,  2, 3, m
L m
m

λ = = …  

The three longest wavelengths are 

( ) ( ) ( )
1 2 3

2 1.21 m 2 1.21 m 2 1.21 m
2.42 m 1.21 m 0.807 m

1 2 3
λ λ λ= = = = = =  

(b) In the case of an open-closed tube,  
4    1,  3, 5, m
L m
m

λ = = …  

The three longest wavelengths are 
( ) ( ) ( )

1 2 3

4 1.21 m 4 1.21 m 4 1.21 m
4.84 m 1.61 m 0.968 m

1 3 5
λ λ λ= = = = = =  

 



21.15. Model: We have an open-open tube that forms standing sound waves. 
Solve: The gas molecules at the ends of the tube exhibit maximum displacement, making antinodes at the ends. 
There is another antinode in the middle of the tube. Thus, this is the m = 2 mode and the wavelength of the 
standing wave is equal to the length of the tube, that is, λ = 0.80 m. Since the frequency f = 500 Hz, the speed of 
sound in this case is v = fλ =  
(500 Hz)(0.80 m) = 400 m/s. 
Assess: The experiment yields a reasonable value for the speed of sound. 
 



21.16. Solve: For the open-open tube, the fundamental frequency of the standing wave is f1 = 1500 Hz when 
the tube is filled with helium gas at 0°C. Using 2 ,m L mλ =  

helium
1 helium

1

970 m/s
2

vf
Lλ

= =  

Similarly, when the tube is filled with air, 

( )air 1 air
1 air 1 air

1 1 helium

331 m/s 331 m/s 331 m/s 1500 Hz 512 Hz
2 970 m/s 970 m/s

v ff f
L fλ

⎛ ⎞= = ⇒ = ⇒ = =⎜ ⎟
⎝ ⎠

 

Assess: Note that the length of the tube is one-half the wavelength whether the tube is filled with helium or air.  
 



21.17. Model: An organ pipe has a “sounding” hole where compressed air is blown across the edge of the 
pipe. This is one end of an open-open tube with the other end at the true “end” of the pipe. 
Solve: For an open-open tube, the fundamental frequency is f1 = 16.4 Hz. We have 

1 sound
1

1

2 1 1 343 m/s 10.5 m
1 2 2 2 16.4 Hz
L vL

f
λλ

⎛ ⎞ ⎛ ⎞= ⇒ = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

Assess: The length of the organ pipe is 34.5≈  feet. That is actually somewhat of an overestimate since the 
antinodes of real tubes are slightly outside the tube. The actual length in a real organ is about 32 feet, and this is 
the tallest pipe in the so called “32 foot rank” of pipes. 
 



21.18. Model: Reflections at the string boundaries cause a standing wave on a stretched string. 
Solve: Because the vibrating section of the string is 1.9 m long, the two ends of this vibrating wire are fixed, 
and the string is vibrating in the fundamental harmonic. The wavelength is  

( )1
2 2 2 1.90 m 3.80 mm

L L
m

λ λ= ⇒ = = =  

The wave speed along the string is v = f1λ1 = (27.5 Hz)(3.80 m) = 104.5 m/s. The tension in the wire can be 
found as follows:  

( )22 2S
S

mass 0.400 kg 104.5 m/s 2180 N
length 2.00 m

Tv T v vμ
μ

⎛ ⎞ ⎛ ⎞= ⇒ = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 



21.19. Model: A string fixed at both ends forms standing waves. 
Solve: A simple string sounds the fundamental frequency f1 = v/2L. Initially, when the string is of length LA = 
30 cm, the note has the frequency f1A = v/2LA. For a different length, f1B = v/2LB. Taking the ratio of each side of 
these two equations gives 

1A A B 1A
B A

1B B A 1B

/ 2
/ 2

f v L L fL L
f v L L f

= = ⇒ =  

We know that the second frequency is desired to be f1B = 523 Hz. The string length must be 

( )B
440 Hz 30 cm   25.2 cm
523 Hz

L = =  

The question is not how long the string must be, but where must the violinist place his finger. The full string is 
30 cm long, so the violinist must place his finger 4.8 cm from the end. 
Assess: A fingering distance of 4.8 cm from the end is reasonable. 
 



21.20. Model: Interference occurs according to the difference between the phases ( )φΔ  of the two waves.  
Solve: (a) A separation of 20 cm between the speakers leads to maximum intensity on the x-axis, but a 
separation of 60 cm leads to zero intensity. That is, the waves are in phase when 1( ) 20 cmxΔ =  but out of phase 
when 2( ) 60 cm.xΔ =  Thus, 

( ) ( ) ( )2 1
2 60 cm  20 cm 80 cm

2
x x λ λΔ − Δ = ⇒ = − =  

(b) If the distance between the speakers continues to increase, the intensity will again be a maximum when the 
separation between the speakers that produced a maximum has increased by one wavelength. That is, when the 
separation between the speakers is 20 cm + 80 cm = 100 cm. 
 



21.21. Model: The interference of two waves depends on the difference between the phases ( )φΔ  of the two 
waves. 
Solve: (a) Because the speakers are in phase, 0 0 rad.φΔ =  Let d represent the path-length difference. Using m 
= 0 for the smallest d and the condition for destructive interference, we get 

( )1
0 22 2  radx mφ π φ π

λ
Δ

Δ = + Δ = +     m = 0, 1, 2, 3 … 

02  radxπ φ π
λ
Δ

⇒ + Δ =  2 0 rad   raddπ π
λ

⇒ + =
1 1 343 m/s 0.25 m

2 2 2 686 Hz
vd
f

λ ⎛ ⎞ ⎛ ⎞⇒ = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

(b) When the speakers are out of phase, 0 .φ πΔ =  Using m = 1 for the smallest d and the condition for 
constructive interference, we get  

02 2x mφ π φ π
λ
Δ

Δ = + Δ =     m = 0, 1, 2, 3, … 

2 2dπ π π
λ

⇒ + =
1 1 343 m/s 0.25 m

2 2 2 686 Hz
vd
f

λ ⎛ ⎞ ⎛ ⎞⇒ = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 



21.22. Model: We assume that the speakers are identical and that they are emitting in phase. 
Solve: Since you don’t hear anything, the separation between the two speakers corresponds to the condition of 
destructive interference. With 0 0φΔ =  rad, Equation 21.23 becomes 

( )1
22 2  radd mπ π

λ
= + ( )1

2d m λ⇒ = +
3 5,  ,  

2 2 2
d λ λ λ

⇒ =  

Since the wavelength is 
340 m/s 2.0 m
170 Hz

v
f

λ = = =  

three possible values for d are 1.0 m, 3.0 m, and 5.0 m. 
 



21.23. Model: Reflection is maximized if the two reflected waves interfere constructively. 
Solve: The film thickness that causes constructive interference at wavelength λ is given by Equation 21.32: 

( )( )
( )( )

9
C

C

600 10  m 12 216 nm
2 2 1.39

nd md
m n

λλ
−×

= ⇒ = = =  

where we have used m = 1 to calculate the thinnest film. 
Assess: The film thickness is much less than the wavelength of visible light. The above formula is applicable 
because  
nair < nfilm < nglass. 
 



21.24. Model: Reflection is maximized if the two reflected waves interfere constructively. 
Solve: The film thickness that causes constructive interference at wavelength λ is given by Equation 21.32: 

( )( )
( )( )

9
C

C

500 10  m 12 200 nm
2 2 1.25

nd md
m n

λλ
−×

= ⇒ = = =  

where we have used m = 1 to calculate the thinnest film. 
Assess: The film thickness is much less than the wavelength of visible light. The above formula is applicable 
because  
nair < noil < nwater. 
 



21.25. Solve: (a) The circular wave fronts emitted by the two sources show that the two sources are in phase. 
This is because the wave fronts of each source have moved the same distance from their sources. 
(b) Let us label the top source as 1 and the bottom source as 2. Since the sources are in phase, 0 0φΔ =  rad. For 
the point P, r1 = 3λ and r2 = 4λ. Thus, Δr = r2 − r1 = 4λ − 3λ = λ. The phase difference is 

( )22 2r π λπφ π
λ λ
Δ

Δ = = =  

This corresponds to constructive interference.  
For the point Q, 7

1 2r λ=  and r2 = 2λ. The phase difference is 

( )3
222 3r π λπφ π

λ λ
Δ

Δ = = =  

This corresponds to destructive interference.  
For the point R, 5

1 2r λ=  and 7
2 2r λ= . The phase difference is 

( )2
2

π λ
φ π

λ
Δ = =  

This corresponds to constructive interference. 

 r1 r2 Δr C/D 
P 3λ 4λ λ C 
Q 7

2 λ  2λ 3
2 λ  D 

R 5
2 λ  7

2 λ  λ C 

 



21.26. Solve: (a) The circular wave fronts emitted by the two sources indicate the sources are out of phase. 
This is because the wave fronts of each source have not moved the same distance from their sources. 
(b) Let us label the top source as 1 and the bottom source as 2. The phase difference between the sources is 

0φ πΔ = . For the point P, r1 = 2λ and r2 = 3λ. The phase difference is 

( )
0

2 3 22 3r π λ λπφ φ π π
λ λ

−Δ
Δ = + Δ = + =  

This corresponds to destructive interference.  
For the point Q, r1 = 3λ and 3

2 2 .r λ=  The phase difference is 

( )3
22

4
π λ

φ π π
λ

Δ = + =  

This corresponds to constructive interference.  
For the point R, 5

1 2r λ=  and r2 = 3λ. The phase difference is 

( )1
22

2
π λ

φ π π
λ

Δ = + =  

This corresponds to constructive interference. 

 r1 r2 Δr C/D 
P 2λ 3λ λ D 
Q 3λ 3

2 λ  3
2 λ  C 

R 5
2 λ  3λ 1

2 λ  C 

Assess: Note that it is not r1 or r2 that matter, but the difference Δr between them. 
 



