
23.1. Model: Light rays travel in straight lines. 
Solve: (a) The time is 
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(b) The refractive indices for water, glass, and cubic zirconia are 1.33, 1.50, and 1.96, respectively. In a time of 
3.33 ns, light will travel the following distance in water: 
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Likewise, the distances traveled in the glass and cubic zirconia are glass 0.667 mxΔ =  and cubic zirconia 0.458 m.xΔ =  
Assess: The higher the refractive index of a medium, the slower the speed of light and hence smaller the 
distance it travels in that medium in a given time. 
 



23.2. Model: Light rays travel in straight lines. 
Solve: Let tglass, toil, and tplastic be the times light takes to pass through the layers of glass, oil, and plastic. The 
time for glass is 

( )( )2
glass

glass 8
glass glass
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Likewise, oil 0.243 nst =  and plastic 0.106 ns.t =  Thus, ttotal = tglass + toil + tplastic = 0.050 ns + 0.243 ns + 0.106 ns = 
0.399 ns = 0.40 ns. 
Assess: The small time is due to the high value for the speed of light. 
 



23.3. Model: Light rays travel in straight lines. The light source is a point source. 
Visualize:  

 
Solve: Let w be the width of the aperture. Then from the geometry of the figure, 

12.0 cm
2.0 m 2.0 m  1.0 m
w

=
+

 ⇒  w = 8.0 cm 

 



23.4. Model: Light rays travel in straight lines. Also, the red and green light bulbs are point sources. 
Visualize:  

 

Solve: The width of the aperture is w = 1 m. From the geometry of the figure for red light, 

2
1 m 3 m  1 m
w x′

=
+

⇒ ( )2 2 1.0 m 2.0 mx w′ = = =  

The red light illuminates the wall from x = 0.50 m to x = 4.50 m. For the green light, 

14
1 m 3 m  1 m
w x

=
+

⇒  1 1.0 mx =   23 4
1 m 3 m  1 m
w x

=
+

⇒ 2 3.0 mx =  

Because the back wall exists only for 2.75 m to the left of the green light source, the green light has a range from x = 
0 m to 3.75 m.x =  
 



23.5. Visualize: Note the similar triangles in this figure. 

 
Solve: 

15 cm
5 cm 180 cm

d
=  

15 cm (180 cm) 540 cm 5.4 m
5 cm

d = = =  

Assess: This is a typical distance for photographs of people. 
 



23.6. Model: Use the ray model of light. 
Visualize:  

 

According to the law of reflection, r i.θ θ=  
Solve: From the geometry of the diagram, 

i 90θ φ+ = °   ( )r 60 90θ φ+ °− = °  
Using the law of reflection, we get 

( )90 90 60φ φ°− = °− °−  ⇒ 30φ = °  

Assess: The above result leads to a general result for plane mirrors: If a plane mirror rotates by an angle φ  
relative to the horizontal, the reflected ray makes an angle of 2φ  with the horizontal. 

 



23.7. Model: Light rays travel in straight lines and follow the law of reflection. 
Visualize:  

 
Solve: We are asked to obtain the distance h = x1 + 5.0 cm. From the geometry of the diagram, 

1
itan

10 cm
xθ =     2

rtan
15 cm
xθ =     1 2 10 cmx x+ =  

Because r iθ θ= , we have 

1 2 110 cm
10 cm 15 cm 15 cm
x x x−

= = ⇒ ( ) 2
1 115 cm 100 cm 10x x= −  ⇒  x1 = 4.0 cm 

Thus, the ray strikes a distance 9.0 cm below the top edge of the mirror. 
 



23.8. Model: Think of the view in the figure as a horizontal view of a vertical wall and the laser beam and 
hexagonal mirror in a vertical plane for ease of labeling. The laser beam will strike the highest spot on the wall 
when a new corner rotates into the laser beam and the angle the laser makes with the normal is greatest. We will 
compute how high on the wall this highest spot is from the center spot behind the laser; then we will multiply by 
two because symmetry says the reflected beam will hit the lowest spot just as the face rotates out of the laser 
beam (and the beam makes the largest angle with the normal in the downward direction), and then a new corner 
enters the beam with the reflection at the top again. 
Visualize: From the small right triangle inside the hexagon we deduce 0.20 m /sin 60 .d = °  Therefore, the 
distance from the wall to the corner of the hexagon just as it enters the laser beam is 2.0 m .d−  This becomes 
the base of a large right triangle whose side on the wall is x and whose angle opposite x is 60 .°  

 
Solve: Solve the large right triangle for x. 

tan 60
2.0 m

x
d

° =
−

 

0.20 m(tan60 )(2.0 m ) (tan 60 ) 2.0 m 3.06 m
sin60

x d
⎛ ⎞

= ° − = ° − =⎜ ⎟°⎝ ⎠
 

Now, because of symmetry, double x to get the total length of the streak of laser light: 2 6.1 m.x =  
Assess: The 50 cm distance from the laser to the center of the hexagon is irrelevant. 
 



23.9. Model: Light rays travel in straight lines and follow the law of reflection. 
Visualize:  

 
To determine the angle ,φ  we must know the point P on the mirror where the ray is incident. P is a distance x2 
from the far wall and a horizontal distance x1 from the laser source. The ray from the source must strike P so that 
the angle of incidence θi is equal to the angle of reflection θr. 
Solve: From the geometry of the diagram, 
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23.10. Model: Use the ray model of light. 
Visualize:  

 
The arrow is at a distance s from the mirror, so its image is at a distance s′ behind the mirror. When you are at x = 0 
m, a ray from the arrow’s head, after reflection from the mirror, is able to enter your eye. Similarly, a ray from the 
arrow’s tail, after normal incidence, is reflected into the eye. That is, the eye is able to see the arrow’s head and tail. 
While walking toward the right, a ray from the arrow’s head will reflect from the mirror’s right edge and enter your 
eye at P. A ray starting from the arrow’s tail will also enter your eye when you are at P. That is, while at P you will be 
able to see the entire image of the arrow. However, the light from the arrow’s head can never reach beyond point P. 
Solve: Point P is a distance x from the origin. From the geometry of the diagram, 

1 m 1 m 2 m 2 m 1 2 mtan 3.5 m
2 m 1 m 3 m 2 3 m

x x x x
s s

φ − − −
= = = = ⇒ = ⇒ =

+
 

Thus, the range of x over which you can see the entire arrow in the mirror is 0 m to 3.5 m. 
 



