
22.1. Model: Two closely spaced slits produce a double-slit interference pattern. 
Visualize: The interference pattern looks like the photograph of Figure 22.3(b). It is symmetrical with the m = 
2 fringes on both sides of and equally distant from the central maximum. 
Solve: The bright fringes occur at angles θm such that 

sin md mθ λ=  m = 0, 1, 2, 3, … 

( )
( )

9

2 6

2 500 10  m
sin 0.02

50 10  m
θ

−

−

×
⇒ = =

×
⇒ 2 0.020 radθ =

1800.020 rad 1.15
 radπ
°

= × = °  

 



22.2. Model: Two closely spaced slits produce a double-slit interference pattern. 
Visualize: The interference pattern looks like the photograph of Figure 22.3(b). It is symmetrical, with the m = 
2 fringes on both sides of and equally distant from the central maximum. 
Solve: The two paths from the two slits to the m = 2 bright fringe differ by 2 1r r rΔ = − , where 

( )2 2 500 nm 1000 nmr mλ λΔ = = = =  

Thus, the position of the m = 2 bright fringe is 1000 nm farther away from the more distant slit than from the 
nearer slit. 
 



22.3. Model: Two closely spaced slits produce a double-slit interference pattern. 
Visualize: The interference pattern looks like the photograph of Figure 22.3(b). 
Solve: The bright fringes are located at positions given by Equation 22.4, sin .md mθ λ=  For the m = 3 bright 

orange fringe, the interference condition is ( )9
3sin 3 600 10  md θ −= × . For the m = 4 bright fringe the condition 

is 4sin 4 .d θ λ=  Because the position of the fringes is the same, 

( ) ( )9 93
3 4 4sin sin 4 3 600 10  m 600 10  m 450 nmd dθ θ λ λ− −= = = × ⇒ = × =  

 



22.4. Model: Two closely spaced slits produce a double-slit interference pattern. 
Visualize: The interference pattern looks like the photograph of Figure 22.3(b). 
Solve: The formula for fringe spacing is 

Ly
d
λ

Δ = ⇒ ( )3 91.8 10  m 600 10  m L
d

− −× = × ⇒ 3000L
d
=  

The wavelength is now changed to 400 nm, and ,L d  being a part of the experimental setup, stays the same. 
Applying the above equation once again, 

( )( )9400 10  m 3000 1.2 mmLy
d
λ −Δ = = × =  

 



22.5. Visualize: The fringe spacing for a double slit pattern is .Ly
d
λ

Δ =  We are given 2 0 mL = .  and 

600 nm.λ =  We also see from the figure that 1
3 cm.yΔ =  

Solve: Solve the equation for d. 
9

21
3

(600 10  m)(2 0 m) 0 36 mm
10  m

Ld
y

λ −

−

× .
= = = .
Δ ×

 

Assess: 0.36 mm is a typical slit spacing. 
 



22.6. Model: Two closely spaced slits produce a double-slit interference pattern. 
Visualize: The interference pattern looks like the photograph of Figure 22.3(b). 
Solve: The fringe spacing is 

9 2

3

(589 10  m)(150 10  m) 0.22 mm
4.0 10  m

L Ly d
d y
λ λ − −

−

× ×
Δ = ⇒ = = =

Δ ×
 



22.7. Model: Two closely spaced slits produce a double-slit interference pattern. 
Visualize: The interference pattern looks like the photograph of Figure 22.3(b). 
Solve: The dark fringes are located at positions given by Equation 22.9: 

( )1
2m

Ly m
d
λ′ = +     m = 0, 1, 2, 3, … 

⇒ ( ) ( )1 1
5 1 2 25 1L Ly y

d d
λ λ′ ′− = + − + ⇒

2
3

3

4 (60 10  m)6.0 10  m
0.20 10  m
λ −

−
−

×
× =

×
⇒ 500 nmλ =  

 



22.8. Model: Two closely spaced slits produce a double-slit interference pattern. 
Visualize: The interference pattern looks like the photograph of Figure 22.3(b). 
Solve: In a span of 12 fringes, there are 11 gaps between them. The formula for the fringe spacing is 

Ly
d
λ

Δ = ⇒
3 952 10  m (633 10  m)(3.0 m)

11 d

− −⎛ ⎞× ×
=⎜ ⎟

⎝ ⎠
⇒ d = 0.40 mm 

Assess: This is a reasonable distance between the slits, ensuring 41.34 10 1d L −= × << . 

 



22.9. Model: A diffraction grating produces an interference pattern. 
Visualize: The interference pattern looks like the diagram in Figure 22.8. 
Solve: The bright constructive-interference fringes are given by Equation 22.15: 

sin md mθ λ=     m = 0, 1, 2, … 
9

1 12

(1)(550 10  m)sin 0.055 3.2
(1.0 10  m) /1000

θ θ
−

−

×
⇒ = = ⇒ = °

×
 

Likewise, 2 2sin 0.110 and 6.3 .θ θ= = °  

 



22.10. Model: A diffraction grating produces a series of constructive-interference fringes at values of mθ  
determined by Equation 22.15. 
Solve: We have 

sin        0,  1, 2, 3, md m mθ λ= = … ⇒ sin 20.0 1d λ° =  and 2sin 2d θ λ=  

Dividing these two equations, 

2sin 2sin 20.0 0.6840θ = ° =  ⇒ 2 43.2θ = °  

 



22.11. Model: A diffraction grating produces an interference pattern. 
Visualize: The interference pattern looks like the diagram in Figure 22.8. 
Solve: The bright constructive-interference fringes are given by Equation 22.15: 

sin md mθ λ= ⇒
9

6(2)(600 10  m) 1.89 10  m
sin sin(39.5 )m

md λ
θ

−
−×

= = = ×
°

 

The number of lines in per millimeter is 3 6(1 10  m) (1.89 10  m) 530.− −× × =  

 



22.12. Model: A diffraction grating produces an interference pattern. 
Visualize: The interference pattern looks like the diagram in Figure 22.8. 

 
Solve: The bright fringes are given by Equation 22.15: 

sin md mθ λ=     m = 0, 1, 2, 3, …⇒ ( )1sin 1d θ λ= ⇒ 1sind λ θ=  

The angle θ1 can be obtained from geometry as follows: 

( )
1

0.32 m 2
tan 0.080

2.0 m
θ = =  ⇒  θ1 = tan–1 (0.080) 4.57° 

Using 1sin sin 4.57 0.07968θ = ° = , 
9633 10  m 7.9 m

0.07968
d μ

−×
= =  

 



22.13. Model: A diffraction grating produces an interference pattern. 
Visualize: The interference pattern looks like the diagram of Figure 22.8. 
Solve: The bright interference fringes are given by 

sin md mθ λ=  m = 0, 1, 2, 3, … 

The slit spacing is 61 mm 500 2.00 10  md −= = ×  and m = 1. For the red and blue light, 

9
1

1 red 6

656 10  msin 19.15
2.00 10  m

θ
−

−
−

⎛ ⎞×
= = °⎜ ⎟×⎝ ⎠

  
9

1
1 blue 6

486 10  msin 14.06
2.00 10  m

θ
−

−
−

⎛ ⎞×
= = °⎜ ⎟×⎝ ⎠

 

The distance between the fringes, then, is 1 red 1 bluey y yΔ = −  where 

( )
( )

1 red

1 blue

1.5 m tan19.15 0.521 m

1.5 m tan14.06 0.376 m

y

y

= ° =

= ° =
 

So, 0.145 m 14.5 cm.yΔ = =  

 



22.14. Model: Assume the screen is centered behind the slit. We actually want to solve for m, but given the 
other data, it is unlikely that we will get an integer from the equations for the edge of the screen, so we will have 
to truncate our answer to get the largest order fringe on the screen. 
Visualize: Refer to Figure 22.7. Use Equation 22.15: sin ,md mθ λ=  and Equation 22.16: tan .m my L θ=  We 
are given 510 nm,λ =  2 0 m,L = .  and 1

500 mm.d =  As mentioned above, we are not guaranteed that a bright 
fringe will occur exactly at the edge of the screen, but we will kind of assume that one does and set 1 0 m;my = .  
if we do not get an integer for m then the fringe was not quite at the edge of the screen and we will truncate our 
answer to get an integer m. 
Solve: Solve Equation 22.16 for mθ  and insert it in Equation 22.15. 