21.27. Model: The two speakers are identical, and so they are emitting circular waves in phase. The overlap 
of these waves causes interference. 
Visualize: 

 
Solve: From the geometry of the figure, 

( ) ( ) ( )2 2 22
2 1 2.0 m 4.0 m 2.0 m 4.472 mr r= + = + =  

So, 2 1 4.472 m 4.0 m  0.472 m.r r rΔ = − = − =  The phase difference between the sources is 0 0 radφΔ =  and the 
wavelength of the sound waves is  

340 m/s 0.1889 m
1800 Hz

v
f

λ = = =  

Thus, the phase difference of the waves at the point 4.0 m in front of one source is 

( )
0

2 0.472 m
2 0 rad 5  rad 2.5(2  rad)

0.1889 m
r π

φ π φ π π
λ
Δ

Δ = + Δ = + = =  

This is a half-integer multiple of 2π rad, so the interference is perfect destructive. 
 



21.28. Model: The two radio antennas are emitting out-of-phase, circular waves. The overlap of these waves 
causes interference. 
Visualize:  

 
Solve: From the geometry of the figure, r1 = 800 m and 

( ) ( )2 2
2 800 m 600 m 1000 mr = + =  

So, Δr = r2 − r1 = 200 m and 0  rad.φ πΔ =  The wavelength of the waves is 
8

6

3.0 10  m/s 100 m
3.0 10  Hz

c
f

λ ×
= = =

×
 

Thus, the phase difference of the waves at the point (300 m, 800 m) is 

( )
0

2 200 m
2  rad 5  rad 2.5(2  rad)

100 m
r π

φ π φ π π π
λ
Δ

Δ = + Δ = + = =  

This is a half-integer multiple of 2π rad, so the interference is perfect destructive. 
 



21.29. Solve: The beat frequency is 

beat 1 2 1 13 Hz 200 Hz 203 Hzf f f f f= − ⇒ = − ⇒ =  

f1 is larger than f2 because the increased tension increases the wave speed and hence the frequency. 
 



21.30. Solve: The flute player’s initial frequency is either 523 Hz + 4 Hz = 527 Hz or 523 Hz − 4 Hz = 519 
Hz. Since she matches the tuning fork’s frequency by lengthening her flute, she is increasing the wavelength of 
the standing wave in the flute. A wavelength increase means a decrease of frequency because v = fλ. Thus, her 
initial frequency was 527 Hz. 
 



21.31. Model: The superposition of two slightly different frequencies creates beats. 
Solve: Let 1 780.54510 nmλ =  and 2 1λ λ> . This means 2 1f f<  and  

6
1 2

1 2

98.5 10  Hzc cf f f
λ λ

Δ = − = − = ×  

2 9 6 8
1

1 1
(1/ ) ( / ) 1/(780.54510 10  m) (98.5 10  Hz) /(3.00 10  m/s)
780.54530 nm

f c
λ

λ −⇒ = =
− Δ × − × ×

=
 

Assess: A small difference in wavelengths, ( )2 1 0.00020 nm  0.20 pm,λ λ− = =  can yield beats at a relatively 
high frequency of 98.5 MHz. 
 



21.32. Model: The principle of superposition applies to overlapping waves. 
Visualize:  

 
Solve: Because the wave pulses travel along the string at a speed of 100 m/s, they move a distance of d = vt = 
(100 m/s)(0.05 s) = 5 m in 0.050 s. The front of the wave pulse moving left, which is located at x = 1 m at t = 
0.050 s, was thus located at x = 6 m at t = 0 s. This helps us draw the snapshot of the wave pulse moving left at t 
= 0 s (shown as a dashed line). Subtracting this wave snapshot from the resultant at t = 0 s (shown as a solid line) 
yields the right-traveling wave’s snapshot at t = 0 s (shown as a dotted line). Finally, the snapshot graph of the 
wave pulse moving right at t = 0.050 s is the same as at t = 0 s (shown as a dotted line) except that it is shifted to 
the right by 5 m. 
 



21.33. Model: The wavelength of the standing wave on a string vibrating at its second-harmonic frequency 
is equal to the string’s length. 
Visualize:  

 
Solve: The length of the string L = 2.0 m, so λ = L = 2.0 m. This means the wave number is 

2 2 rad m
2.0 m

k π π π
λ

= = =  

According to Equation 21.5, the displacement of a medium when two sinusoidal waves superpose to give a 
standing wave is ( ) ( ), cosD x t A x tω= , where ( ) max2 sin sin .A x a kx A kx= =  The amplitude function gives the 
amplitude of oscillation from point to point in the medium. For x = 10 cm,  

( ) ( ) ( )( )10 cm 2.0 cm sin  rad m 0.10 m 0.62 cmA x π= = =⎡ ⎤⎣ ⎦  

Similarly, ( 20 cm) 1.18 cm,A x = =  ( )30 cm 1.62 cm,A x = = ( )40 cm 1.90 cm,A x = =  and 

( )50 cm 2.00 cm.A x = =  
Assess: Consistent with the above figure, the amplitude of oscillation is a maximum at x = 0.50 m. 
 



21.34. Model: The wavelength of the standing wave on a string is 2 ,m L mλ =  where m = 1, 2, 3, … We 
assume that 30 cm is the first place from the left end of the string where max 2.A A=  
Visualize:  

 

Solve: The amplitude of oscillation on the string is ( ) max sinA x A kx= . Since the string is vibrating in the third 
harmonic, the wave number is 

( )
2 2 3

2 3
k

L L
π π π
λ

= = =  

Substituting into the equation for the amplitude,  

( )max max
1 3sin 0.30 m
2
A A

L
π⎛ ⎞= ⎜ ⎟

⎝ ⎠
( )3 1sin 0.30 m

2L
π⎛ ⎞⇒ =⎜ ⎟

⎝ ⎠
( )3 0.30 m  rad

6L
π π

⇒ = 5.4 mL⇒ =  

 



21.35. Model: The wavelength of the standing wave on a string vibrating at its fundamental frequency is 
equal to 2L.  
Solve: The amplitude of oscillation on the string is ( ) 2 sin ,A x a kx=  where a is the amplitude of the traveling 
wave and the wave number is 

2 2
2

k
L L

π π π
λ

= = =  

Substituting into the above equation, 

( )1
4 2.0 cm 2 sin

4
LA x L a

L
π⎡ ⎤⎛ ⎞⎛ ⎞= = = ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

11.0 cm
2

a⎛ ⎞⇒ = ⎜ ⎟
⎝ ⎠

2 cm  1.4 cma⇒ = =  

 



21.36. Solve: You can see in Figure 21.4 that the time between two successive instants when the antinodes are 
at maximum height is half the period, or 1

2 .T  Thus 2(0.25 s) 0.50 s,T = = and so 

1 1 3.0 m/s2.0 Hz 1.5 m
0.50 s 2.0 Hz

vf
T f

λ= = = ⇒ = = =  

 



21.37. Model: The wave on a stretched string with both ends fixed is a standing wave. For vibration at its 
fundamental frequency, λ = 2L. 
Solve: The wavelength of the wave reaching your ear is 39.1 cm = 0.391 m. So the frequency of the sound 
wave is 

air 344 m/s 879.8 Hz
0.391 m

vf
λ

= = =  

This is also the frequency emitted by the wave on the string. Thus, 

string S1 1 150 N879.8 Hz  
0.0006 kg/m

v T
λ λ μ λ

= = = 0.568 mλ⇒ =   

1
2 0.284 m 28.4 cmL λ⇒ = = =  

 



21.38. Model: The wave on a stretched string with both ends fixed is a standing wave. 
Solve: We must distinguish between the sound wave in the air and the wave on the string. The listener hears a 
sound wave of wavelength λsound = 40 cm = 0.40 m. Thus, the frequency is 

sound

sound

343 m/s 857.5 Hz
0.40 m

vf
λ

= = =  

The violin string oscillates at the same frequency, because each oscillation of the string causes one oscillation of the 
air. But the wavelength of the standing wave on the string is very different because the wave speed on the string is 
not the same as the wave speed in air. Bowing a string produces sound at the string’s fundamental frequency, so the 
wavelength of the string is 

( )( )string 1 string string2 0.60 m 0.60 m 857.5 Hz 514.5 m/sL v fλ λ λ= = = ⇒ = = =  

The tension is the string is found as follows: 

S
string

Tv
μ

= ( ) ( )( )2 2
S string 0.001 kg/m 514.5 m/s 260 NT vμ⇒ = = =  

 



21.39. Model: A string fixed at both ends forms standing waves. 
Solve: (a) Three antinodes means the string is vibrating as the m = 3 standing wave. The frequency is f3 = 3f1, 
so the fundamental frequency is f1 = 1

3 (420 Hz) = 140 Hz. The fifth harmonic will have the frequency f5 = 5f1 = 
700 Hz. 
(b) The wavelength of the fundamental mode is λ1 = 2L = 1.20 m. The wave speed on the string is 

1 1v fλ= = (1.20 m) 
(140 Hz) = 168 m/s. Alternatively, the wavelength of the n = 3 mode is λ3 = 1

3 (2L) = 0.40 m, from 
which 3 3v fλ= =  
(0.40 m)(420 Hz) = 168 m/s. The wave speed on the string is given by  

STv
μ

= ( )( )22
S 0.0020 kg/m 168 m/s 56 NT vμ⇒ = = =  

Assess: You must remember to use the linear density in SI units of kg/m. Also, the speed is the same for all 
modes, but you must use a matching λ and f to calculate the speed. 
 