23.11. Model: Use the ray model of light and the law of reflection. 
Visualize:  

 
We only need one ray of light that leaves your toes and reflects in your eye. 
Solve: From the geometry of the diagram, the distance from your eye to the toes’ image is 

2 22 (400 cm) (165 cm) 433 cmd = + =  

Assess: The light appears to come from your toes’ image. 
 



23.12. Model: Use the ray model of light and Snell’s law. 
Visualize:  

 
Solve: According to Snell’s law for the air-water and water-glass boundaries, 

air air water watersin sinn nθ θ=   water water glass glasssin sinn nθ θ=  

From these two equations, we have 

air air glass glasssin sinn nθ θ= ⇒ air
glass air

glass

1.0sin sin sin 60
1.50

n
n

θ θ ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

⇒ 1
glass

sin  60sin 35
1.5

θ − °⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

 



23.13. Visualize: Use Snell’s law 1 1 2 2sin sin .n nθ θ=  We are given 2 CZ 25 .θ θ= = °  We look up in Table 
23.1 1 oil 1.46n n= =  and 2 CZ 1.96.n n= =  
Solve: Solve the equation for 1.θ  

1 12
1 2

1

1.96sin sin sin sin 25 35
1.46

n
n

θ θ− −⎛ ⎞ ⎛ ⎞= = ° = °⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

Assess: Since the ray goes into a material with higher index of refraction we know it bends toward the normal, 
so we expect 1 2;θ θ>  this is the case. 

 



23.14. Model: Use the ray model of light. The sun is a point source of light. 
Visualize:  

 
A ray that arrives at the diver 50° above horizontal refracted into the water at θwater = 40°. 
Solve: Using Snell’s law at the water-air boundary 

air air water watersin sinn nθ θ= ⇒  water
air water

air

1.33sin sin sin 40
1.0

n
n

θ θ ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

⇒θair = 58.7° 

Thus the height above the horizon is θ = 90° − θair = 31.3° 31 .≈ °  Because the sun is far away from the fisherman 
(and the diver), the fisherman will see the sun at the same angle of 31°  above the horizon. 
 



23.15. Model: Represent the laser beam with a single ray and use the ray model of light. 
Solve: Using Snell’s law at the air-water boundary, 

air air liquid liquidsin sinn nθ θ= ⇒ air
liquid air

liquid

sin sin371.0 1.37
sin sin 26

n n θ
θ

°⎛ ⎞= = =⎜ ⎟°⎝ ⎠
 

Assess: As expected, nliquid is larger than nair. 
 



23.16. Model: Use the ray model of light. For an angle of incidence greater than the critical angle, the ray of 
light undergoes total internal reflection. 
Visualize:  

 
Solve: The critical angle of incidence is given by Equation 23.9: 

cladding1 1
c

core

1.48sin sin 67.7
1.60

n
n

θ − −⎛ ⎞ ⎛ ⎞= = = °⎜ ⎟ ⎜ ⎟
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Thus, the maximum angle a light ray can make with the wall of the core to remain inside the fiber is 90° − 67.7° 
= 23.3°. 
Assess: We can have total internal reflection because ncore > ncladding. 
 



23.17. Model: Use the ray model of light. For an angle of incidence greater than the critical angle, the ray of 
light undergoes total internal reflection. 
Visualize:  

 
Solve: The critical angle of incidence is given by Equation 23.9: 

1 1oil
c

glass

1.46sin sin 76.7
1.50

n
n

θ − −
⎛ ⎞ ⎛ ⎞= = = °⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

Assess: The critical angle exists because noil < nglass. 
 



23.18. Model: Represent the can as a point source and use the ray model of light. 
Visualize:  

 
Paraxial rays from the can refract into the water and enter into the fish’s eye. 
Solve: The object distance from the edge of the aquarium is s. From the water side, the can appears to be at an 
image distance s′ = 30 cm. Using Equation 23.13, 

2 water

1 air

1.33
1.0

n ns s s s
n n

⎛ ⎞′ = = = ⎜ ⎟
⎝ ⎠

⇒
30 cm 23 cm
1.33

s = =  

 



23.19. Model: Represent the beetle as a point source and use the ray model of light. 
Visualize:  

 
Paraxial rays from the beetle refract into the air and then enter into the observer’s eye. The rays in the air when 
extended into the plastic appear to be coming from the beetle at a shallower location, a distance s′ from the 
plastic-air boundary. 
Solve: The actual object distance is s and the image distance is s′ = 2.0 cm. Using Equation 23.13, 

2 air

1 plastic

n ns s s
n n

′ = = ⇒
1.02.0 cm

1.59
s= ⇒  s = 3.2 cm 

Assess: The beetle is much deeper in the plastic than it appears to be. 
 



23.20. Model: Represent the diver’s head and toes as point sources. Use the ray model of light. 
Visualize:  

 
Paraxial rays from the head and the toes of the diver refract into the air and then enter into your eyes. When these 
refracted rays are extended into the water, the head and the toes appear elevated toward you. 
Solve: Using Equation 23.13, 

2 air
T T T

1 water

n ns s s
n n

′ = =     air
H H

water

ns s
n

′ =  

Subtracting the two equations, her apparent height is 

( ) ( )air
H T H T

water

1.0 150 cm 113 cm
1.33

ns s s s
n

′ ′− = − = =  

 