1tan m
m

y
L

θ −=  

Solve Equation 22.15 for .m  
1

1 1500 mm 1 0 msin sin tan sin tan 1 8
510 nm 2 0 m

m
m

d d ym
L

θ
λ λ

− − .⎛ ⎞ ⎛ ⎞= = = = .⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

Indeed, we did not get an integer, so truncate 1.8 to get 1.m =  This means we will see three fringes, one for 
0,m =  and one on each side for 1.m = ±  

Assess: Our answer fits with the statement in the text: “Practical gratings, with very small values for ,d  
display only a few orders.” 
 



22.15. Model: A narrow single slit produces a single-slit diffraction pattern. 
Visualize: The intensity pattern for single-slit diffraction will look like Figure 22.14. 
Solve: The minima occur at positions 

p
Ly p
a
λ

=  

2 1
2 1So L L Ly y y
a a a
λ λ λ

Δ = − = − = ⇒
( )( )9

4633 10  m 1.5 m
2.0 10  m  0.20 mm

0.00475 m
La
y

λ −
−

×
= = = × =
Δ

 



22.16. Model: A narrow slit produces a single-slit diffraction pattern. 
Visualize: The intensity pattern for single-slit diffraction will look like Figure 22.14. 
Solve: The width of the central maximum for a slit of width 200a λ= is 

( )2 2.0 m2 20 mm
200

Lw
a

λλ
λ

= = =  

 



22.17. Model: A narrow slit produces a single-slit diffraction pattern. 
Visualize: The intensity pattern for single-slit diffraction will look like Figure 22.14. 
Solve: Angle 0.70 0.0122θ = ° =  rad is a small angle (<< 1 rad). Thus we use Equation 22.20 to find the 
wavelength of light. The angles of the minima of intensity are 

( )( )

p

3

          1, 2, 3, 

0.10 10  m 0.0122 rad
610 nm

2
p

p p
a

a
p

λθ κ

θ
λ

−

= =

×
⇒ = = =

 



22.18. Visualize: Use Equation 22.22: 2 .Lw
a
λ

=  We are given 600 nmλ =  and 2 0 m.L = .  We see from 

the figure that 1 0 cm.w = .  
Solve: Solve the equation for a. 

92 2(600 10  m)(2 0 m) 0 24 mm
0 010 m

La
w
λ −× .

= = = .
.

 

Assess: 0.24 mm is in the range of typical slit widths. 
 



22.19. Model: A narrow slit produces a single-slit diffraction pattern. 
Visualize: The intensity pattern for single-slit diffraction will look like Figure 22.14. 
Solve: The width of the central maximum for a slit of width 200a λ=  is 

( )( )92 500 10  m 2.0 m2 0.0040 m  4.0 mm
0.0005 m

Lw
a
λ −×

= = = =  

 



22.20. Model: The spacing between the two buildings is like a single slit and will cause the radio waves to be 
diffracted. 
Solve: Radio waves are electromagnetic waves that travel with the speed of light. The wavelength of the 800 
MHz waves is 

8

6

3 10  m/s 0.375 m
800 10  Hz

λ ×
= =

×
 

To investigate the diffraction of these waves through the spacing between the two buildings, we can use the 
general condition for complete destructive interference: sin pa pθ λ=  (p = 1, 2, 3, …) where a is the spacing 
between the buildings. Because the width of the central maximum is defined as the distance between the two p = 
1 minima on either side of the central maximum, we will use p = 1 and obtain the angular width Δθ = 2θ1 from 

1 1
1 1

0.375 msin sin sin 1.43
15 m

a
a
λθ λ θ − −⎛ ⎞ ⎛ ⎞= ⇒ = = = °⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

Thus, the angular width of the wave after it emerges from between the buildings is ( )2 1.43 2.86 2.9 .θΔ = ° = ° ≈ °  

 



22.21. Model: The crack in the cave is like a single slit that causes the ultrasonic sound beam to diffract. 
Visualize:  

 
Solve: The wavelength of the ultrasound wave is 

340 m/s 0.0113 m
30 kHz

λ = =  

Using the condition for complete destructive interference with p = 1, 

1sina θ λ= ⇒ 1
1

0.0113 msin 2.165
0.30 m

θ − ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

From the geometry of the diagram, the width of the sound beam is 

( )1 12 2 100 m tan 200 m tan 2.165 7.6 mw y θ= = × = × ° =  

Assess: The small-angle approximation is almost always valid for the diffraction of light, but may not be valid 
for the diffraction of sound waves, which have a much larger wavelength. 
 



22.22. Model: Light passing through a circular aperture leads to a diffraction pattern that has a circular 
central maximum surrounded by a series of secondary bright fringes. 
Solve: The width of the central maximum for a circular aperture of diameter D is 

2.44 Lw
D
λ

=
9

3

(2.44)(500 10  m)(2.0 m)
0.50 10  m

−

−

×
=

×
 = 4.9 mm 

 



22.23. Model: Light passing through a circular aperture leads to a diffraction pattern that has a circular 
central maximum surrounded by a series of secondary bright fringes. 
Visualize: The intensity pattern will look like Figure 22.15. 
Solve: According to Equation 22.23, the angle that locates the first minimum in intensity is 

6

1 3

1.22 1.22(2.5 10  m)
0.20 10  mD

λθ
−

−

×
= =

×
 = 0.01525 rad = 0.874° 

These should be rounded to 0.015 rad = 0.87°. 

 



22.24. Model: Light passing through a circular aperture leads to a diffraction pattern that has a circular 
central maximum surrounded by a series of secondary bright fringes. 
Visualize: The intensity pattern will look like Figure 22.15. 
Solve: From Equation 22.24, the diameter of the circular aperture is 

9

2

2.44 2.44(633 10  m)(4.0 m) 0.25 mm
2.5 10  m

LD
w
λ −

−

×
= = =

×
 

 



22.25. Model: Light passing through a circular aperture leads to a diffraction pattern that has a circular 
central maximum surrounded by a series of secondary bright fringes. 
Visualize: The intensity pattern will look like Figure 22.15. 
Solve: From Equation 22.24, 

3 2

9

(0.12 10  m)(1.0 10  m) 78 cm
2.44 2.44(633 10  m)
DwL

λ

− −

−

× ×
= = =

×
 

 



22.26. Model: An interferometer produces a new maximum each time L2 increases by 1
2 λ  causing the path-

length difference Δr to increase by λ. 
Visualize: Please refer to the interferometer in Figure 22.20. 
Solve: From Equation 22.33, the wavelength is 

6
722 2(100 10  m) 4.0 10  m 400 nm

500
L
m

λ
−

−Δ ×
= = = × =

Δ
 



22.27. Model: An interferometer produces a new maximum each time L2 increases by 1
2 λ  causing the path-

length difference Δr to increase by λ. 
Visualize: Please refer to the interferometer in Figure 22.20. 
Solve: From Equation 22.33, the number of fringe shifts is 

2
2

9

2 2(1.00 10  m) 30,467
656.45 10  m

Lm
λ

−

−

Δ ×
Δ = = =

×
 

 



22.28. Model: An interferometer produces a new maximum each time L2 increases by 1
2 λ  causing the path-

length difference Δr to increase by λ. 
Visualize: Please refer to the interferometer in Figure 22.20. 
Solve: From Equation 22.33, the distance the mirror moves is 

9

2
(33,198)(602.446 10  m) 0.0100000 m 1.00000 cm

2 2
mL λ −Δ ×

Δ = = = =  

Assess: Because the wavelength is known to 6 significant figures and the fringes are counted exactly, 
we can determine ΔL to 6 significant figures. 
 