21.40. Model: Assume that the extra kilogram doesn’t stretch the wire longer (so L stays the same) nor 
thinner (so μ  stays the same). Also assume that because the wire is thin its own weight is negligible, so Ts is 
constant throughout the wire and is equal to Mg. 
Visualize: The wire is fixed at both ends so in the second harmonic L λ= . We are given 2 200 Hzf =  and 

2 245 Hzf ′ =  and 1 0 kg.M M′ = + .  Apply v fλ=  and s .v T μ= /  

Solve: Cancel off ,λ  ,μ  and g  in turn. 

s2

2 s

/ ( 1 0 kg)/ 1 0 kg
/

T M g M gf v M
f v MT Mg Mg

μλ
λ μ

′ ′′ ′ + . + .
= = = = =

/
 

2

2

2

1 0 kgf M
f M

⎛ ⎞′ + .
=⎜ ⎟

⎝ ⎠
 

2

2

2

1 1 0 kgfM
f

⎛ ⎞⎛ ⎞′⎜ ⎟− = .⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

2

2

2

1 0 kg 1 0 kg 2 0 kg
245 Hz 11 200 Hz

M
f
f

2

. .
= = = .
⎛ ⎞ ⎛ ⎞′ −− ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

Assess: We did not expect M  to be really huge or a) it would have broken the wire, and b) adding one more 
kilogram wouldn’t have made as big a difference in 2f  as it did.  

 



21.41. Model: The stretched string with both ends fixed forms standing waves. 
Visualize:  

 
Solve: The astronauts have created a stretched string whose vibrating length is L = 2.0 m. The weight of the 
hanging mass creates a tension ST Mg=  in the string, where M = 1.0 kg. As a consequence, the wave speed on 
the string is 

ST Mgv
μ μ

= =  

where μ = (0.0050 kg)/(2.5 m) = 0.0020 kg/m is the linear density. The astronauts then observe standing waves at 
frequencies of 64 Hz and 80 Hz. The first is not the fundamental frequency of the string because 80 Hz ≠ 2 × 64 
Hz. But we can easily show that both are multiples of 16 Hz: 164 Hz  4 f=  and 180 Hz  5 f= . Both frequencies 
are also multiples of 8 Hz. But 8 Hz cannot be the fundamental frequency because, if it were, there would be a 
standing wave resonance at 9(8 Hz) = 72 Hz. So the fundamental frequency is f1 = 16 Hz. The fundamental 
wavelength is λ1 = 2L = 4.0 m. Thus, the wave speed on the string is 1 1 64.0 m/sv fλ= = . Now we can find g on 
Planet X: 

Mgv
μ

= ( )22 20.0020 kg/m 64 m/s 8.2 m/s
1.0 kg

g v
M
μ

⇒ = = =  

 



21.42. Model: The stretched bungee cord that forms a standing wave with two antinodes is vibrating at the 
second harmonic frequency. 
Visualize: 

 
Solve: Because the vibrating cord has two antinodes, 2 1.80 m.Lλ = =  The wave speed on the cord is 

( )( )cord 20 Hz 1.80 m 36 m/sv f λ= = =  

The tension TS in the cord is equal to kΔL, where k is the bungee’s spring constant and ΔL is the 0.60 m the 
bungee has been stretched. Thus, 

S
cord

T k Lv
μ μ

Δ
= =  



21.43. Solve: (a) Because the frequency of the standing wave on the copper wire is the same as the 
frequency on the aluminum wire, 

Cu Alf f= Cu Al

Cu Cu

v v
λ λ

⇒ =  

Let nCu be the number of half-wavelength antinodes on the copper wire and nAl be the number of half-wavelength 
antinodes on the aluminum wire. Thus, 

Cu
Cu Cu

Cu

0.44 m0.22 m  
2

n
n

λ λ⎛ ⎞ = ⇒ =⎜ ⎟
⎝ ⎠

    Al
Al Al

Al

1.20 m0.60 m  
2

n
n

λ λ⎛ ⎞ = ⇒ =⎜ ⎟
⎝ ⎠

 

( ) ( )
Cu Al

Cu Al0.44 m 1.20 m
v v

n n
⇒ = Cu Al

Al Cu

0.44 m
1.20 m

n v
n v

⎛ ⎞⎛ ⎞⇒ = ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

We can find vCu and vAl by using the following equations for a stretched wire: 

Cu Al
Cu Al

T Tv v
μ μ

= =  

The linear densities are calculated as follows: 

( )

( ) ( )

2Cu Cu Cu Cu
Cu

23 4 3 3

0.22 m
0.22 m 0.22 m 0.22 m

8920 kg/m 5.0 10  m 7.006 10  kg/m

m V rρ ρμ π

π − −

⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

= × = ×

 

( )

( ) ( )

2Al Al Al Al
Al

23 4 3 3

0.60 m
0.60 m 0.60 m 0.60 m

2700 kg/m 5.0 10  m 2.121 10  kg/m

m V rρ ρμ π

π − −

⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

= × = ×

 

Cu 3 3

20 N 53.43 m/s
7.006 10  kg/m

v −⇒ = =
×

 Al 3 3

20 N 97.12 m/s
2.121 10  kg/m

v −= =
×

 

Going back to the Cu Aln n  equation, we have 

Cu

Al

97.12 m/s 0.44 m 20.666
53.43 m/s 1.20 m 3

n
n

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

Cu Al2 and 3n n⇒ = =  

Substituting into the expressions for wavelength and frequency, 

Cu
Cu

0.44 m 0.44 m 0.22 m
2n

λ = = = Cu
Cu

Cu

53.43 m/s 243 Hz 240 Hz
0.22 m

vf
λ

⇒ = = = ≈  

Al
Al

1.20 m 1.20 m 0.40 m
3n

λ = = = Al
Al

Al

97.12 m/s 243 Hz 240 Hz
0.40 m

vf
λ

⇒ = = = ≈  

(b) At this frequency of 240 Hz, there are 3 antinodes on the aluminum wire. 
 



21.44. Visualize: Use primed quantities for when the sphere is submerged. We are given 5 3f f′ =  and 

1 5 kgM = . . We also know the density of water is 31000 kg/m .ρ =  In the third mode before the sphere is 
submerged 3 2

2 3 .L Lλ λ= ⇒ =  Likewise, after the sphere is submerged 5 2
2 5 .L Lλ λ′ ′= ⇒ =  The tension in the 

string before the sphere is submerged is s ,T Mg=  but after the sphere is submerged, according to Archimedes’ 

principle, it is reduced by the weight of the water displaced by the sphere: s ,T Mg Vgρ′= −  where 34
3 .V Rπ=  

Solve: We are looking for R  so solve sT Mg Vgρ′= −  for Vgρ  and later we will isolate R  from that.  

sVg Mg Tρ ′= −  

Solve sv T μ′ = /  for s.T ′  Also substitute for V. 

3 24
3

R g Mg vρ π μ⎛ ⎞ ′= −⎜ ⎟
⎝ ⎠

 

Now use .v fλ′ ′ ′=  

3 2
5

4 ( )
3

R g Mg fρ π μ λ⎛ ⎞ ′ ′= −⎜ ⎟
⎝ ⎠

 

Recall that 5 3f f′ =  and 2
5 .Lλ′ =  

2
3

3
4 2
3 5

R g Mg Lfρ π μ
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞ = −⎜ ⎟
⎝ ⎠

 

Substitute 3 .f v λ= /  

2
34 2

3 5
vR g Mg Lρ π μ
λ

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Now use 2
3 Lλ =  and s/ .v T μ=  

2

3 s
2
3

4 2
3 5

T
R g Mg L

L
μ

ρ π μ
⎛ ⎞/⎛ ⎞ = − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

The 2’s, μ ’s, and L’s cancel. 

2
3

s
4 3
3 5

R g Mg Tρ π
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞ = −⎜ ⎟
⎝ ⎠

 

s .T Mg=  

2
34 3

3 5
R g Mg Mgρ π⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

Cancel g and factor M out on the right side. 
2

34 3 9 161 1
3 5 25 25

R M M Mρ π
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

Now solve for R. 