23.21. Model: Represent the aquarium’s wall as a point source, and use the ray model of light. 
Visualize:  

 
Paraxial rays from the outer edge (O) are refracted into the water and then enter into the fish’s eye. When 
extended into the wall, these rays will appear to be coming from O′ rather from O. The point on the inside edge 
(I) of the wall will not change its apparent location. 
Solve: We are given that sO − sI = 4.00 mm and O I 3.50 mm.s s′ ′− =  Using Equation 23.13, 

water
O O

wall

ns s
n

′ =   water
I I

wall

ns s
n

′ =  

⇒ ( )water
O I O I

wall

ns s s s
n

′ ′− = − ⇒ ( )
wall

1.333.50 mm 4.00 mm
n

= ⇒ ( )wall
4.00 mm1.33 1.52
3.50 mm

n ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

 



23.22. Model: Use the ray model of light. 
Visualize:  

 
Solve: Using Snell’s law, 

air red redsin30 sinn n θ° =  ⇒ 1
red

sin30sin 19.2
1.52

θ − °⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

air violet violetsin30 sinn n θ° = ⇒ 1
violet

sin30sin 18.8
1.55

θ − °⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

Thus the angular spread is 

red violet 19.2 18.8 0.4θ θ θΔ = − = °− ° = °  

 



23.23. Model: Use the ray model of light and the phenomenon of dispersion. 
Visualize:  

 
Solve: (a) From the graph in Figure 23.29, we estimate the index of refraction for the red light (656 nm) to be nred 
= 1.572 and for the blue light (456 nm) to be nblue = 1.587. 
(b) The angle of incidence onto the rear of the prism is 35 .°  Using these values for the refractive index and 
Snell’s law, 

red air redsin35 sinn n θ° = ⇒ 1
red

1.572sin35sin 64.4
1.0

θ − °⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

blue air bluesin35 sinn n θ° = ⇒ 1
blue

1.587sin35sin 65.5
1.0

θ − °⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

⇒ blue red 1.1θ θ θΔ = − = °  

 



23.24. Model: Use the ray model of light and the phenomenon of dispersion. 
Visualize:  

 
Solve: Using Snell’s law for the red light, 

air air red redsin sinn nθ θ= ⇒ air1.0sin 1.45sin 26.3θ = ° ⇒ ( )1
air sin 1.45sin 26.3 40.0θ −= ° = °  

Now using Snell’s law for the violet light, 

air air violet violetsin sinn nθ θ= ⇒ violet1.0sin 40.0 sin 25.7n° = ° ⇒  nviolet = 1.48 

Assess: As expected, nviolet is slightly larger than nred. 
 



23.25.  Model:  The intensity of scattered light is inversely proportional to the fourth power of the 
wavelength. 
Solve: We want to find the wavelength of infrared light such that IR 5000.01I I= . Because ( ) 4

500 500 nmI −∝  

and 4
IR ,I λ−∝  we have 

4
500

IR

100
500 nm

I
I

λ⎛ ⎞= =⎜ ⎟
⎝ ⎠

⇒ 1580 nmλ =  

 



23.26. Model: Use ray tracing to locate the image. 
Solve:  

 
The figure shows the ray-tracing diagram using the steps of Tactics Box 23.2. You can see from the diagram that 
the image is in the plane where the three special rays converge. The image is inverted and is located at s′ = 20.0 
cm to the right of the converging lens. 
 



23.27. Model: Use ray tracing to locate the image. 
Solve:  

 
The figure shows the ray-tracing diagram using the steps of Tactics Box 23.2. You can see from the diagram that the 
image is in the plane where the three special rays converge. The image is located at s′ = 15 cm to the right of the 
converging lens, and is inverted. 
 



23.28. Model: Use ray tracing to locate the image. 
Solve:  

 
The figure shows the ray-tracing diagram using the steps of Tactics Box 23.2. You can see that the rays after 
refraction do not converge at a point on the refraction side of the lens. On the other hand, the three special rays, 
when extrapolated backward toward the incidence side of the lens, meet at P′, which is 15 cm from the lens. That 
is, s′ = −15 cm. The image is upright. 
 



23.29. Model: Use ray tracing to locate the image. 
Solve:  

 
The figure shows the ray-tracing diagram using the steps of Tactics Box 23.3. The three rays after refraction do not 
converge at a point, but they appear to come from P′. P′ is 6 cm from the diverging lens, so s′ = −6 cm. The 
image is upright. 
 



23.30. Model: Assume the biconvex lens is a thin lens. 
Solve: If the object is on the left, then the first surface has R1 = +40 cm (convex toward the object) and the 
second surface has R2 = −40 cm (concave toward the object). The index of refraction of glass is n = 1.50, so the 
lensmaker’s equation is 

( ) ( )
1 2

1 1 1 1 11 1.50 1
40 cm 40 cm

n
f R R

⎛ ⎞ ⎛ ⎞= − − = − −⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠
⇒  f = 40 cm 

 



23.31. Model: Assume the planoconvex lens is a thin lens. 
Solve: If the object is on the left, then the first surface has R1 = ∞  and the second surface has R2 = −40 cm 
(concave toward the object). The index of refraction of polystyrene plastic is 1.59, so the lensmaker’s equation is 

( ) ( )
1 2

1 1 1 1 11 1.59 1
40 cm

n
f R R

⎛ ⎞ ⎛ ⎞= − − = − −⎜ ⎟ ⎜ ⎟∞ −⎝ ⎠⎝ ⎠
⇒

1 0.59
40 cmf

= ⇒  f = 68 cm 

 



23.32. Model: Assume the biconcave lens is a thin lens. 
Solve: If the object is on the left, then the first surface has R1 = −40 cm (concave toward the object) and the 
second surface has R2 = +40 cm (convex toward the object). The index of refraction of glass is 1.50, so the 
lensmaker’s equation is 

( ) ( ) ( )
1 2

1 1 1 1 1 11 1.50 1 0.50
40 cm 40 cm 20 cm

n
f R R

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − = − − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠⎝ ⎠
⇒  f = −40 cm 

 



23.33. Model: Assume the meniscus lens is a thin lens. 
Solve: If the object is on the left, then the first surface has R1 = 30 cm (convex toward the object) and the 
second surface has R2 = 40 cm (convex toward the object). The index of refraction of polystyrene plastic is 1.59, 
so the lensmaker’s equation is 