22.29. Model: An interferometer produces a new maximum each time L2 increases by 1
2 λ  causing the path-

length difference Δr to increase by λ. 
Visualize: Please refer to the interferometer in Figure 22.20. 
Solve: For sodium light of the longer wavelength (λ1) and of the shorter wavelength (λ2), 

( )1 21
2 2

L m L mλ λ
Δ = Δ = +  

We want the same path difference 2(L2 − L1) to correspond to one extra wavelength for the sodium light of 
shorter wavelength (λ2) . Thus, we combine the two equations to obtain: 

( ) ( )1 2
1 2 21

2 2
m m mλ λ λ λ λ= + ⇒ − = 2

1 2

589.0 nm 981.67 982
589.6 nm 589.0 nm

m λ
λ λ

⇒ = = = ≅
− −

 

Thus, the distance by which M2 is to be moved is 

1 589.6 nm982 0.2895 mm
2 2

L m λ ⎛ ⎞Δ = = =⎜ ⎟
⎝ ⎠

 

 



22.30.  Model: Two closely spaced slits produce a double-slit interference pattern with the intensity graph 
looking like Figure 22.3(b). The intensity pattern due to a single slit diffraction looks like Figure 22.14. Both the 
spectra consist of a central maximum flanked by a series of secondary maxima and dark fringes. 
Solve: (a) The light intensity shown in Figure P22.30 corresponds to a double-slit aperture. This is because the 
fringes are equally spaced and the decrease in intensity with increasing fringe order occurs slowly. 
(b) From Figure P22.30, the fringe spacing is 21.0 cm 1.0 10  m.y −Δ = = ×  Therefore, 

9(6.00 10  m)(2.5 m) 0.15 mm
0.010 m

Ly
d
Ld
y

λ

λ −

Δ =

×
⇒ = = =

Δ

 



22.31. Model: Two closely spaced slits produce a double-slit interference pattern with the intensity graph 
looking like Figure 22.3(b). The intensity pattern due to a single slit diffraction looks like Figure 22.14. Both the 
spectra consist of a central maximum flanked by a series of secondary maxima and dark fringes. 
Solve: (a) The light intensity shown in Figure P22.31 corresponds to a single slit aperture. This is because the 
central maximum is twice the width and much brighter than the secondary maximum. 
(b) From Figure P22.31, the separation between the central maximum and the first minimum is 

2
1 1.0 cm 1.0 10  m.y −= = ×  Therefore, using the small-angle approximation, Equation 22.21 gives the condition for 

the dark minimum: 
( )( )9

2
1

2.5 m 600 10  m
0.15 mm

1.0 10  mp
pL Ly a
d y
λ λ −

−

×
= ⇒ = = =

×
 



22.32. Model: Two closely spaced slits produce a double-slit interference pattern. 
Visualize: The interference fringes are equally spaced on both sides of the central maximum. The interference 
pattern looks like Figure 22.3(b). 
Solve: In the small-angle approximation 

1 ( 1)m m m m
d d d
λ λ λθ θ θ+Δ = − = + − =  

Since 200 ,d λ=  we have 

1 rad 0.286
200d

λθΔ = = = °  

 



22.33. Model: Two closely spaced slits produce a double-slit interference pattern. 
Solve: The light intensity of a double-slit interference pattern at a position y on the screen is 

2 2
double 1 14 cos 4 cosd yI I y I

L y
π π
λ

⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟ Δ⎝ ⎠ ⎝ ⎠
 

where / 4.0 mmy L dλΔ = =  is the fringe spacing. 

Using this value for L dλ , we can find the position on the interference pattern where Idouble = I1 as follows: 

2
1 134 cos

4.0 10  m
I y Iπ

−
⎛ ⎞ =⎜ ⎟×⎝ ⎠

⇒ 1
3

1cos
4.0 10  m 2 3

yπ π−
−

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
rad ⇒

34.0 10  m 1.3 mm
3

y
−×

= =  

 



22.34. Solve: According to Equation 22.7, the fringe spacing between the m fringe and the m + 1 fringe is 
y L dλΔ = . Δy can be obtained from Figure P22.34. The separation between the m = 2 fringes is 2.0 cm 

implying that the separation between the two consecutive fringes is 1
4 (2.0 cm) = 0.50 cm. Thus, 

20.50 10  m Ly
d
λ−Δ = × = ⇒

( )( )3 2

9

0.20 10  m 0.50 10  m
167 cm

600 10  m
d yL
λ

− −

−

× ×Δ
= = =

×
 

Assess: A distance of 167 cm from the slits to the screen is reasonable. 
 



22.35. Solve: According to Equation 22.7, the fringe spacing between the m fringe and the m + 1 fringe is 
y L dλΔ = . Δy can be obtained from Figure P22.34. Because the separation between the m = 2 fringes is 2.0 cm, 

two consecutive fringes are ( )1
4 2.0 cm 0.50 cmyΔ = =  apart. Thus, 

20.50 10  m Ly
d
λ−Δ = × =  ⇒  

( )( )3 20.20 10  m 0.50 10  m
500 nm

2.0 m
d y
L

λ
− −× ×Δ

= = =  

 



22.36. Solve: The intensity of light of a double-slit interference pattern at a position y on the screen is 

2
double 14 cos dI I y

L
π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

where I1 is the intensity of the light from each slit alone. At the center of the screen, that is, at y = 0 m, 
1

1 double4I I= . From Figure P22.34, Idouble at the central maximum is 12 mW/m2. So, the intensity due to a single 

slit is 2
1 3 mW/m .I =  

 



22.37. Model: A diffraction grating produces an interference pattern. 
Visualize: The interference pattern looks like the diagram in Figure 22.8. 
Solve: 500 lines per mm on the diffraction grating gives a spacing between the two lines of 1 mm 500d = =  

3 6(1 10  m) 500 2.0 10  m− −× = × . The wavelength diffracted at angle 30mθ = °  in order m is 

( )62.0 10  m sin30sin 1000 nmmd
m m m

θλ
−× °

= = =  

We’re told it is visible light that is diffracted at 30 ,°  and the wavelength range for visible light is 400–700 nm. 
Only m = 2 gives a visible light wavelength, so λ = 500 nm. 
 



22.38. Model: Assume the screen is centered behind the slit. 
Visualize: Refer to Figure 22.7. Think carefully about the situation. The longest wavelength that will show three 
fringes on each side occurs when 3 0 50 m;y = .  but the shortest wavelength that will show three fringes on each side 
occurs when we almost let the fourth fringe on the screen, i.e., when 4 0 50 m.y = .  Use Equation 22.15: 

sin md mθ λ= , and Equation 22.16: tanm my L θ= . We are given 1 0 m,L = .  and 1
200 mm.d =  

Solve: Solve Equation 22.16 for mθ  and insert it in Equation 22.15. 