3 3 16
4 25

MR
πρ

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

3 3
3

12 12 (1 5 kg) 6 1 cm
25 25 (1000 kg/m )
MR
πρ π

.
= = = .  



Assess: The density of the sphere turns out to be about 1.5×  the density of water, which means it sinks and is 
in a reasonable range for densities. 
 



21.45. Visualize: First compute the length L of the wire from the Pythagorean theorem. 2 2 m.L =  Now 
/M Lμ = =  0 075 kg 2 2  m 0 02652 kg/m.. / = .  Also, in the fundamental mode 2 ;Lλ =  here 

4 2  m 5 657 m.λ = = .  
Solve: Apply the principles of statics to the point at the end of the bar. 

2

s s
(8 kg)(9 8 m/s )sin 45 (8 kg)( ) 0 N 110 87 N

2 2yF T g T .
Σ = ° − = ⇒ = = .

/
 

Use these values for ,λ  ,μ  and sT  to find f. 

s (110 87 N) (0 02652 kg/m)
11 Hz

5 657 m
Tvf
μ

λ λ
/ . / .

= = = =
.

 

Assess: This seems like a reasonable frequency for a mechanical system like this. 
 



21.46. Model: Assume that while the spring provides the same tension to both strings it also acts as a fixed 
point for the end of each string so an integral number of half wavelengths fit in each string. 
Visualize: Use a subscript L for the left string and R for the right string. We are given L 2 0 g/m.μ = .  From the 
assumption above we know s L s R s( ) ( ) .T T T= =  We are also given L Rf f f= =  and L R .L L L= =  Notice from the 
diagram that L Lλ =  and 2

R 3 .Lλ =  

Solve: From v fλ=  and sv T μ= /  eliminate v and solve for :μ  2( ) .T fμ λ= /  

22 2
sR s R R R 3

2 2 22
L s L L L s 3

( )( ) ( ) 1 9
( ) ( ) ( ) ( ) 4

T LfT f
T f T Lf

μ λ
μ λ

//
= = = =

/ /
 

R L
9 9 (2 0 g/m) 4 5 g/m
4 4

μ μ= = . = .  

Assess: We expect a slower wave speed in the right string to correspond to a larger mass density.  
 



21.47. Model: The microwave forms a standing wave between the two reflectors. 
Solve: (a) There are reflectors at both ends, so the electromagnetic standing wave acts just like the standing 
wave on a string that is tied at both ends. The frequencies of the standing waves are  

( ) ( )
8

light 93.0 10  m/s 1.5 10  Hz 1.5  GHz
2 2 2 0.10 mm

v cf m m m m m
L L

×
= = = = × =  

where we have noted that electromagnetic waves of all frequencies travel with the speed of light c. The generator 
can produce standing waves at any frequency between 10 GHz and 20 GHz. These are 

m fm (GHz) 
 7 
 8 
 9 
10 
11 
12 
13 

10.5 
12.0 
13.5 
15.0 
16.5 
18.0 
19.5 

(b) There are 7 different standing wave frequencies. Even-numbered values of n create a node at the center, and 
odd-numbered values of n create an antinode at the center. So the frequencies where the midpoint is an antinode 
are 10.5, 13.5, 16.5, and 19.5 GHz. 
 



21.48. Model: The fundamental wavelength of an open-open tube is 2L and that of an open-closed tube is 
4L. 
Solve: We are given that  

f1 open-closed = f3 open-open = 3f1 open-open 

air air

1 open-closed 1 open-open

3v v
λ λ

⇒ =
open-closed open-open

1 3
4 2L L

⇒ =  

( )open-open
open-closed

2 2 78.0 cm
13.0 cm

12 12
L

L⇒ = = =  

 



21.49. Model: A tube forms standing waves. 
Solve: (a) The fundamental frequency cannot be 390 Hz because 520 Hz and 650 Hz are not integer multiples 
of it. But we note that the difference between 390 Hz and 520 Hz is 130 Hz as is the difference between 520 Hz 
and 650 Hz. We see that 390 Hz = 3 × 130 Hz = 3f1, 520 Hz = 4f1, and 650 Hz = 5f1. So we are seeing the third, 
fourth, and fifth harmonics of a tube whose fundamental frequency is 130 Hz. According to Equation 21.17, this 
is an open-open tube because fm = mf1 with m = 1, 2, 3, 4, … For an open-closed tube m has only odd values. 
(b) Knowing f1, we can now find the length of the tube: 

( )1

343 m/s 1.32 m
2 2 130 Hz
vL
f

= = =  

(c) 520 Hz is the fourth harmonic. This is a sound wave, not a wave on a string, so the wave will have four nodes 
and will have antinodes at the ends, as shown.  

 
(d) With carbon dioxide, the new fundamental frequency is 

( )1
280 m/s 106 Hz

2 2 1.32 m
vf
L

= = =  

Thus the frequencies of the n = 3, 4, and 5 modes are f3 = 3f1 = 318 Hz, f4 = 4f1 = 424 Hz, and f5 = 5f1 = 530 Hz. 
 



21.50. Model: Particles of the medium at the nodes of a standing wave have zero displacement. 
Solve: The cork dust settles at the nodes of the sound wave where there is no motion of the air molecules. The 
separation between the centers of two adjacent piles is 1

2 λ . Thus,  

123 cm 82 cm
3 2

λ λ= ⇒ =  

Because the piston is driven at a frequency of 400 Hz, the speed of the sound wave in oxygen is 

( )( )400 Hz 0.82 m 328 m/sv f λ= = =  

Assess: A speed of 328 m/s in oxygen is close to the speed of sound in air, which is 343 m/s at 20°C. 
 



21.51. Model: The nodes of a standing wave are spaced λ/2 apart. 
Visualize:  

 

Solve: The wavelength of the mth mode of an open-open tube is λm = 2L/m. Or, equivalently, the length of the 
tube that generates the mth mode is L = m(λ/2). Here λ is the same for all modes because the frequency of the 
tuning fork is unchanged. Increasing the length of the tube to go from mode m to mode m + 1 requires a length 
change  

∆L = (m + 1)(λ/2) – mλ/2 = λ/2 

That is, lengthening the tube by λ/2 adds an additional antinode and creates the next standing wave. This is 
consistent with the idea that the nodes of a standing wave are spaced λ/2 apart. This tube is first increased 

56.7 cm 42.5 cm 14.2 cm,LΔ = − =  then by ∆L = 70.9 cm – 56.7 cm = 14.2 cm. Thus λ/2 = 14.2 cm and thus λ = 
28.4 cm = 0.284 m. Therefore the frequency of the tuning fork is 

343 m/s 1208 Hz 1210 Hz
0.284 m

vf
λ

= = = ≈  

 



21.52. Model: The open-closed tube forms standing waves. 
Visualize:  

 
Solve: When the air column length L is the proper length for a 580 Hz standing wave, a standing wave 
resonance will be created and the sound will be loud. From Equation 21.18, the standing wave frequencies of an 
open-closed tube are fm = m(v/4L), where v is the speed of sound in air and m is an odd integer: m = 1, 3, 5, … 
The frequency is fixed at 580 Hz, but as the length L changes, 580 Hz standing waves will occur for different 
values of m. The length that causes the mth standing wave mode to be at 580 Hz is 

( )
( )( )

343 m/s
4 580 Hz

m
L =  

We can place the values of L, and corresponding values of h = 1 m − L, in a table: 

m L h = 1 m − L 
1 0.148 m 0.852 m = 85.2 cm 
3 0.444 m 0.556 m = 55.6 cm 
5 0.739 m 0.261 m = 26.1 cm 
7 1.035 m h can’t be negative 

So water heights of 26 cm, 56 cm, and 85 cm will cause a standing wave resonance at 580 Hz. The figure shows 
the m = 3 standing wave at h = 56 cm. 
 



21.53. Model: A stretched wire, which is fixed at both ends, forms a standing wave whose fundamental 
frequency 1 wiref  is the same as the fundamental frequency 1 open-closedf  of the open-closed tube. The two 
frequencies are the same because the oscillations in the wire drive oscillations of the air in the tube. 
Visualize:  

 
Solve: The fundamental frequency in the wire is 

( ) ( )
wire S

1 wire
wire wire

1 1 440 N 469 Hz
2 2 1.0 m 0.0010 kg/0.050 m
v Tf
L L μ

= = = =  

The fundamental frequency in the open-closed tube is 

air
1 open-closed

tube tube

340 m/s469 Hz  
4 4
vf
L L

= = =
( )tube
340 m/s 0.181 m  18 cm

4 469 Hz
L⇒ = = ≈  

 



21.54. Model: A stretched wire, which is fixed at both ends, creates a standing wave whose fundamental 
frequency is 1 wiref . The second vibrational mode of an open-closed tube is 3 open-closedf . These two frequencies are 
equal because the wire’s vibrations generate the sound wave in the open-closed tube. 
Visualize:  

 
Solve: The frequency in the tube is 

( )
( )

air
3 open-closed

tube

3 340 m/s3 300 Hz
4 4 0.85 cm
vf
L

= = =  

wire S
1 wire

wire wire

1300 Hz  
2 2
v Tf
L L μ

⇒ = = =  

( ) ( )2 2
S wire300 Hz 2T L μ⇒ =  = (300 Hz)2 (2 × 0.25 m)2(0.020 kg/m) = 450 N 

 



21.55. Model: The standing waves in the tube will have a displacement antinode at the top where the gas 
molecules are free to move and a node at the water where they are not.  
Visualize: For the wire, we are given s 400 N.T =  In the fundamental mode with both ends of the wire fixed 

wire wire 2.L λ= /  Hence, wire wire2 2(50 0 cm) 1 00 m.Lλ = = . = .  We also know 

wire 0 00100 kg/0 500 m 0 00200 kg/m.μ = . . = .  The given information is sufficient to compute the frequency. From 

v fλ=  and sv T μ= /  eliminate v  and solve for f .  

s wire wire

wire

( ) 400 N (0 00200 kg/m)
447 2 Hz

1 00 m
T

f
μ

λ
/ / .