( ) ( )
1 2

1 1 1 1 11 1.59 1
30 cm 40 cm

n
f R R

⎛ ⎞ ⎛ ⎞= − − = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

⇒  f = 203 cm 200 cm≈  

 



23.34. Model: The water is a spherical refracting surface. Consider the paraxial rays that refract from the air 
into the water. 
Solve: If the cat’s face is 20 cm from the edge of the bowl, then s = +20 cm. The spherical fish bowl surface has R 
= +25 cm, because it is the convex surface that is toward the object. Also n1 = 1 (air) and n2 = 1.33 (water). Using 
Equation 23.21, 

1 2 2 1n n n n
s s R

−
+ =

′
11 1.33 1.33 1 0.33 0.0132 cm

20 cm 25 cm 25 cms
−−

⇒ + = = =
′

 

⇒ ( ) 11.33 0.0132 0.050  cm
s

−= −
′

⇒  s′ = −36 cm 

This is a virtual image located 36 cm outside the fishbowl. The fish, inside the bowl, sees the virtual image. That 
is, the fish sees the cat’s face 36 cm from the bowl. 
 



23.35. Model: Model the bubble as a point source and consider the paraxial rays that refract from the plastic 
into the air. The edge of the plastic is a spherical refracting surface. 
Visualize:  

 
Solve: The bubble is at P, a distance of 2.0 cm from the surface. So, s = 2.0 cm. A ray from P after refracting 
from the plastic-air boundary bends away from the normal axis and enters the eye. This ray appears to come from 
P′, so the image of P is at P′ and it is a virtual image. Because P faces the concave side of the refracting surface, R = 
−4.0 cm. Furthermore, n1 = 1.59 and n2 = 1.0. Using Equation 23.21, 

1 2 2 1n n n n
s s R

−
+ = ⇒

′
 11.59 1.0 1.0 1.59 0.59 0.1475 cm

2.0 cm 4.0 cm 4.0 cms
−−

+ = = + =
′ −

 

⇒ 1 11 0.1475 cm 0.795 cm
s

− −= −
′

⇒ s′ = −1.54 cm 

That is, the bubble appears 1.54 cm 1.5 cm≈  beneath the surface. 
 



23.36. Model: Assume the lens is thin. 
Visualize: 

1 1 1 fss
s s f s f

′+ = ⇒ =
′ −

 

Solve: 

(20 cm)(60 cm) 30 cm
60 cm 20 cm

fss
s f

′ = = =
− −

 

The magnification is 30 cm 60 cm 1 2.m s s′= − = − = −  This means the image is inverted and has a height of 
0.50 cm. 
Assess: Ray tracing will confirm these results. 
 



23.37. Solve: The image is at 40 cm as seen in the figure. It is inverted. 

 

Assess: When the object is outside the focal length we get an inverted image. 
 



23.38. Solve: The image is at 30 cm−  as seen in the figure. It is upright. 

 
Assess: When the object is within the focal length we get a magnified upright image. 
 



23.39. Solve: The image is at 12 cm−  as seen in the figure. It is upright. 

 
Assess: We expected an upright virtual image from the convex mirror. 
 



23.40. Model: The speed of light in a material is determined by the refractive index as .v c n=  
Solve: To acquire data from memory, a total time of only 2.0 ns is allowed. This time includes 0.5 ns that the 
memory unit takes to process a request. Thus, the travel time for an infrared light pulse from the central 
processing unit to the memory unit and back is 1.5 ns. Let d be the distance between the central processing unit 
and the memory unit. The refractive index of silicon for infrared light is nSi = 3.5. Then, 

( ) ( )( )
( )

9 8
Si

Si Si Si

1.5 10  s 3.0 10  m/s1.5 ns2 2 21.5 ns  
2 2 3.5

cd d dn d
v c n c n

−× ×
= = = ⇒ = = ⇒ d = 6.4 cm 

 



23.41.  Model: Treat the red ball as a point source and use the ray model of light. 
Solve: (a) Using the law of reflection, we can obtain 3 images of the red ball. 
(b) The images of the ball are located at B, C, and D. Relative to the intersection point of the two mirrors, the 
coordinates of B, C, and D are: B(+1 m, −2 m), C(−1 m, +2 m), and D(+1 m, +2 m). 
(c)  

 
 



23.42. Model: Treat the laser beam as a ray and use the ray model of light. 
Visualize:  

 
Solve: From the geometry of the mirrors and the rays, 50 , =30 , and 20 .β α φ= ° ° = °  

 



23.43. Model: For a mirror, the image distance behind the mirror equals the object’s distance in front of the 
mirror. 
Visualize:  

 
Solve: Your face is 2.0 from the mirror into which you are looking. The image of your face (image 1) is 2.0 m 
behind the mirror, or 4.0 m away. Behind you, the image of the back of your head (image 2) is 3.0 m behind the 
mirror on the other wall. You can’t see this image because you’re looking to the right. However, the reflected 
rays that appear to come from image 2 (a virtual image) act just like the rays from an object—that is, just as the 
rays would if the back of your head were really at the position of image 2. These rays reflect from the mirror 2.0 
m in front of you into which you’re staring and form an image (image 3) 8.0 m behind the mirror. This is the 
image of the back of your head that you see in the mirror in front of you. Since you’re 2.0 m from the mirror, the 
image of the back of your head is 10 m away. 
 



23.44. Model: Treat the laser beam as a ray and use the ray model of light. 
Visualize:  

 
As the cylinder rotates by an angle θ, the path of the reflected laser beam changes by an angle 2θ relative to the 
direction of incidence. 
Solve: Because the angle 2θ is very small, 

32.0 10  mtan 2 2
5.0 m

θ θ
−×

≅ = ⇒
( )

1 180rad  degrees 0.011
5000 5000

θ
π

= = = °  

 



23.45. Model: Use the ray model of light. For an angle of incidence greater than the critical angle, the ray of 
light undergoes total internal reflection. 
Visualize:  

 
For angles θwater that are less than the critical angle, light will be refracted into the air. 
Solve: Snell’s law at the water-air boundary is air air water watersin sin .n nθ θ=  Because the maximum angle of θair is 
90 ,°  we have 

( ) water1.0 sin90 1.33sinθ° = ⇒ 1
water

1sin 48.75
1.33

θ − ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

Applying Snell’s law again to the glass-water boundary, 

glass glass water watersin sinn nθ θ= ⇒
( )1 1water

glass water
glass

1.33 sin 48.75
sin sin sin 42

1.50
n
n

θ θ− −
⎛ ⎞ °⎛ ⎞

= = = °⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

Thus 42°  is the maximum angle of incidence onto the glass for which the ray emerges into the air. 
 