1tan m
m

y
L

θ −=  

Solve Equation 22.15 for .λ  

1sin sin tan m
m

d d y
m m L

λ θ −⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 

maxλ  occurs when 3 0 50 m;y = .  and minλ  occurs when 4 0 50 m.y = .  

1
1 14 200

min 4
mm 0 50 msin sin tan sin tan 560 nm
4 1 0 m

d d y
m m L

λ θ − − .⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

1
1 13 200

max 3
mm 0 50 msin sin tan sin tan 750 nm
3 1 0 m

d d y
m m L

λ θ − − .⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

Assess: These are reasonable wavelengths, either in or close to the visible range. 
 



22.39. Model: Each wavelength of light is diffracted at a different angle by a diffraction grating. 
Solve: Light with a wavelength of 501.5 nm creates a first-order fringe at y = 21.90 cm. This light is diffracted 
at angle 

1
1

21.90 cmtan 23.65
50.00 cm

θ − ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

We can then use the diffraction equation dsinθm = mλ, with m = 1, to find the slit spacing: 

1

501.5 nm 1250 nm
sin sin(23.65 )

d λ
θ

= = =
°

 

The unknown wavelength creates a first order fringe at y = 31.60 cm, or at angle 

1
1

31.60 cmtan 32.29
50.00 cm

θ − ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

With the split spacing now known, we find that the wavelength is 

1sin (1250 nm)sin(32.29 ) 667.8 nmdλ θ= = ° =  

Assess: The distances to the fringes and the first wavelength were given to 4 significant figures. Consequently, 
we can determine the unknown wavelength to 4 significant figures. 
 



22.40. Model: A diffraction grating produces an interference pattern like the diagram of Figure 22.8. 
Visualize:  

 
Solve: (a) A key statement is that the lines are seen on the screen. This means that the light is visible light, in 
the range 400 nm–700 nm. We can determine where the entire visible spectrum falls on the screen for different 
values of m. We do this by finding the angles θm at which 400 nm light and 700 nm light are diffracted. We then 
use tanm my L θ=  to find their positions on the screen which is at a distance L = 75 cm. The slit spacing is 

71 mm 1200 8.333 10  m.d −= = ×  For m = 1, 

( )1
1 1400 nm: sin 400 nm/ 28.7 75 cm tan 28.7 41 cmd yλ θ −= = = °⇒ = ° =  

( )1
1 1700 nm: sin 700 nm/ 57.1 75 cm tan57.1 116 cmd yλ θ −= = = °⇒ = ° =  

For m = 2, 

( )1
1 2400 nm: sin 2 400 nm/ 73.8 75 cm tan 73.8 257 cmd yλ θ −= = ⋅ = °⇒ = ° =  

For the 700 nm wavelength at m = 2, ( ) ( )1 1
2 sin 2 700 nm/ sin 1.68dθ − −= ⋅ =  is not defined, so 2y →∞ . We see 

that visible light diffracted at m = 1 will fall in the range 41 cm ≤ y ≤ 116 and that visible light diffracted at m = 2 
will fall in the range y ≥  257 cm. These ranges do not overlap, so we can conclude with certainty that the 
observed diffraction lines are all m = 1. 
(b) To determine the wavelengths, we first find the diffraction angle from the observed position by using 

1 1tan tan
75 cm

y y
L

θ − −⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

This angle is then used in the diffraction grating equation for the wavelength with m = 1, 1sindλ θ= . 

Line θ λ 
56.2 cm 36.85°  500 nm 
65.9 cm 41.30°  550 nm 
93.5 cm 51.27°  650 nm 

 



22.41.  Model: A diffraction grating produces an interference pattern. 
Visualize: The interference pattern looks like the diagram of Figure 22.8. 
Solve: (a) A grating diffracts light at angles sin m m dθ λ= . The distance between adjacent slits is 

1 mm 600d = =  61.667 10  m 1667 nm.−× =  The angle of the m = 1 fringe is 

1
1

500 nmsin 17.46
1667 nm

θ − ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

The distance from the central maximum to the m = 1 bright fringe on a screen at distance L is 
Error! Objects cannot be created from editing field codes. 

(Note that the small angle approximation is not valid for the maxima of diffraction gratings, which almost always 
have angles > 10 .° ) There are two m = 1 bright fringes, one on either side of the central maximum. The distance 
between them is 12 1.258 m 1.3 m.y yΔ = = ≈  
(b) The maximum number of fringes is determined by the maximum value of m for which sinθm does not exceed 1 
because there are no physical angles for which sinθ > 1. In this case, 

( )500 nm
sin

1667 nmm

mm
d
λθ = =  

We can see by inspection that m = 1, m = 2, and m = 3 are acceptable, but m = 4 would require a physically 
impossible 4sin 1.θ >  Thus, there are three bright fringes on either side of the central maximum plus the central 
maximum itself for a total of seven bright fringes. 
 



22.42. Model: A diffraction grating produces a series of constructive-interference fringes at values of mθ  
that are determined by Equation 22.15. 
Solve: For the m = 3 maximum of the red light and the m = 5 maximum of the unknown wavelength, Equation 
22.15 gives 

( )9
3sin 3 660 10  md θ −= ×  5 unknownsin 5d θ λ=  

The m = 5 fringe and the m = 3 fringe have the same angular positions. This means θ5 = θ3. Dividing the two 
equations, 

( )9
unknown unknown5 3 660 10  m 396 nmλ λ−= × ⇒ =  

 



22.43. Model: A diffraction grating produces an interference pattern that is determined by both the slit 
spacing and the wavelength used. The visible spectrum spans the wavelengths 400 nm to 700 nm. 
Solve: According to Equation 22.16, the distance ym from the center to the mth maximum is tanm my L θ= . The 
angle of diffraction is determined by the constructive-interference condition sin md mθ λ= , where m = 0, 1, 2, 3, 
… The width of the rainbow for a given fringe order is thus w = yred − yviolet. The slit spacing is 

3
61 mm 1.0 10  m 1.6667 10  m

600 600
d

−
−×

= = = ×  

For the red wavelength and for the m = 1 order, 

( )
9

1 1
1 1 6

700 10  msin 1 sin sin 24.83
1.6667 10  m

d
d
λθ λ θ

−
− −

−

×
= ⇒ = = = °

×
 

From the equation for the distance of the fringe, 

( ) ( )red 1tan 2.0 m tan 24.83 92.56 cmy L θ= = ° =  

Likewise for the violet wavelength, 

( ) ( )
9

1
1 violet6

400 10  msin 13.88 2.0 m tan 13.88 49.42 cm
1.6667 10  m

yθ
−

−
−

⎛ ⎞×
= = °⇒ = ° =⎜ ⎟×⎝ ⎠

 

The width of the rainbow is thus 92.56 cm − 49.42 cm = 43.14 cm 43 cm≈ . 
 