= = = .
.

 

Solve: Now we turn our attention to the gas, realizing that the frequency of the wave in the wire will be the 
same as the frequency of the sound in the gas. There is initially a node of the standing sound wave at the water 
level in the tube. The water is then lowered until the next standing wave is achieved; this is the next time there is 
a node at the water level. The distance between adjacent nodes in a standing wave is 1

2 λ , so 
1

gas gas2 30 5 cm 61 0 cm.h λ λΔ = = . ⇒ = .   

gas gas gas (0 610 m)(447 2 Hz) 273 m/sv fλ= = . . =  

Assess: We were told the gas is more dense than air so it will stay in the tube; for more dense gases we expect 
a slower sound speed. Our answer bears this out, but is still in the range of the speed of sound for typical gases.  
 



21.56. Model: In a rod in which a longitudinal standing wave can be created, the standing wave is equivalent 
to a sound standing wave in an open-open tube. Both ends of the rod are antinodes, and the rod is vibrating in the 
fundamental mode. 
Solve: Since the rod is in the fundamental mode, λ1 = 2L = 2(2.0 m) = 4.0 m. Using the speed of sound in 
aluminum, the frequency is 

Al
1

1

6420 m/s 1605 Hz 1600 Hz
4.0 m

vf
λ

= = = ≈  

 



21.57. Model: Model the tunnel as an open-closed tube.  

Visualize: We are given 335 m/s.v =  We would like to use ( odd)
4m
vf m m
L

= =  to find ,L  but we need to 

know m  first. Since m  takes on only odd values for the open-closed tube the next resonance after m  is 2.m +  
We are given 4 5 Hzmf = .  and 2 6 3 Hz.mf + = .   
Solve:  

2
( 2) 24

( )
4

m

m

vmf mL
vf mm
L

+
+ +

= =  

2 2m

m

fm m
f
+⎛ ⎞ = +⎜ ⎟

⎝ ⎠
 

2 1 2m

m

fm
f
+⎛ ⎞− =⎜ ⎟

⎝ ⎠
 

2

2 2 56.3 Hz1 1
4.5 Hz

m

m

m f
f
+

= = =
− −

 

Now that we know m  we can finish up.  
335 m/s(5) 93 m

4 4 4(4 5 Hz)m
m

v vf m L m
L f

= ⇒ = = =
.

 

Assess: 93 m seems like a reasonable length for a tunnel. 
 



21.58. Model: A standing wave in an open-closed tube must have a node at the closed end of the tube and an 
antinode at the open end. 
Visualize:  

 
Solve: We first draw a series of pictures showing all the possible standing waves. By examination, we see that 
the first standing wave mode is 1

4  of a wavelength, so the tube’s length is 1
4 .L λ=  The next mode is 3

4  of a 
wavelength. The tube’s length hasn’t changed, so in this mode 3

4 .L λ=  The next mode is now slightly more than 
a wavelength. That is, 5

4 .L λ=  The next mode is 7
4  of a wavelength, so 7

4 .L λ=  We see that there is a pattern. 
The length of the tube and the possible standing wave wavelengths are related by 

4
mL λ

=  m = 1, 3, 5, 7, … = odd integers 

Solving for λ, we find that the wavelengths and frequencies of standing waves in an open-closed tube are 
4

1,  3,  5,  7,   odd integers

4

m

m
m

L
m mv vf m

L

λ

λ

⎫= ⎪⎪ = =⎬
⎪= =
⎪⎭

…  



21.59. Model: The amplitude is determined by the interference of the two waves. 
Solve: For interference in one dimension, where the speakers are separated by a distance Δx, the amplitude of 
the net wave is ( )1

22 cosA a φ= Δ , where a is the amplitude of each wave and 02 xφ π λ φΔ = Δ + Δ  is the phase 
difference between the two waves. The speakers are emitting identical waves so they have identical phase 
constants and 0 0φΔ = . Thus, 

1.5 2 cos xA a a π
λ
Δ⎛ ⎞= = ⎜ ⎟

⎝ ⎠
1 1.5cos

2
x λ

π
− ⎛ ⎞⇒ Δ = ⎜ ⎟
⎝ ⎠

 

The wavelength of a 1000 Hz tone is sound 0.343 m.v fλ = =  Thus the separation must be 

( )10.343 m cos 0.75 0.0789 m  7.9 cmx
π

−Δ = = ≈  

It is essential to note that the argument of the arccosine is in radians, not in degrees. 
 



21.60. Model: Constructive or destructive interference occurs according to the phases of the two waves. 
Visualize:  

 
Solve: (a) To go from destructive to constructive interference requires moving the speaker 1

2 ,x λΔ =  
equivalent to a phase change of π rad. Since 40xΔ =  cm, we find 80λ = cm. 
(b) Destructive interference at 10xΔ =  cm requires 

0 0
10 cm2 2  rad  rad
80 cm

xπ φ π φ π
λ
Δ ⎛ ⎞+ Δ = + Δ =⎜ ⎟

⎝ ⎠
0

3 rad
4
πφ⇒ Δ =  

(c) When side by side, with Δx = 0, the phase difference is φΔ  = 0φΔ  = 3π/4 rad. The amplitude of the 
superposition of the two waves is 

32 cos 2 cos
2 8

a a aφ πΔ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 = 0.77a 

 



21.61. Model: Interference occurs according to the difference between the phases of the two waves. 
Visualize:  

 
Solve: (a) The phase difference between the sound waves from the two speakers is 

02 xφ π φ
λ
Δ

Δ = + Δ  

We have a maximum intensity when Δx = 0.50 m and Δx = 0.90 m. This means 

( ) ( )0 0

0.50 m 0.90 m2 2  rad 2 2 1  radm mπ φ π π φ π
λ λ

⎛ ⎞+ Δ = + Δ = +⎜ ⎟
⎝ ⎠

 

Taking the difference of the above two equations, 

0.40 m2 2 0.40 mπ π λ
λ

⎛ ⎞ = ⇒ =⎜ ⎟
⎝ ⎠

sound 340 m/s 850 Hz
0.40 m

vf
λ

⇒ = = =  

(b) Using again the equations that correspond to constructive interference, 

0
0.50 m2 2  rad
0.40 m

mπ φ π⎛ ⎞ + Δ =⎜ ⎟
⎝ ⎠

0 20 10 2
πφ φ φ⇒ Δ = − = −  rad 

We have taken m = 1 in the last equation. This is because we always specify phase constants in the range –π rad 
to π rad (or 0 rad to 2π rad). m = 1 gives 1

2π− rad (or equivalently, m = 2 will give 3
2 rad).π  

 



21.62. Model: Constructive or destructive interference occurs according to the phases of the two waves. 
Solve: The phase difference between the sound waves from the two speakers is 

02 xφ π φ
λ
Δ

Δ = + Δ  

With no delay between the two signals, 0 0φΔ =  rad and 

( ) ( )2 2.0 m 340 Hz2 2.0 m 4  rad
340 m/sv f

π
φ π π⎛ ⎞Δ = = =⎜ ⎟

⎝ ⎠
 

According to Equation 21.22, this corresponds to constructive interference. A delay of 1.47 ms corresponds to an 
inherent phase difference of  

( ) ( )( ) ( )( )0
2 1.47 ms  rad  2 1.47 ms  rad 2 1.47 ms 340 Hz  rad  radf
T
πφ π π π⎛ ⎞Δ = = = =⎜ ⎟

⎝ ⎠
 

The phase difference φΔ  between the signals is then 

02 4  rad  rad 5  radxφ π φ π π π
λ
Δ⎛ ⎞Δ = + Δ = + =⎜ ⎟

⎝ ⎠
 

Thus, the interference along the x-axis will be perfect destructive. 
 