23.46. Model: Use the ray model of light. 
Visualize:  

 
Solve: When the plastic is in place, the microscope focuses on the virtual image of the dot. From the figure, we 
note that s = 1.0 cm and s′ = 1.0 cm − 0.4 cm = 0.6 cm. The rays are paraxial, and the object and image distances 
are measured relative to the plastic-air boundary. Using Equation 23.13, 

air

plastic

ns s
n

′ = ⇒ ( )
plastic

1.00.6 cm  1.0 cm
n

= ⇒ plastic
1.0 cm 1.67
0.6 cm

n = =  

 



23.47. Model: Use the ray model of light and the law of refraction. 
Solve: Snell’s law at the air-glass boundary is air air glass glasssin sin .n nθ θ=  We require 1

glass air2 ,θ θ=  so 

( )air glass glass glasssin 2 sinn nθ θ= ⇒ ( )air glass glass glass glass2sin cos sinn nθ θ θ=  

⇒ glass1 1
glass air

air

1.50cos cos 41.4 82.8
2 2 1.0
n
n

θ θ− −⎛ ⎞ ⎛ ⎞= = = °⇒ = °⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠
 

 



23.48. Model: Use the ray model of light and the law of refraction. 
Visualize:  

 

Solve: (a) The ray of light strikes the meter stick at emptyP ,  which is a distance L from the zero mark of the meter 
stick. So, 

tan 60
50 cm
L

° =  ⇒  ( )50 cm tan 60 86.6 cmL = ° =  

(b) The ray of light refracts at Phalf and strikes the meter stick a distance 1 2x x+  from the zero of the meter stick. 
We can find x1 from the triangle PfullPhalf O′: 

1tan 60
25 cm
x

° = ⇒ ( )1 25 cm tan 60 43.30 cmx = ° =  

We also have ( )2 half25 cm tan .x φ=  Using Snell’s law, 

air water halfsin 60 sinn n φ° = ⇒ 1
half

sin 60sin 40.63
1.33

φ − °⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

( )2 25 cm tan 40.63 21.45 cmx⇒ = ° = ⇒ 1 2 43.30 cm  21.45 cm 64.8 cmx x+ = + =  

(c) The ray of light experiences refraction at Pfull and the angle of refraction is the same as in part (b). We get 

( )3
full 3tan 50 cm tan 40.63 42.9 cm

50 cm
x xφ = ⇒ = ° =  

 



23.49.  Model: Use the ray model of light. Light undergoes total internal reflection if it is incident on a 
boundary at an angle greater than the critical angle. 
Visualize:  

 
Solve: (a) To reach your eye, a light ray must refract through the top surface of the water and into the air. You 
can see in the figure that rays coming from the bottom of the tank are incident on the top surface at fairly small 
angles, but rays from the marks near the top of the tank are incident at very large angles—greater than the critical 
angle. These rays undergo total internal reflection in the water and do not exit into the air where they can be seen. 
Thus you can see the marks from the bottom of the tank upward. 
(b) The highest point you can see is the one from which the ray reaches the top surface at the critical angle θc. 
For a water-air boundary, the critical angle is θc = sin–1(1/1.33) = 48.75°. You can see from the figure that the 
depth of this point is such that 

c
c

65.0 cmtan 57.0 cm
tan tan(48.75 )

L Ld
d

θ
θ

= ⇒ = = =
°

 

Since the marks are every 10 cm, the high mark you can see is the one at 60 cm. 
 



23.50. Model: Use the ray model of light and the law of refraction. Assume the sun is a point source of light. 
Visualize:  

 
When the bottom of the pool becomes completely shaded, a ray of light that is incident at the top edge of the 
swimming pool does not reach the bottom of the pool after refraction. 
Solve: The depth of the swimming pool is water4.0 m tan .d θ=  We will find the angle by using Snell’s law. We 
have 

water water airsin sin 70n nθ = °⇒ 1
water

sin70sin 44.95
1.33

θ − °⎛ ⎞= = °⎜ ⎟
⎝ ⎠

4.0 m 4.0 m
tan 44.95

d⇒ = =
°

 



23.51. Model: Use the ray model of light and the law of refraction. Assume that the laser beam is a ray of 
light. 
Visualize:  

 
The laser beam enters the water 2.0 m from the edge, undergoes refraction, and illuminates the goggles. The ray 
of light from the goggles then retraces its path and enters your eyes. 
Solve: From the geometry of the diagram, 

1.0 mtan
2.0 m

φ =  ⇒  ( )1tan 0.50 26.57φ −= = ° ⇒ air 90 26.57 63.43θ = °− ° = °  

Snell’s law at the air-water boundary is air air water watersin sin .n nθ θ=  Using the above result, 

( ) water1.0 sin 63.43 1.33sinθ° = ⇒  1
water

sin63.43sin 42.26
1.33

θ − °⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

Taking advantage of the geometry in the diagram again, 

( )watertan 3.0 m tan 42.26 2.73 m
3.0 m
x xθ= ⇒ = ° =  

The distance of the goggles from the edge of the pool is 2.73 m + 2.0 m = 4.73 m 4.7 m.≈  



23.52. Model: Use the ray model of light and the law of refraction. Assume that the laser beam is a ray of 
light. 
Visualize:  