22.44. Model: A diffraction grating produces an interference pattern that is determined by both the slit 
spacing and the wavelength used. 
Solve: (a) If blue light (the shortest wavelengths) is diffracted at angle θ, then red light (the longest 
wavelengths) is diffracted at angle θ + 30°. In the first order, the equations for the blue and red wavelengths are 

bsin
d
λθ =   ( ) rsin 30d θ λ+ ° =  

Combining the two equations we get for the red wavelength, 

( ) ( ) ( )
2

b b
r 2sin cos30 cos sin30 0.8660sin 0.50cos 0.8660 0.50 1d d d d

d d
λ λλ θ θ θ θ

⎛ ⎞⎛ ⎞= ° + ° = + = + −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

⇒ ( )
2
b

r b20.50 1 0.8660d
d
λ λ λ− = − ⇒ ( ) ( ) ( )2 22 2

b r b0.50 0.8660d λ λ λ− = −  

⇒
2

2r b
b

0.8660
0.50

d λ λ λ−⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

Using 9
b 400 10  mλ −= ×  and 9

r 700 10  mλ −= × , we get 78.125 10  m.d −= ×  This value of d corresponds to 

3

7

1 mm 1.0 10  m 1230 lines/mm
8.125 10  md

−

−

×
= =

×
 

(b) Using the value of d from part (a) and 9589 10  mλ −= × , we can calculate the angle of diffraction as follows: 

( )1sin 1d θ λ= ⇒ ( )7 9
18.125 10  m sin 589 10  mθ− −× = × ⇒ 1 46.5θ = °  

 



22.45. Model: A diffraction grating produces an interference pattern that is determined by both the slit 
spacing and the wavelength used. 
Solve: An 800 line/mm diffraction grating has a slit spacing 3 6(1.0 10  m) 800 1.25 10  m.d − −= × = ×  Referring 
to Figure P22.45, the angle of diffraction is given by 

1
1 1 1

0.436 mtan 0.436 23.557 sin 0.400
1.0 m

y
L

θ θ θ= = = ⇒ = °⇒ =  

Using the constructive-interference condition sin md mθ λ= , 

( )( )61sin 1.25 10  m 0.400 500 nm
1

d θλ −= = × =  

We can obtain the same value of λ by using the second-order interference fringe. We first obtain θ2: 

2
2

0.436 m  0.897 mtan 1.333
1.0 m

y
L

θ +
= = =  ⇒  2 53.12θ = °  ⇒  2sin 0.800θ =  

Using the constructive-interference condition, 

( )( )6
2

1.25 10  m 0.800sin 500 nm
2 2

d θλ
−×

= = =  

Assess: Calculations with the first-order and second-order fringes of the interference pattern give the same 
value for the wavelength. 
 



22.46. Model: A diffraction grating produces an interference pattern that is determined by both the slit 
spacing and the wavelength used. 
Solve: From Figure P22.45, 

1 1 1
0.436 mtan 0.436 23.557 sin 0.400
1.0 m

θ θ θ= = ⇒ = °⇒ =  

Using the constructive-interference condition sin md mθ λ= , 

( )( ) ( )
9

9 6600 10  msin 23.557 1 600 10  m 1.50 10  m
sin 23.557

d d
−

− −×
° = × ⇒ = = ×

°
 

Thus, the number of lines per millimeter is 
3

6

1.0 10  m 670 lines/mm
1.50 10  m

−

−

×
=

×
 

Assess: The same answer is obtained if we perform calculations using information about the second-order 
bright constructive-interference fringe. 
 



22.47. Model: A narrow slit produces a single-slit diffraction pattern. 
Visualize: The diffraction-intensity pattern from a single slit will look like Figure 22.14. 
Solve: The dark fringes are located at 

p
p Ly
a
λ

=  p = 0, 1, 2, 3, … 

The locations of the first and third dark fringes are 

1
Ly
a
λ

=    3
3 Ly
a
λ

=  

Subtracting the two equations, 

( )3 1
2 Ly y
a
λ

− = ⇒
( )( )9

3
3 1

2 589 10  m 0.75 m2
7.5 10  m

La
y y
λ −

−

×
= =

− ×
 = 0.12 mm 

 



22.48. Visualize: The relationship between the diffraction grating spacing d, the angle at which a particular 
order of constructive interference occurs ,mθ  the wavelength of the light, and the order of the constructive 
interference m  is sin md mθ λ= . Also note 1 .N d= /  
Solve: The first order diffraction angle for green light is 

1 1 7 6 1
1 sin ( ) sin (5 5 10  m 2 0 10  m) sin (0 275) 0 278 rad 16dθ λ− − − − −= / = . × / . × = . = . = °  

Assess: This is a reasonable angle for a first order maximum. 
 



22.49. Visualize: We are given 1 50 mL = .  and 2.m =  We also know that for 610 nm,λ =  2 1 611 m,y = .  
and we seek λ  for 2 1 606 m.y = .  We will need to solve for d and use it to find the new .λ  Use Equation 22.15: 

sin ,md mθ λ=  and Equation 22.16: tanm my L θ= . 
Solve: 

1 1

(2)(610 nm) 1 667 mm
1 611 msin sin tan sin tan
1 50 m

mm

m md
y
L

λ λ
θ − −

= = = = .
.⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠

 

Now that we know d  we can use it to find the new wavelength. 

1 11 667 mm 1 606 msin sin tan sin tan 609 nm
2 1 50 m

m
m

d d y
m m L

λ θ − −. .⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

Assess: The two bright peaks are caused by specific wavelengths of light that differ by only 1 nm. 
 



22.50. Model: A narrow slit produces a single-slit diffraction pattern. 
Visualize: The diffraction-intensity pattern from a single slit will look like Figure 22.14. 
Solve: These are not small angles, so we can’t use equations based on the small-angle approximation. As given 
by Equation 22.19, the dark fringes in the pattern are located at sin pa pθ λ= , where p = 1, 2, 3, … For the first 
minimum of the pattern, p = 1. Thus, 

1

1
sin sinp

a p
λ θ θ
= =  

For the three given angles the slit width to wavelength ratios are 

(a): 
30

1 2,
sin30

a
λ °

⎛ ⎞ = =⎜ ⎟ °⎝ ⎠
  (b): 

60

1 1.15,
sin60

a
λ °

⎛ ⎞ = =⎜ ⎟ °⎝ ⎠
  (c): 

90

1 1
sin90

a
λ °

⎛ ⎞ = =⎜ ⎟ °⎝ ⎠
 

Assess: It is clear that the smaller the a/λ ratio, the wider the diffraction pattern. This is a conclusion that is 
contrary to what one might expect. 
 



22.51. Model: A narrow slit produces a single-slit diffraction pattern. 
Visualize: The diffraction-intensity pattern from a single slit will look like Figure 22.14. 
Solve: 45 °  is not a small angle, so we can’t use equations based on the small-angle approximation. As given 
by Equation 22.19, the dark fringes in the pattern are located at sin pa pθ λ= , where p = 1, 2, 3, … For the first 
minimum to be at 45 ,°  p = 1 and the width of the slit is 

9633 10  m 895 nm
sin sin 45p

pa λ
θ

−×
= = =

°
 

 



22.52. Model: A narrow slit produces a single-slit diffraction pattern. 
Visualize: The diffraction-intensity pattern from a single slit will look like Figure 22.14. 
Solve: As given by Equation 22.19, the dark fringes in the pattern are located at sin pa pθ λ= , where p = 1, 2, 3, 
… For the diffraction pattern to have no minima, the first minimum must be located at least at θ1 = 90 .°  From 
the constructive-interference condition sin pa pθ λ= , we have 

633 nm
sin sin90p

pa aλ λ λ
θ

= ⇒ = = =
°

 

 



22.53. Model: A narrow slit produces a single-slit diffraction pattern. 
Visualize: The dark fringes in this diffraction pattern are given by Equation 22.21: 

1  2  3  p
p Ly p …
a
λ

= = , , ,  

We note that the first minimum in the figure is 0.50 cm away from the central maximum. We are given a = 0.02 
nm and 1 5 m.L = .  
Solve: Solve the above equation for .λ  

2 3(0 50 10  m)(0 20 10  m) 670 nm
(1)(1 5 m)

py a
pL

λ
− −. × . ×

= = =
.

 

Assess: 670 nm is in the visible range. 
 