21.63. Model: Reflection is maximized for constructive interference of the two reflected waves, but 
minimized for destructive interference. 
Solve: (a) Constructive interference of the reflected waves occurs for wavelengths given by Equation 21.32: 

( )( ) ( )2 1.42 500 nm 1420 nm2
m

nd
m m m

λ = = =  

1Thus, 1420 nm,λ =  ( )1
2 2 1420 nm 710 nm,λ = =  3 473 nm,λ =  4 355 nm, λ = …Only the wavelength of 473 

nm is in the visible range. 
(b) For destructive interference of the reflected waves, 

( )( )
1 1 1
2 2 2

2 1.42 500 nm2 1420 nmnd
m m m

λ = = =
− − −

 

1Thus, 2 1420 nm 2840 nm,λ = × =  ( )2
2 3 1420 nm 947 nm,λ = =  3 568 nm,λ =  4 406 nm,λ = …  The wavelengths 

of 406 nm and 568 nm are in the visible range. 
(c) Beyond the limits 430 nm and 690 nm the eye’s sensitivity drops to about 1 percent of its maximum value. 
The reflected light is enhanced in blue (473 nm). The transmitted light at mostly 568 nm will be yellowish green. 
 



21.64. Solve: (a) The intensity of reflected light from the uncoated glass is 2
0 ,I ca=  where a is the 

amplitude of the reflected light. We will assume that the amplitude of the reflected light from both the bottom 
and the top of the coated film is a. The interference of the two reflected waves determines the amplitude of the 
resultant wave which is given by  

( ) 0
coat

2 cos 2    where       2 xA a φ φ π φ
λ
Δ

= Δ Δ = + Δ  

With 0 0φΔ =  rad, 2x dΔ = , and coat air ,nλ λ=  we have 

( ) ( )( )
air

2 2 4 92 nm 1.394 1607 nm0 rad
d dn
n

π ππφ
λ λ λ λ

Δ = + = = =  

803.5 nm2 cosA a
λ

⇒ = 2 2 2 803.5 nm4 cosI cA c aλ λ
⎛ ⎞⇒ = = ⎜ ⎟
⎝ ⎠

2

0

803.5 nm4cosI
I
λ

λ
⎛ ⎞⇒ = ⎜ ⎟
⎝ ⎠

 

(b) The values of ( )0I Iλ  at λ = 400, 450, 500, 550, 600, 650, and 700 nm are 0.719, 0.182, 0.005, 0.048, 0.211, 
0.431, and 0.674, respectively. 
(c)  

 

 



21.65. Model: Reflection is minimized when the two reflected waves interfere destructively. 
Solve: Equation 21.2 gives the condition for perfect destructive interference between the two waves: 

( )1
0 22 2  radx mφ π φ π

λ
Δ

Δ = + Δ = +  

The wavelength of the sound is 
343 m/s 0.2858 m
1200 Hz

v
f

λ = = =  

Let d be the separation between the mesh and the wall. Substituting 0 0 rad,φΔ =  2 ,x dΔ =  m = 0, and the above 
value for the wavelength, 

( )2 2
0 rad   rad

0.2858 m
dπ

π+ =
0.2858 m 0.0715 m  7.15 cm

4
d⇒ = = =  

 



21.66. Model: A light wave that reflects from a boundary at which the index of refraction increases has a 
phase shift of π rad. 
Solve: (a) Because nfilm > nair, the wave reflected from the outer surface of the film (called 1) is inverted due to 
the phase shift of π rad. The second reflected wave does not go through any phase shift of π rad because the 
index of refraction decreases at the boundary where this wave is reflected, which is on the inside of the soap film. 
We can write for the phases 

1 1 10 radkxφ φ π= + +     2 2 20 0 radkxφ φ= + +  

( ) ( )2 1 2 1 20 10 radk x xφ φ φ φ φ π⇒ Δ = − = − + − − 0 radk x φ π= Δ + Δ −  radk x π= Δ −  

0 0 radφΔ =  because the sources are identical. For constructive interference, 

2  radmφ πΔ = ⇒ rad 2  radk x mπ πΔ − = ( ) ( )
film

2 2 2 1  radd mπ π
λ

⎛ ⎞⇒ = +⎜ ⎟
⎝ ⎠

 

C
film 1

2

2d
n m
λλ⇒ = =

+
 C 1 1

2 2

2 2.66nd d
m m

λ⇒ = =
+ +

 m = 0, 1, 2, 3, … 

(b) For m = 0 the wavelength for constructive interference is 

( )( )
( )C 1

2

2.66 390 nm
2075 nmλ = =  

For m = 1 and 2, ( )C 692 nm ~redλ =  and ( )C 415 nm ~violetλ = . Red and violet together give a purplish color. 

 



21.67. Model: The two radio antennas are sources of in-phase, circular waves. The overlap of these waves 
causes interference. 
Visualize:  

 

Solve: Maxima occur along lines such that the path difference to the two antennas is .r mλΔ =  The 750 MHz = 
7.50 × 108 Hz wave has a wavelength 0.40 m.c fλ = =  Thus, the antenna spacing d = 2.0 m is exactly 5λ. The 
maximum possible intensity is on the line connecting the antennas, where 5 .r d λΔ = =  So this is a line of 
maximum intensity. Similarly, the line that bisects the two antennas is the Δr = 0 line of maximum intensity. In 
between, in each of the four quadrants, are four lines of maximum intensity with Δr = λ, 2λ, 3λ, and 4λ. 
Although we have drawn a fairly accurate picture, you do not need to know precisely where these lines are 
located to know that you have to cross them if you walk all the way around the antennas. Thus, you will cross 20 
lines where Δr = mλ and will detect 20 maxima. 
 



21.68. Model: The changing sound intensity is due to the interference of two overlapped sound waves. 
Solve: Minimum intensity implies destructive interference. Destructive interference occurs where the path 
length difference for the two waves is ( )1

2r m λΔ = + . We have assumed 0 0φΔ =  rad for two speakers playing 

“exactly the same” tone. The wavelength of the sound is ( )sound 343 m/s 686 Hz 0.500 mv fλ = = = . Consider a 
point that is a distance x in front of the top speaker. Let r1 be the distance from the top speaker to the point and r2 
the distance from the bottom speaker to the point. We have 

1r x=     ( )22
2 3 mr x= +  

Destructive interference occurs at distances x such that 

( )2 2 1
29 mr x x m λΔ = + − = +  

To solve for x, isolate the square root on one side of the equation and then square: 

( ) ( ) ( )2 22 2 21 1 1
2 2 29 m 2x x m x m x mλ λ λ⎡ ⎤+ = + + = + + + +⎣ ⎦

( )
( )

2 21
2

1
2

9 m
2
m

x
m

λ
λ

− +
⇒ =

+
 

Evaluating x for different values of m: 

m x (m) 
0 
1 
2 
3 

17.88 
5.62 
2.98 
1.79 

Because you start at x = 2.5 m and walk away from the speakers, you will only hear minima for values x > 2.5 m. 
Thus, to correct significant figures, minima will occur at distances of 3.0 m, 5.6 m, and 18 m. 
 



21.69. Model: The changing sound intensity is due to the interference of two overlapped sound waves. 
Visualize: The listener moving relative to the speakers changes the phase difference between the waves.  

 
Solve: (a) Initially when you are at P, equidistant from the speakers, you hear a sound of maximum intensity. 
This implies that the two speakers are in phase (Δφ0 = 0). However, on moving to Q you hear a minimum of 
sound intensity implying that the path length difference from the two speakers to Q is /2.λ  Thus,  

( ) ( ) ( ) ( )2 2 2 21
1 12 5.0 m 12.0 m 5.0 m 12.0 m  1.0 mr r rλ = Δ = + − = + − =  

2.0 mλ⇒ =  340 m/s 170 Hz
2.0 m

vf
λ

⇒ = = =  

(b) At Q, the condition for perfect destructive interference is 

( ) ( )1
2

2
0 rad 2  rad

r
m

π
φ π

λ
Δ

Δ = + = − ( )1
2

2 2  radr m
v f
π πΔ

⇒ = −  

( ) ( )1 1
2 2

340 m/s
1.0 m

vf m m
r

⎛ ⎞⇒ = − = − ⎜ ⎟Δ ⎝ ⎠
 

For m = 1, 2, and 3, 1 170 Hz,f =  2 510 Hz,f =  and 3 850 Hz.f =  

 



21.70. Model: The amplitude is determined by the interference of the two waves. 
Visualize:  

 

Solve: The amplitude of the sound wave is ( )1
22 cos .A a φ= Δ  With 0 0 rad,φΔ =  the phase difference between 

the waves is 

2 1 2 2 2 cos
2.0 m 2.0 m

r r rA a πφ φ φ π π
λ
Δ Δ Δ⎛ ⎞Δ = − = = ⇒ = ⎜ ⎟

⎝ ⎠
 

At the coordinates (0.0 m, 0.0 m), Δr = 0 m, so A = 2a. At the coordinates (0.0 m, 0.5 m), 

( ) ( ) ( ) ( ) ( )2 2 2 2 0.551 m
3.0 m 2.5 m 3.0 m 1.5 m 0.551 m 2 cos 1.30

2.0 m
r A a a

π
Δ = + − + = ⇒ = =  

At the coordinates (0.0 m, 1.0 m), 

( ) ( ) ( ) ( ) ( )2 2 2 2 1.08 m
3.0 m 3.0 m 3.0 m 1.0 m 1.08 m 2 cos 0.25

2.0 m
r A a a

π⎛ ⎞
Δ = + − + = ⇒ = =⎜ ⎟

⎝ ⎠
 

At the coordinates (0.0 m, 1.5 m), 1.568 m and 1.56 .r A aΔ = =  At the coordinates (0.0 m, 2.0 m), 2.0 mrΔ =  
and 2 .A a=  
 