 
Solve: (a) From the geometry of the diagram at side A, 

10 cmtan
15 cm

φ =  ⇒  1 10tan
15

φ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 ⇒  33.69φ = °  

This means the angle of incidence at side A is θair = 90° − 33.69° = 56.31°. Using Snell’s law at side A, 

air air water water  Asin sinn nθ θ= ⇒ 1
water  A

1.0sin56.31sin 38.73
1.330

θ − °⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

This ray of light now strikes side B. The angle of incidence at this water-air boundary is 
water  B water  A90 51.3 .θ θ= ° − = °  The critical angle for the water-air boundary is 

1 1air
c

water

1.0sin sin 48.8
1.33

n
n

θ − −⎛ ⎞ ⎛ ⎞= = = °⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

Because the angle θwater B is larger than θc, the ray will experience total internal reflection. 
(b) We will now repeat the above calculation with x = 25 cm. From the geometry of the diagram at side A, 

21.80φ = °  and air 68.20 .θ = °  Using Snell’s law at the air-water boundary, water  A 44.28θ = °  and water  B 45.72 .θ = °  
Because water  B c ,θ θ<  the ray will be refracted into the air. The angle of refraction is calculated as follows: 

air air  B water water  Bsin sinn nθ θ= ⇒ 1
air  B

1.33sin 45.72sin 72.2
1

θ − °⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

(c) Using the critical angle for the water-air boundary found in part (a), θwater A = 90° − 48.75° = 41.25°. 
According to Snell’s law, 

air air water water  Asin sinn nθ θ= ⇒ 1
air

1.33sin 41.25sin 61.27
1.0

θ − °⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

⇒ 90 61.27 28.73φ = °− ° = °  

The minimum value of x for which the laser beam passes through side B and emerges into the air is calculated as 
follows: 

10 cmtan
x

φ = ⇒
10 cm 18.2 cm 18 cm

tan 28.73
x = = ≈

°
 

 



23.53. Model: Use the ray model of light. Assume the bonfire is a point source right at the corner of the 
lake. 
Visualize:  

 
Solve: (a) Light rays from the fire enter the lake right at the edge. Even though the rays in air are incident on 
the surface at a range of angles from ≈0° up to 90°, the larger index of refraction of water causes the rays to 
travel downward in the water with angles ≤θc, the critical angle. Some of these rays can reach a fish that is deep 
in the lake, but a shallow fish out from shore is in the “exclusion zone” that is not reached by any rays from the 
fire. Thus a fish needs to be deep to see the light from the fire. 
(b) The shallowest fish that can see the fire is one that receives light rays refracting into the water at the critical 
angle θc. These are rays that were incident on the water’s surface at ≈90°. The critical angle for a water-air 
boundary is 

1
c

1.00sin 48.75
1.33

θ − ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

The fish is 20 m from shore, so its depth is 

20 m 17.5 m 18 m
tan(48.75 )

d = = ≈
°

 

That is, a fish 20 m from shore must be at least 18 m deep to see the fire. 
 



23.54. Model: Use the ray model of light. Assume that the target is a point source of light. 
Visualize:  

 

Solve: From the geometry of the figure with θair = 60°, 

1
airtan

2.0 m
xθ = ⇒ ( )( )1 2.0 m tan 60 3.464 mx = ° =  

Let us find the horizontal distance x2 by applying Snell’s law to the air-water boundary. We have 

water water air airsin sinn nθ θ= ⇒ 1
water

sin60sin 40.63
1.33

θ − °⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

Using the geometry of the diagram, 

2
watertan

1.0 m
x θ= ⇒ ( )2 1.0 m tan 40.63 0.858 mx = ° =  

To determine θtarget, we note that 

target
1 2

3.0 m 3.0 mtan 0.6941
3.464 m  0.858 mx x

θ = = =
+ +

⇒  θtarget = 35° 

 



23.55. Model: Use the ray model of light and the phenomena of refraction and dispersion. 
Visualize:  

 
The refractive index of violet light is greater than the refractive index of red light. The violet wavelength thus 
gets refracted more than the red wavelength. 
Solve: Using Snell’s law for the red light at the air-glass boundary, 

air air red redsin sinn nθ θ= ⇒ 1 air air
red

red

sinsin n
n

θθ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
1 1.0sin30sin 19.30

1.513
− °⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

From the geometry of the diagram, 

red violet
red violettan tan

10.0 cm 10.0 cm
d dθ θ= =  

⇒ ( ) ( )red 10.0 cm tan 19.30 3.502 cmd = ° = ⇒ violet 3.502 cm 0.1 cm 3.402 cmd = − =  

1 1violet
violet

3.402 cmtan tan 18.79
10.0 cm 10.0 cm
dθ − −⎛ ⎞ ⎛ ⎞⇒ = = = °⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

That is, white light is incident on a piece of glass at 30°, and it gets dispersed. The violet light makes an angle of 
18.79° with the vertical. Using Snell’s law, 

violet violet air airsin sinn nθ θ=
( )

violet

1.0 sin30
1.552

sin18.79
n

°
⇒ = =

°
 

 



23.56. Model: Use the ray model of light and the phenomena of refraction and dispersion. 
Visualize:  

 
Solve: Since violet light is perpendicular to the second surface, it must reflect at θviolet = 30° at the first surface. 
Using Snell’s law at the air-glass boundary where the ray is incident, 

air air violet violetsin sinn nθ θ= ⇒
( )air air

violet
violet

1.0 sin50sin 1.5321
sin sin30

nn θ
θ

°
= = =

°
 

Since nviolet = 1.02 nred, red 1.5021.n =  Using Snell’s law for the red light at the first surface 

red red air airsin sinn nθ θ= ⇒ 1
red

1.0sin50sin 30.664
1.5021

θ − °⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

The angle of incidence on the rear face of the prism is thus θr glass = 30.664° − 30° = 0.664°. Using Snell’s law 
once again for the rear face and for the red wavelength, 

red r  glass air r  airsin sinn nθ θ= ⇒ red r  glass1
r  air

air

sin
sin

n
n
θ

θ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
1 1.5021sin 0.664sin 0.997