22.54. Model: A narrow slit produces a single-slit diffraction pattern. 
Solve: The dark fringes in this diffraction pattern are given by Equation 22.21: 

p
p Ly
a
λ

=  p = 1, 2, 3, … 

We note from Figure P22.53 that the first minimum is 0.50 cm away from the central maximum. Thus, 

( )( )
( )( )

3 2

9

0.15 10  m 0.50 10  m

1 600 10  m
payL

pλ

− −

−

× ×
= =

×
 = 1.3 m 

Assess: This is a typical slit to screen separation. 
 



22.55. Model: Light passing through a circular aperture leads to a diffraction pattern that has a circular 
central maximum surrounded by a series of secondary bright fringes. 
Solve: Within the small angle approximation, which is almost always valid for the diffraction of light, the 
width of the central maximum is 

12 2.44 Lw y
D
λ

= =  

From Figure P22.53, w = 1.0 cm, so 
9

2

2.44 2.44(500 10  m)(1.0 m)
(1.0 10  m)

LD
w
λ −

−

×
= =

×
 = 0.12 mm 

Assess: This is a typical size for an aperture to show diffraction. 
 



22.56. Model: Light passing through a circular aperture leads to a diffraction pattern that has a circular 
central maximum surrounded by a series of secondary bright fringes. 
Solve: Within the small-angle approximation, the width of the central maximum is 

2.44 Lw
D
λ

=  

Because w = D, we have 

2.44 2.44LD D L
D
λ λ= ⇒ = ⇒ 9(2.44)(633 10  m)(0.50 m) 0.88 mmD −= × =  

 



22.57. Model: Light passing through a circular aperture leads to a diffraction pattern that has a circular 
central maximum surrounded by a series of secondary bright fringes. 
Solve: (a) Because the visible spectrum spans wavelengths from 400 nm to 700 nm, we take the average 
wavelength of sunlight to be 550 nm. 
(b) Within the small-angle approximation, the width of the central maximum is 

2.44 Lw
D
λ

= ⇒
9

2 (550 10  m)(3 m)(1 10  m) (2.44)
D

−
− ×

× = ⇒ 44.03 10  m 0.40 mmD −= × =  

 



22.58. Model: The antenna is a circular aperture through which the microwaves diffract. 
Solve: (a) Within the small-angle approximation, the width of the central maximum of the diffraction pattern is 
w = 2.44λL/D. The wavelength of the radiation is 

8 3

9

3 10  m/s 2.44(0.025 m)(30 10  m)0.025 m 920 m
12 10  Hz 2.0 m

c w
f

λ × ×
= = = ⇒ = =

×
 

That is, the diameter of the beam has increased from 2.0 m to 915 m, a factor of 458. 
(b) The average microwave intensity is 

( )

3
2

21
2

100 10  W 0.15 W/m
area 915 m

PI
π

×
= = =

⎡ ⎤⎣ ⎦
 

 



22.59. Model: The laser beam is diffracted through a circular aperture. 
Visualize:  

 
Solve: (a) No. The laser light emerges through a circular aperture at the end of the laser. This aperture causes 
diffraction, hence the laser beam must gradually spread out. The diffraction angle is small enough that the laser 
beam appears to be parallel over short distances. But if you observe the laser beam at a large distance it is easy to 
see that the diameter of the beam is slowly increasing. 
(b) The position of the first minimum in the diffraction pattern is more or less the “edge” of the laser beam. For 
diffraction through a circular aperture, the first minimum is at an angle 

( )9
4

1

1.22 633 10  m1.22 5.15 10  rad 0.029
0.0015 mD

λθ
−

−
×

= = = × = °  

(c) The diameter of the laser beam is the width of the diffraction pattern: 

( )( )92.44 633 10  m 3 m2.44 0.00309 m 0.31 cm
0.0015 m

Lw
D
λ −×

= = = =  

(d) At L = 1 km = 1000 m, the diameter is 

( )( )92.44 633 10  m 1000 m2.44 1.03 m 1.0 m
0.0015 m

Lw
D
λ −×

= = = ≈  

 



22.60. Model: The laser light is diffracted by the circular opening of the laser from which the beam emerges. 
Solve: The diameter of the laser beam is the width of the central maximum. We have 

2.44 Lw
D
λ

= ⇒
( )( )9 82.44 532 10  m 3.84 10  m2.44 0.50 m

1000 m
LD

w
λ −× ×

= = =  

In other words, the laser beam must emerge from a laser of diameter 50 cm. 
 



22.61. Model: Two closely spaced slits produce a double-slit interference pattern. 
Visualize:  

 
Solve: (a) The m = 1 bright fringes are separated from the m = 0 central maximum by 

( )( )9600 10  m 1.0 m
0.0030 m 3.0 mm

0.0002 m
Ly

d
λ −×

Δ = = = =  

(b) The light’s frequency is f = c/λ = 5.00 × 1014 Hz. Thus, the period is T = 1/f = 2.00 × 10−15 s. A delay of 5.0 × 
10−16 s = 0.50 × 10−15 s is 1

4 .T  
(c) The wave passing through the glass is delayed by 1

4  of a cycle. Consequently, the two waves are not in phase as 
they emerge from the slits. The slits are the sources of the waves, so there is now a phase difference 0φΔ  between 
the two sources. A delay of a full cycle (Δt = T)  would have no effect at all on the interference because it 
corresponds to a phase difference 0 2  rad.φ πΔ =  Thus a delay of 1

4  of a cycle introduces a phase difference 0φΔ =  

( )1 1
4 22  rad.π π=  

(d) The text’s analysis of the double-slit interference experiment assumed that the waves emerging from the two 
slits were in phase, with 0 0φΔ =  rad. Thus, there is a central maximum at a point on the screen exactly halfway 
between the two slits, where 0φΔ =  rad and Δr = 0 m. Now that there is a phase difference between the sources, 
the central maximum—still defined as the point of constructive interference where 0φΔ =  rad—will shift to one 
side. The wave leaving the slit with the glass was delayed by 1

4  of a period. If it travels a shorter distance to the 
screen, taking 1

4  of a period less than the wave coming from the other slit, it will make up for the previous delay 
and the two waves will arrive in phase for constructive interference. Thus, the central maximum will shift toward 
the slit with the glass. How far? A phase difference 0 2φ πΔ =  would shift the fringe pattern by Δy = 3.0 mm, 
making the central maximum fall exactly where the m = 1 bright fringe had been previously. This is the point 
where Δr = (1)λ, exactly compensating for a phase shift of 2π at the slits. Thus, a phase shift of 

( )1 1
0 2 4 2φ π πΔ = =  will shift the fringe pattern by ( )1

4 3 mm 0.75 mm= . The net effect of placing the glass in the 
slit is that the central maximum (and the entire fringe pattern) will shift 0.75 mm toward the slit with the glass. 
 