21.71. Model: The two radio transmitters are sources of out-of-phase, circular waves. The overlap of these 
waves causes interference. 
Visualize:  

 
Solve: The phase difference of the waves at point P is given by 

02 rφ π φ
λ
Δ

Δ = + Δ  

( ) ( ) ( ) ( )2 2 2 23000 m 85 m 3000 m 35 m 0.99976 mrΔ = + − + =  

The intensity at P is a maximum. Using m = 1 for the first maximum, and 0φ πΔ = rad since the transmitters are 
out of phase, the condition for constructive interference is 2 2 .mφ π πΔ = =  Thus,  

r2  rad 2  radπ π π
λ
Δ

= + ( )2 2 0.99976 mrλ⇒ = Δ =
( )

83 10  m/s 150 MHz
2 0.99976 m

cf
λ

×
⇒ = = =  

 



21.72. Model: The two radio antennas are sources of in-phase waves. The overlap of these waves causes 
interference. 
Visualize:  

 
Solve: (a) The phase difference of the two waves at point P is given by 

02 rφ π φ
λ
Δ

Δ = + Δ   ( ) ( ) ( ) ( )2 2 2 2800 m 650 m 800 m 550 m 59.96 mrΔ = + − + =  

The wavelength of the radio wave is 
8

6

3.0 10  m/s 100 m
3.0 10  m

c
f

λ ×
= = =

×
 

Since the sources are identical, 0 0 rad.φΔ =  The phase difference at P due to the two waves is 

59.96 m2 0 rad  1.2  rad
100 m

φ π π⎛ ⎞Δ = + =⎜ ⎟
⎝ ⎠

 

(b) Since ( )1.20 0.6 2φ π πΔ = = , which is neither m2π nor ( )1
2 2 ,m π+  the interference at P is somewhere in 

between maximum constructive and perfect destructive. 
(c) At a point 10 m further north we have 

( ) ( ) ( ) ( )2 2 2 2800 m 660 m 800 m 560 m 60.58 mrΔ = + − + =  

( )60.58 m2 0 rad  1.21  rad  0.605 2
100 m

φ π π π⎛ ⎞⇒ Δ = + = =⎜ ⎟
⎝ ⎠

 

Because the phase difference is increasing as you move north, you are moving from a destructive interference 
condition ( )1

2 2mφ πΔ = +  with m = 0 toward a constructive interference condition ( )2mφ πΔ =  with m = 1. The 
signal strength will therefore increase. 
 



21.73. Model: The amplitude is determined by the interference of the two waves. 
Solve: (a) We have three identical loudspeakers as sources. Δr between speakers 1 and 2 is 1.0 m and λ = 2.0 
m. Thus 1

2 ,r λΔ =  which gives perfect destructive interference for in-phase sources. That is, the interference of 
the waves from loudspeakers 1 and 2 is perfect destructive, leaving only the contribution due to speaker 3. Thus the 
amplitude is a. 
(b) If loudspeaker 2 is moved away by one-half of a wavelength or 1.0 m, then all three waves will reach you in 
phase. The amplitude of the superposed waves will therefore be maximum and equal to A = 3a. 
(c) The maximum intensity is 2 2

max 9I CA Ca= = . The ratio of the intensity to the intensity of a single speaker is 
2

max
2

single speaker

9 9I Ca
I Ca

= =  

 



21.74. Model: The superposition of two slightly different frequencies gives rise to beats. 
Solve: The third harmonic of note A and the second harmonic of note E are  

( ) ( )3A 1A 2E 1E3 3 440 Hz 1320 Hz         2 2 659 Hz 1318 Hzf f f f= = = = = =  

3A 2E 1320 Hz  1318 Hz  2 Hzf f⇒ − = − =  

(b) The beat frequency between the first harmonics is 
f1E − f1A = 659 Hz − 440 Hz = 219 Hz 

The beat frequency between the second harmonics is 
f2E − f2A = 1318 Hz − 880 Hz = 438 Hz 

The beat frequency between f3A and f2E is 2 Hz. It therefore emerges that the tuner looks for a beat frequency of 2 
Hz. 
(c) If the beat frequency is 4 Hz, then the second harmonic frequency of the E string is  

( )1
2E 1E 21320 Hz  4 Hz  1316 Hz   1316 Hz   658 Hzf f= − = ⇒ = =  

Note that the second harmonic frequency of the E string could also be 

2E 1E1320 Hz  4 Hz  1324 Hz    662 Hzf f= + = ⇒ =  

This higher frequency can be ruled out because the tuner started with low tension in the E string and we know 
that 

string
Tv f f Tλ
μ

= = ⇒ ∝  



21.75. Model: The superposition of two slightly different frequencies creates beats. 
Solve: (a) The wavelength of the sound initially created by the flutist is 

342 m/s 0.77727 m
440 Hz

λ = =  

When the speed of sound inside her flute has increased due to the warming up of the air, the new frequency of 
the A note is 

346 m/s 445 Hz
0.77727 m

f ′ = =  

Thus the flutist will hear beats at the following frequency:  

445 Hz  440 Hz  5 beats/s f f′ − = − =  

Note that the wavelength of the A note is determined by the length of the flute rather than the temperature of air 
or the increased sound speed. 

(b) The initial length of the flute is ( )1 1
2 2 0.77727 m 0.3886 m.L λ= = =  The new length to eliminate beats needs 

to be 

1 1 346 m/s 0.3932 m
2 2 2 440 Hz

vL
f

λ′ ′⎛ ⎞ ⎛ ⎞′ = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

Thus, she will have to extend the “tuning joint” of her flute by 

0.3932 m  0.3886 m  0.0046 m  4.6 mm− = =  
 



21.76. Solve: (a) Yvette’s speed is the width of the room divided by time. This means 

( )1
2

Y

n
v

t
λ

= Y2n v
t λ

⇒ =  

Note that 1
2 λ  is the distance between two consecutive antinodes, and n is the number of such half wavelengths 

that fill the entire width of the room. 
(b) Yvette observes a higher frequency f+ of the source she is moving toward and a lower frequency f− of the 
source she is receding from. If v is the speed of sound and f is the sound wave’s frequency, we have 

Y Y1  1v vf f f f
v v+ −

⎛ ⎞ ⎛ ⎞= + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

The expression for the beat frequency is 

Y Y Y Y Y21 1 2 2v v v v v vf f f f f
v v v vλ λ+ −

⎛ ⎞ ⎛ ⎞− = + − − = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(c) The answers to part (a) and (b) are the same. Even though you and Yvette have different perspectives, you 
should agree as to how many modulations per second she hears. 
 



21.77. Model: The frequency of the loudspeaker’s sound in the back of the pick-up truck is Doppler shifted. 
As the truck moves away from you, its frequency is decreased. 
Solve: Because you hear 8 beats per second as the truck drives away from you, the frequency of the sound 
from the speaker in the pick-up truck is 400 Hz  8 Hz  392 Hz.f− = − =  This frequency is 

0

S1
ff
v v− = +

S 400 Hz1 1.020408
343 m/s 392 Hz
v

⇒ + = = S 7.0 m/sv⇒ =  

That is, the velocity of the source vS and hence the pick-up truck is 7.0 m/s. 
 



21.78. Model: A stretched string under tension supports standing waves. 
Solve: (a) The wave speed on a stretched string is 

string
1T Tv f fλ

μ λ μ
= = ⇒ =  

The wavelength λ cannot change if the length of the string does not change. So, 

( ) 1/ 21
2

1 1 1 1 1 1 1
2 2 2

df TT f
dT T TTλ λ λ μμ μ

− ⎛ ⎞
= = = =⎜ ⎟⎜ ⎟

⎝ ⎠
 

2
f T
f T
Δ Δ

⇒ =  

(b) Since there are 5 beats per second,  

 5 Hz  
2
f Tf
T
Δ

Δ = =
10 Hz 10 Hz 0.020 2.0%

500 Hz
T
T f
Δ

⇒ = = = =  

That is, an increase of 2.0% in the tension of one of the strings will cause 5 beats per second. 
 



21.79. Model: The microphone will detect a loud sound only if there is a standing wave resonance in the 
tube. The sound frequency does not change, but changing the length of the tube can create a standing wave. 
Solve: The standing wave condition is 

280 Hz         1,  2,  3,
2
vf m m
L

= = = …  

where L is the total length of the tube. When the slide is extended a distance s, the tube has two straight sides, 
each of length s + 80 cm, plus a semicircular bend of length ( )1

2 2 rπ . The radius is ( )1
2 10 cm 5.0 cm.r = =  The 

tube’s total length is 

( ) ( )1
22 80 cm 2 5.0 cm 175.7 cm 2 1.757 m 2L s s sπ= + + × = + = +  

A standing wave resonance will be created if 

[ ] ( )
343 m/s1.757 2 0.6125

2 2 280 Hz
vL s m m m
f

⎡ ⎤
= + = = =⎢ ⎥

⎢ ⎥⎣ ⎦
 

0.3063 0.8785 meterss m⇒ = −  

We can tabulate the different extensions s that correspond to standing wave modes m = 1, m = 2, m = 3, and so 
on. 

m s 
1 
2 
3 
4 
5 
6 

−0.572 m 
−0.266 m 

       0.040 m = 4.0 cm 
       0.347 m = 34.7 cm 
       0.653 m = 65.3 cm 

1.959 m 

Physically, the extension must be greater than 0 cm and less than 80 cm. Thus, the three slide extensions that 
create a standing wave resonance at 280 Hz are 4.0 cm, 35 cm, and 65 cm to two significant figures. 
 