1.0
− °⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

Because θv air = 0° and θr air = 0.997°, r  air v  air 0.997 1.00 .φ θ θ= − = ° ≅ °  

 



23.57. Model: Use the ray model of light and the phenomenon of refraction. 
Visualize:  

 
Solve: (a) The critical angle θc for the glass-air boundary is 

glass c airsin sin90n nθ = ° ⇒ 1
c

1.0sin 41.81
1.50

θ − ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

For the triangle ABC, 

( )glass  1 c120 90 180θ θ+ °+ °− = ° ⇒ ( )glass  1 180 120 90 41.81 11.81θ = °− °− °− ° = °  

Having determined θglass 1, we can now find θair 1 by using Snell’s law: 

air air  1 glass glass  1sin sinn nθ θ= ⇒ 1
air  1

1.50 sin11.81sin 17.88
1.0

θ − × °⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

Thus, the smallest angle θ1 for which a laser beam will undergo TIR on the hypotenuse of this glass prism is 
17.9°. 
(b) After reflecting from the hypotenuse (face 3) the ray of light strikes the base (face 2) and refracts into the air. 
From the triangle BDE, 

( ) ( )glass  2 c90 60 90 180θ θ°− + °+ °− = ° glass  2 90 60 90 41.81 180 18.19θ⇒ = °+ °+ °− °− ° = °  

Snell’s law at the glass-air boundary of face 2 is 

glass glass  2 air air 2sin sinn nθ θ= ⇒ glass glass  21
air  2

air

sin
sin

n
n
θ

θ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
1 1.50sin18.19sin 27.9

1.0
− °⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

Thus the ray exits 27.9° left of the normal. 
 



23.58. Model: Use the ray model of light. 
Solve: (a) Using Snell’s law at the air-glass boundary, with φ being the angle of refraction inside the prism, 

air sin sinn nβ φ= ⇒ sin sinnβ φ=  

Considering the triangle made by the apex angle and the refracted ray, 

( ) ( ) 1
290 90 180φ φ α φ α°− + °− + = °⇒ =  

Thus 

( ) ( )11 1
2 2sin sin sin sin( )n nβ α β α−= ⇒ =  

(b) Using the above expression, we obtain 

1
2

sin sin52.2 1.58
sin( ) sin30

n β
α

°
= = =

°
 

 



23.59. Model: The bubble is a point source of light. The surface is a spherical refracting surface. 
Solve: The bubble is in zircon, so n1 = 1.96 and n2 = 1.00. The surface is concave (object facing into a “cave”) 
as seen from the bubble (the object), so R = −3.0 cm. Equation 23.21 is 

1 2 2 1n n n n
s s R

−
+ =

′
1.96 1.00 1.00 1.96 3.0 cm

3.0 cm 3.0 cm
s

s
− ′⇒ + = ⇒ = −

′ −
 

Thus, seen from outside, the bubble appears to be 3.0 cm beneath the surface. That is, a bubble at the center 
actually appears to be at the center. 
 



23.60. Model: Use the ray model of light. The surface is a spherically refracting surface. 
Visualize:  

 

Solve: Because the rays are parallel, s = ∞. The rays come to focus on the rear surface of the sphere, so s′ = 2R, 
where R is the radius of curvature of the sphere. Using Equation 23.21, 

1 2 2 1 1 1 2.00
2

n n n n n n n
s s R R R

− −
+ = ⇒ + = ⇒ =

′ ∞
 

 



23.61. Model: Assume that the converging lens is a thin lens. Use ray tracing to locate the image. 
Solve: (a)  

 
The figure shows the ray-tracing diagram using the steps of Tactics Box 23.2. The three rays after refraction 
converge to give an image at s′ = 40 cm. The height of the image is h′ = 2 cm. 
(b) Using the thin-lens formula, 

1 1 1 1 1 1
40 cm 20 cms s f s

+ = ⇒ + =
′ ′

⇒
1 1

40 cms
=
′

⇒ 40 cms′ =  

The image height is obtained from 
40 cm 1
40 cm

sM
s
′

= − = − = −  

The image is inverted and as tall as the object, that is, h′ = 2.0 cm. The values for h′ and s′ obtained in parts (a) and 
(b) agree. 
 



23.62. Model: Use ray tracing to locate the image. Assume that the converging lens is a thin lens. 
Solve: (a)  

 
The figure shows the ray-tracing diagram using the steps of Tactics Box 23.2. The three special rays that 
experience refraction do not converge at a point. Instead they appear to come from a point that is 15 cm on the 
same side as the object itself. Thus s′ = −15 cm. The image is upright and has a height of h′ = 1.5 cm. 
(b) Using the thin-lens formula, 

1 1 1 1 1 1
10 cm 30 cms s f s

+ = ⇒ + =
′ ′

⇒  1 1
15 ms

= −
′

⇒ 15 cms′ = −  

The image height is obtained from 
15 cm 1.5

10 cm
sM
s
′ −

= − = − = +  

The image is upright and 1.5 times the object, that is, 1.5 cm high. These values agree with those obtained in part 
(a). 
 



23.63. Model: Use ray tracing to locate the image. Assume that the converging lens is a thin lens. 
Solve: (a)  

 
The figure shows the ray-tracing diagram using the steps of Tactics Box 23.2. The three special rays after 
refracting do not converge. Instead the rays appear to come from a point that is 60 cm on the same side of the 
lens as the object, so 60 cm.s′ = −  The image is upright and has a height of 8.0 cm. 
(b) Using the thin-lens formula, 

1 1 1
s s f
+ =

′
⇒

1 1 1
15 cm 20 cms

+ =
′

⇒
1 1

60 cms
= −
′

⇒ 60 cms′ = −  

The image height is obtained from 

60 cm 4
15 cm

sM
s
′ −

= − = − = +  

Thus, the image is 4 times larger than the object or ( )4 4 2.0 cm 8.0 cm.h Mh h′ = = = =  The image is upright. 
These values agree with those obtained in part (a). 
 