22.62. Model: A diffraction grating produces an interference pattern, which looks like the diagram of Figure 22.8. 
Solve: (a) Nothing has changed while the aquarium is empty. The order of a bright (constructive interference) 
fringe is related to the diffraction angle θm by sin md θ =  mλ , where m = 0, 1, 2, 3, … The space between the slits 
is 

61.0 mm 1.6667 10  m
600

d −= = ×  

For m = 1, 

1sin
d
λθ =  ⇒

9
1

1 6

633 10  msin 22.3
1.6667 10  m

θ
−

−
−

⎛ ⎞×
= = °⎜ ⎟×⎝ ⎠

 

(b) The path-difference between the waves that leads to constructive interference is an integral multiple of the 
wavelength in the medium in which the waves are traveling, that is, water. Thus, 

7

water

633 nm 633 nm 4.759 10  m
1.33n

λ −= = = ×
7

1 16

4.759 10  msin 0.2855 16.6
1.6667 10  md

λθ θ
−

−

×
⇒ = = = ⇒ = °

×
 

 



22.63. Model: An interferometer produces a new maximum each time 2L  increases by 1
2 λ  causing the path-

length difference Δr to increase by λ. 
Visualize: Please refer to the interferometer in Figure 22.20. 
Solve: The path-length difference between the two waves is Δr = 2L2 − 2L1. The condition for constructive 
interference is Δr = mλ, hence constructive interference occurs when 

( ) ( )1 1
2 1 2 1 22 22 1200 600L L m L L mλ λ λ λ− = ⇒ − = = =  

where λ = 632.8 nm is the wavelength of the helium-neon laser. When the mirror M2 is moved back and a 
hydrogen discharge lamp is used, 1200 fringes shift again. Thus, 

( )1
2 1 21200 600L L λ λ′ ′ ′− = =  

where 656.5 nm.λ′ =  Subtracting the two equations, 

( ) ( ) ( ) ( )9 9
2 1 2 1 600 600 632.8 10  m 656.5 10  mL L L L λ λ − −′ ′− − − = − = × − ×  

⇒ 6
2 2 14.2 10  mL L −′ = + ×  

That is, M2 is now 14.2 μm closer to the beam splitter. 
 



22.64.  Model: The gas increases the number of wavelengths in one arm of the interferometer. Each 
additional wavelength causes one bright-dark-bright fringe shift. 
Solve: From Equation 22.36, the number of fringe shifts is 

( )2 1
vac

21 dm m m n
λ

Δ = − = − ( )
( )( )2

9

2 2.00 10  m
1.00028 1 19

600 10  m

−

−

×
= − =

×
 

 



22.65. Model: The water increases the number of wavelengths in one arm of the interferometer. 
Solve: (a) The incident light has λvac = 500 nm and 14

vac/ 6.00 10  Hz.f c λ= = ×  Water doesn’t affect the 
frequency, which is still 14

w 6.00 10  Hzf f= = × . The wavelength changes to w vac w/ 376 nm.nλ λ= =  
(b) Light travels in a layer of thickness L twice—once to the right and then, after reflecting, once to the left—for 
a total distance 2L. The number of wavelengths in distance 2L is N = 2L/λ. If the 1 mm layer is a vacuum, the 
number of wavelengths is 

( )
vac 9

vac

2 0.001 m2 4000
500 10  m

LN
λ −= = =

×
 

If the vacuum is replaced by 1 mm of water, the number of wavelengths is 

( )
w 9

w

2 0.001 m2 5319
376 10  m

LN
λ −= = =

×
 

So with the water added, the light travels ≈ 1320 extra wavelengths. 
(c) Each additional wavelength of travel shifts the pattern by 1 fringe. So the addition of the water shifts the 
interference pattern by ≈ 1320 fringes. 
 



22.66. Model: The piece of glass increases the number of wavelengths in one arm of the interferometer. 
Each additional wavelength causes one bright-dark-bright fringe shift. 
Solve: We can rearrange Equation 22.36 to find that the index of refraction of glass is 

vac1
2
mn
d

λ Δ
= +

( )( )
( )

9

3

500 10  nm 200
1

2 0.10 10  m

−

−

×
= +

×
= 1.50 

 



22.67. Model: The arms of the interferometer are of equal length, so without the crystal the output would be 
bright. 

Visualize: We need to consider how many more wavelengths fit in the electro-optic crystal than would have 
occupied that space (6.70 mμ ) without the crystal; if it is an integer then the interferometer will produce a bright 
output; if it is a half-integer then the interferometer will produce a dark output. But the wavelength we need to 
consider is the wavelength inside the crystal, not the wavelength in air. 

n n
λλ =  

We are told the initial n with no applied voltage is 1.522, and the wavelength in air is 1.000 m.λ μ=  
Solve: The number of wavelengths that would have been in that space without the crystal is 

6.70 m 6.70
1.000 m

μ
μ

=  

(a) With the crystal in place (and n = 1.522) the number of wavelengths in the crystal is 
6.70 m 10.20

1.000 m/1.522
μ

μ
=  

10.20 – 6.70 = 3.50 
which shows there are a half-integer number more wavelengths with the crystal in place than if it weren't there. 
Consequently the output is dark with the crystal in place but no applied voltage. 
(b) Since the output was dark in the previous part, we want it to be bright in the new case with the voltage on. 
That means we want to have just one half more extra wavelengths in the crystal (than if it weren't there) than we 
did in the previous part. That is, we want 4.00 extra wavelengths in the crystal instead of 3.5, so we want 6.70 + 
4.00 = 10.70 wavelengths in the crystal. 

6.70 m 10.70(1.000 m)10.70 1.597
1.000 m/ 6.70 m

n
n

μ μ
μ μ

= ⇒ = =  

Assess: It seems reasonable to be able to change the index of refraction of a crystal from 1.522 to 1.597 by 
applying a voltage. 
 



22.68. Model: A diffraction grating produces an interference pattern like the one shown in Figure 22.8. We 
also assume that the small-angle approximation is valid for this grating. 
Solve: (a) The general condition for constructive-interference fringes is 

sin md mθ λ=     m = 0, 1, 2, 3, … 

When this happens, we say that the light is diffracted at an angle θm. Since it is usually easier to measure distances 
rather than angles, we will consider the distance ym from the center to the mth maximum. This distance 
is tanm my L θ= . In the small-angle approximation, sin tanm mθ θ≈ , so we can write the condition for constructive 
interference as 

m
m

y m Ld m y
L d

λλ= ⇒ =  

The fringe separation is 

1 m m
Ly y y

d
λ

+ − = Δ =  

(b) Now the laser light falls on a film that has a series of “slits” (i.e., bright and dark stripes), with spacing 

Ld
d
λ′ =  

Applying once again the condition for constructive interference: 

sin md mθ λ′ = ⇒ myd m
L

λ
′

′ = ⇒ m
m L m Ly md

d L d
λ λ

λ
′ = = =

′
 

The fringe separation is 1 .m my y y d+′ ′ ′− = Δ =  
That is, using the film as a diffraction grating produces a diffraction pattern whose fringe spacing is d, the 

spacing of the original slits. 
 



22.69. Model: Two closely spaced slits produce a double-slit interference pattern. The interference pattern is 
symmetrical on both sides of the central maximum. 
Visualize:  

 
In figure (a), the interference of laser light from the two slits forms a constructive-interference central (m = 0) fringe 
at P. The paths 1P and 2P are equal. When a glass piece of thickness t is inserted in the path 1P, the interference 
between the two waves yields the 10th dark fringe at P. Note that the glass piece is not present in figure (a). 
Solve: The number of wavelengths in the air-segment of thickness t is 

1
tm
λ

=  

The number of wavelengths in the glass piece of thickness t is 

2
glass

t t ntm
nλ λ λ

= = =  

The path length has thus increased by Δm wavelengths, where 

( )2 1 1 tm m m n
λ

Δ = − = −  

From the 10th dark fringe to the 1st dark fringe is 9 fringes and from the 1st dark fringe to the 0th bright fringe is 
one-half of a fringe. Hence, 

( )1 19 199 1
2 2 2

tm n
λ

Δ = + = ⇒ = − ⇒
( )

( )9633 10  m19 19 12.0 
2 1 2 1.5 1.0

t
n
λ −×

= = =
− −

μm 

 



22.70. Visualize: To find the location y  where the intensity is 1I  use Equation 22.14: 

2
double 14 cos dI I y

L
π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. Then divide by the distance to the first minimum 0
1
2
Ly
d
λ

=  to get the fraction desired. 