21.80. Model: The stretched wire is vibrating at its second harmonic frequency. 
Visualize: Let l be the full length of the wire, and L be the vibrating length of the wire. That is, 

( )1
2 .L l=  

 
Solve: The wave speed on a stretched wire is 

s
wire

Tv f λ
μ

= =  

The frequency f = 100 Hz and the wavelength 1
2 lλ =  because it is a second harmonic wave. The tension Ts = 

(1.25 kg)g because the hanging mass is in static equilibrium and μ = 1.00 × 10−3 kg/m. Substituting in these 
values,  

( )
( ) ( ) ( ) ( )

( ) ( )
32

2 1 2 2
3

1.00 10  kg/m1.25 kg
100 Hz 100 Hz 2.00 m s

2 2 1.25 kg1.00 10  kg/m
g l lg l

−
− −

−

×⎛ ⎞= ⇒ = =⎜ ⎟× ⎝ ⎠
 

To find l we can use the equation for the time period of a simple pendulum: 

( ) ( )
22

2
2 2

314 s/100
2 0.250 s

4 4
l TT l g g g
g

π
π π

= ⇒ = = =  

Substituting this expression for l into the equation for g, we get 

( )( ) ( )
( )

21 2 2 2 1 2 2

1 2 2

2.000 m s 0.025 s 0.125 m s 0

0.125 m s 1 0 8.00 m/s  

g g g g

g g g

− − −

−

= ⇒ − =

⎡ ⎤⇒ − = ⇒ =⎣ ⎦

 

Assess: A value of 8.0 m/s2 is reasonable for the information given in the problem.  
 



21.81. Model: The steel wire is under tension and it vibrates with three antinodes.  
Solve: When the spring is stretched 8.0 cm, the standing wave on the wire has three antinodes. This means 

2
3 3 Lλ =  and the tension TS in the wire is TS = k (0.080 m), where k is the spring constant. For this tension, 

S
wire

Tv
μ

= S
3

Tf λ
μ

⇒ =
( )0.08 m3

2
k

f
L μ

⇒ =  

We will let the stretching of the spring be Δx when the standing wave on the wire displays two antinodes. This 
means λ2 = L and S .T kx′ =  For the tension S,T ′  

S S
wire 2

T Tv f λ
μ μ
′ ′

′ = ⇒ =
1 k xf
L μ

Δ
⇒ =  

The frequency f is the same in the above two situations because the wire is driven by the same oscillating 
magnetic field. Now, equating the two frequency equations, 

( )0.080 m1 3
2

kk x
L Lμ μ

Δ
= 0.18 m 18 cmx⇒Δ = =  

 



21.82. Model: The frequency is Doppler shifted to higher values for a detector moving toward the source. 
The frequency is also shifted to higher values for a source moving toward the detector. 
Visualize:  

 
Solve: (a) We will derive the formula in two steps. First, the object acts like a moving detector and “observes” 
a frequency that is given by ( )0 0 01f f v v′ = + . Second, as this moving object reflects (or acts as a “source” of 

ultrasound waves), the frequency fecho as observed by the original source So is ( ) 1
echo 0 01 .f f v v −′= −  Combining 

these two equations gives 

( )0 00 0
echo 0

0 0 0

1
1 1

f v vf v vf f
v v v v v v

+′ +
= = =

− − −
 

(b) If v0 << v, then  
1

0 0
echo 0 1 1v vf f

v v

−
⎛ ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

0 0
0 1 1v vf

v v
⎛ ⎞⎛ ⎞= + + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

… 0
0

21 vf
v

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

…  

0
beat echo 0 0

2vf f f f
v

⇒ = − ≈  

(c) Using part (b) for the beat frequency,  

( )60265 Hz  2.40 10  Hz
1540 m/s

v⎛ ⎞= ×⎜ ⎟
⎝ ⎠

0 2.09 cm/sv⇒ =  

(d) Assuming the heart rate is 90 beats per minute the angular frequency is 

( )2 2 1.5 beats/s 9.425 rad/sfω π π= = =  

Using 0 maxv v Aω= = ,  

0 2.09 cm/s 2.2 mm
9.425 rad/s

vA
ω

= = =  

( )
( )

11
8

1.50 1.60
0.010 m  5.17 10  s

2 3.0 10  m/s
T −+
= × = ×

×
 

 



21.83. Solve: (a) The wavelengths of the standing wave modes are  

2
m

L
m

λ =  m = 1, 2, 3, …. 

( ) ( ) ( )
1 2 3

2 10.0 m 2 10.0 m 2 10.0 m
20.0 m 10.0 m 6.67 m

1 2 3
λ λ λ⇒ = = = = = =  

The depth of the pool is 5.0 m. Clearly the standing waves with λ2 and λ3 are “deep water waves” because the 
20 m depth is larger than one-quarter of the wavelength. The wave with λ1 barely qualifies to be a deep water 
standing wave.  

 
(b) The wave speed for the first standing wave mode is 

( )( )2
1

1

9.8 m/s 20.0 m
5.59 m/s

2 2
gv λ
π π

= = =  

Likewise, 2 33.95 m/s and 3.22 m/sv v= = . 
(c) We have 

2
m

m m
gv fλ λ
π

= =  
2 4m

m

g mgf
Lπλ π

⇒ = =  

Please note that m is the mode and not the mass. 
(d) The period of oscillation for the first standing wave mode is calculated as follows 

( )( )
( )

2

1 1

1 9.8 m/s
0.279 Hz  3.58 s

4 10.0 m
f T

π
= = ⇒ =  

Likewise, 2 3 2.53 s and 2.07 s.T T= =  
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21.84. Model: The overlap of the waves causes interference. 
Solve: (a) The waves traveling to the left are  

1 sin 2 x tD a
T

π
λ

⎡ ⎤⎛ ⎞= − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
  ( )

2 20sin 2
x L tD a

T
π φ

λ
⎡ ⎤−⎛ ⎞

= − − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

The phase difference between the waves on the left side of the antenna is thus 

( )
L 2 1 202 2

x L t x t
T T

φ φ φ π φ π
λ λ
−⎛ ⎞ ⎛ ⎞Δ = − = − − + − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
202 Lπ φ

λ
= +  

On the right side of the antennas, where 1 2 ,x x L= +  the two waves are 

1 sin 2 x tD a
T

π
λ

⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
  ( )

2 20sin 2
x L tD a

T
π φ

λ
⎡ ⎤−⎛ ⎞

= − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

Thus, the phase difference between the waves on the right is 

( )
R 2 1 202 2

x L t x t
T T

φ φ φ π φ π
λ λ
−⎛ ⎞ ⎛ ⎞Δ = − = − + − −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
20

2 Lπ φ
λ

= − +  

We want to have destructive interference on the country side or on the left and constructive interference on the right. This 
requires 

( )1
L 20 2

2 2L mπφ φ π
λ

Δ = + = + R 20
2 2L nπφ φ π
λ

Δ = − =  

These are two simultaneous equations, and we can satisfy them both if L and 20φ  are properly chosen. Subtracting the second 
equation from the first to eliminate 20 ,φ   

( )1
2

4 2L m nπ π
λ

= + − ( )1
2 2

L m n λ
⇒ = + −  

The smallest value of L that works is for n = m, in which case 1
4 .L λ=  

(b) From the RφΔ  equation, 

( )1
4

20 20 20

22 2
2

L n
π λπ πφ φ φ π

λ λ
⎡ ⎤

− = − = − =⎢ ⎥
⎣ ⎦

20 2
2

nπφ π⇒ = + rad 

Adding integer multiples of 2π to the phase constant doesn’t really change the wave, so the physically significant phase 
constant is for n = 0, namely 1

20 2φ π= rad. 
(c) We have ( )1 1

20 2 4  rad 2φ π π= = . If the wave from antenna 2 was delayed by one full period T, it would shift the wave by 

one full cycle. We would describe this by a phase constant of 2π rad. So a phase constant of ( )1
4 2π  rad can be achieved by 

delaying the wave by 1
4 .t TΔ =  

(d) A wave with frequency 61000 kHz 1.00 10  Hzf = = ×  has a period 61.00 10  s 1.00 sT μ−= × =  and wavelength 
/ 300 m.c fλ = =  So this broadcast scheme will work if the antennas are spaced L = 75 m apart and if the broadcast from 

antenna 2 is delayed by Δt = 0.25 μs = 250 ns. 
 