Solve: First set double 1I I= . 

2
double 14 cos dI I y

L
π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

2
1 14 cos dI I y

L
π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

21 cos
4

d y
L

π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

1 cos
2

d y
L

π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

1 1cos
2

Ly
d

λ
π

− ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

Now set up the ratio that will give the desired fraction. 

1

1

0

1cos
2 1 2 22 cos1 2 3 3

2

L
y d

Ly
d

λ
ππ

λ π π

−

−

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠= = = =⎜ ⎟′ ⎝ ⎠

 

Assess: The fraction must be less than 1, and 2
3  seems reasonable. 

 



22.71. Model: A diffraction grating produces a series of constructive-interference fringes at values of θm that 
are determined by Equation 22.15. 
Solve: (a) The condition for bright fringes is sind mθ λ= . If λ changes by a very small amount Δλ, such that θ 
changes by Δθ, then we can approximate Δλ/Δθ as the derivative dλ/dθ: 

sind
m

λ θ= ⇒ 2cos 1 sind d d
d m m

λ λ θ θ
θ θ

Δ
≈ = = −

Δ

2 2
21d m d

m d m
λ λ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

⇒
2

2d
m

λθ

λ

Δ
Δ =

⎛ ⎞ −⎜ ⎟
⎝ ⎠

 

(b) We can now obtain the first-order and second-order angular separations for the wavelengths λ = 589.0 nm 
and λ + Δλ = 589.6 nm. The slit spacing is 

3
61.0 10  m 1.6667 10  m

600
d

−
−×

= = ×  

The first-order (m = 1) angular separation is 
9 9

612 2 12 2

4

0.6 10  m 0.6 10  m
1.5589 10  m2.7778 10  m 0.3476 10  m

3.85 10  rad 0.022

θ
− −

−− −

−

× ×
Δ = =

×× − ×
= × = °

 

The second order (m = 2) angular separation is 
9

3

12 2 12 2

0.6 10  m 1.02 10  rad 0.058
0.6945 10  m 0.3476 10  m

θ
−

−

− −

×
Δ = = × = °

× − ×
 



22.72. Model: The intensity in a double-slit interference pattern is determined by diffraction effects from the 
slits. 
Solve: (a) For the two wavelengths λ and λ + Δλ passing simultaneously through the grating, their first-order 
peaks are at 

1
Ly

d
λ

=   1
( )Ly

d
λ λ+ Δ′ =  

Subtracting the two equations gives an expression for the separation of the peaks: 

1 1
Ly y y

d
λΔ′Δ = − =  

(b) For a double-slit, the intensity pattern is 

2
double 14 cos dI I y

L
π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

The intensity oscillates between zero and 4I1, so the maximum intensity is 4I1. The width is measured at the point 
where the intensity is half of its maximum value. For the intensity to be 1

max 12 2I I=  for the m = 1 peak: 

2 2
1 1 half half half half

12 4 cos cos
2 4 4

d d d LI I y y y y
L L L d

π π π π λ
λ λ λ

⎛ ⎞ ⎛ ⎞= ⇒ = ⇒ = ⇒ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

The width of the fringe is twice yhalf. This means 

half2
2

Lw y
d

λ
= =  

But the location of the m = 1 peak is 1y L dλ= , so we get 1
12w y= . 

(c) We can extend the result obtained in (b) for two slits to 1 .w y N=  The condition for barely resolving two 
diffraction fringes or peaks is w = Δymin. From part (a) we have an expression for the separation of the first-order 
peaks and from part (b) we have an expression for the width. Thus, combining these two pieces of information, 

1 min 1
min min

y L y d L dy
N d LN d NL N

λ λ λλΔ ⎛ ⎞= Δ = ⇒ Δ = = =⎜ ⎟
⎝ ⎠

 

(d) Using the result of part (c), 
9

9
min

656.27 10  m 3646 lines
0.18 10  m

N λ
λ

−

−

×
= = =
Δ ×

 

 



22.73. Model: A diffraction grating produces an interference pattern like the one shown in Figure 22.8, when 
the incident light is normal to the grating. The equation for constructive interference will change when the light is 
incident at a nonzero angle. 

 

Solve: (a) The path difference between waves 1 and 2 on the incident side is 1 sin .r d φΔ =  The path 
difference between the waves 1 and 2 on the diffracted side, however, is 2 sin .r d θΔ =  The total path 
difference between waves 1 and 2 is thus ( )1 2 sin sinr r d θ φΔ + Δ = + . Because the path difference for 
constructive interference must be equal to mλ, 

( )sin sind mθ φ λ+ =   m = 0, ±1, ±2, … 

(b) For 30φ = °  the angles of diffraction are 

( )( )
( )

9

1 13

1 500 10  m
sin sin30 0.20 11.5

1.0 10  m 600
θ θ

−

−

×
= − ° = − ⇒ = − °

×
 

( )( )
( )

9

1 13

1 500 10  m
sin sin30 0.80 53.1

1.0 10  m 600
θ θ

−

− −−

− ×
= − ° = − ⇒ = − °

×
 

 



22.74. Solve: (a)  

 
We have two incoming and two diffracted light rays at angles φ  and θ  and two wave fronts perpendicular to 
the rays. We can see from the figure that the wave 1 travels an extra distance sinr d φΔ =  to reach the 
reflection spot. Wave 2 travels an extra distance sinr d θΔ =  from the reflection spot to the outgoing wave 
front. The path difference between the two waves is 

( )1 2 sin sinr r r d θ φΔ = Δ −Δ = −  

(b) The condition for diffraction, with all the waves in phase, is still Δr = mλ. Using the results from part (a), the 
diffraction condition is 

sin sinmd m dθ λ φ= +  m = … −2, −1, 0, 1, 2, … 

Negative values of m will give a different diffraction angle than the corresponding positive values. 
(c) The “zeroth order” diffraction from the reflection grating is m = 0. From the diffraction condition of part (b), this 
implies 0sin sind dθ φ=  and hence 0 .θ φ=  That is, the zeroth order diffraction obeys the law of reflection—the 
angle of reflection equals the angle of incidence. 
(d) A 700 lines per millimeter grating has spacing 61

700 mm 1.429 10  m  1429 nm.d −= = × =  The diffraction 
angles are given by 

( )1 1 500 nm
sin sin sin sin 40

1429 nmm

mm
d
λθ φ− − ⎛ ⎞⎛ ⎞= + = + °⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

M θm 

≤−5 
−4 
−3 
−2 
−1 

0 
1 
2≥  

not defined 
 49.2− °  
 24.0− °  
 3.3− °  
 17.0°  
 40.0°  
 83.1°  
not defined 

(e)  

 
 



 
 

22-1 

22.75. Model: Diffraction patterns from two objects can just barely be resolved if the central maximum of one image 
falls on the first dark fringe of the other image. 
Solve: (a) Using Equation 22.24 with the width equal to the aperture diameter, 

( )( )( )72.44 2.44 2.44 550 10  m 0.20 mLw D D L
D
λ λ −= = ⇒ = = × = 0.52 mm 

(b) We can now use Equation 22.23 to find the angle between two distant sources that can be resolved. The angle is 

( )9
3

3

1.22 550 10  m
1.22 1.29 10  rad

0.52 10  mD
λα

−
−

−

×
= = = ×

×
= 0.074° 

(c) The distance that can be resolved is 

( ) ( )( )3 1000 m 1000 m 1.29 10  rad 1.3 mα −= × =  

 