23.64. Model: Use ray tracing to locate the image. Assume the converging lens is a thin lens. 
Solve: (a)  

 

The figure shows the ray-tracing diagram using the steps of Tactics Box 23.2. After refraction, the three special 
rays converge and give an image 50 cm away from the converging lens. Thus, s′ = +50 cm. The image is inverted 
and its height is 0.65 cm. 
(b) Using the thin-lens formula, 

1 1 1 1 1 1
75 cm 30 cms s f s

+ = ⇒ + =
′ ′

1 1
50 cms

⇒ =
′

⇒ 50 cms′ =  

The image height is obtained from 

50 cm 2
75 cm 3

sM
s
′

= − = − = −  

The image height is ( )( )2/3 1 cm 0.67 cm.h Mh′ = = − = −  Because of the negative sign, the image is inverted. 
These results agree with those obtained in part (a). 
 



23.65. Model: Use ray tracing to locate the image. Assume the diverging lens is a thin lens. 
Solve: (a)  

 
The figure shows the ray-tracing diagram using the steps of Tactics Box 23.3. After refraction, the three special 
rays do not converge. The rays, on the other hand, appear to meet at a point that is 8.5 cm on the same side of the 
lens as the object. So 8.5 cm.s′ = −  The image is upright and has a height of 1.1 cm. 
(b) Using the thin-lens formula, 

1 1 1
s s f
+ =

′
 ⇒ 1 1 1

15 cm 20 cms
+ =

′ −
1 7 60 cm 8.6 cm

60 cm 7
s

s
′⇒ = − ⇒ = − = −

′
 

The image height is obtained from 
( )60/7 cm 4 0.57

15 cm 7
sM
s

−′
= − = − = + =  

Thus, the image is 0.57 times larger than the object, or (0.57)(2.0 cm) 1.14 cm.h Mh′ = = =  The image is upright 
because M is positive. These values agree, within measurement accuracy, with those obtained in part (a). 
 



23.66. Model: Use ray tracing to locate the image. Assume the diverging lens is a thin lens. 
Solve: (a)  

 
The figure shows the ray-tracing diagram using the steps of Tactics Box 23.3. After refraction from the diverging 
lens, the three special rays do not converge. However, the rays appear to meet at a point that is 20 cm on the 
same side as the object. So 20 cm.s′ = −  The image is upright and has a height of 0.3 cm. 
(b) Using the thin-lens formula, 

1 1 1 1 1 1
30 cm 60 cm 20 cms f s

= − = − = −
′ −

⇒ 20 cms′ = −  

The image height is obtained from 
20 cm 1 0.33

60 cm 3
sM
s
′ −

= − = − = =  

Thus, ( )( )0.33 1.0 cm 0.33 cm,h Mh′ = = =  and the image is upright because M is positive. These values for s′ 
and h′ agree with those obtained in part (a). 
 



23.67. Visualize: Refer to Figure 23.57. 

1 1 1 fss
s s f s f

′+ = ⇒ =
′ −

 

We are given 60 cm,  20 cm,f s= =  and 1.0 cm.h =  
Solve: 

(60 cm)(20 cm) 30 cm
20 cm 60 cm

fss
s f

′ = = = −
− −

 

The negative sign means the image is behind the mirror; it is a virtual image. The magnification is 
30 cm 20 cm 1.5.m s s′= − = =  This means the image is upright and has a height of 

(1.5)(1.0 cm) 1.5 cm.h mh′ = = =  
Assess: Ray tracing will confirm these results. 
 



23.68. Visualize: Refer to Figure 23.55. 

1 1 1 fss
s s f s f

′+ = ⇒ =
′ −

 

We are given 60 cm,  20 cm,f s= − =  and 1.0 cm.h =  
Solve: 

( 60 cm)(20 cm) 15 cm
20 cm 60 cm

fss
s f

−′ = = = −
− +

 

The negative sign means the image is behind the mirror; it is a virtual image. The magnification is 
15 cm 20 cm 0.75.m s s′= − = =  This means the image is upright and has a height of 

(0.75)(1.0 cm) 0.75 cm.h mh′ = = =  
Assess: Ray tracing will confirm these results. 
 



23.69. Model: Assume the lens is a thin lens and the thin-lens formula applies. 
Solve: Because we want to form an image of the spider on the wall, the image is real and we need a converging 
lens. That is, both s′ and s are positive. This also implies that the spider’s image is inverted, so 1

2M s s′= − = − . 
Using the thin-lens formula with 1

2 ,s s′ =  

1
2

1 1 1 1 1 1
s s f s s f
+ = ⇒ + =

′
3 1

3
sf

s f
⇒ = ⇒ =  

We also know that the spider is 2.0 m from the wall, so 

s + s′ = 2.0 m = s + 1
2 s  ⇒  ( )1

3 4.0 m 133.3 cms = =  

Thus, 1
3 44 cm f s= = and 2.0 m 1.33 m 0.67 m 67 cm.s′ = − = =  We need a 44 cm focal length lens placed 

67 cm from the wall. 
 



23.70. Model: Assume the lens to be a thin lens. 
Solve: Because we want to form an image of the candle on the wall, we need a converging lens. We have 

200 cm.s s′+ =  Using the thin-lens formula, 

1 1 1 1 1 1
200 cm 32 cms s f s s

+ = ⇒ + =
′ −

⇒ ( )2 2200 cm 6400 cm 0s s− + =  

The two solutions to this equation are s = 160 cm and 40 cm. When s = 160 cm, then 
200 cm 160 cm 40 cm.s′ = − =  The magnification is 

40 cm 0.25
160 cm

sM
s
′

= − = − = −  

so the image is inverted and its height is (2.0 cm)(0.25) = 0.50 cm. When s = 40 cm, then s′ = 200 cm − 40 cm = 
160 cm. The magnification is 

160 cm 4
40 cm

sM
s
′

= − = − = −  

so the image is again inverted and its height is (2.0 cm)(4) = 8.0 cm. 
 



23.71. Model: The eye is a converging lens and assume it is a thin lens. 
Solve: (a) The diameter of an adult eyeball is typically 4.0 cm. 
(b) The near point distance is approximately 10 inches ≈ 25 cm. 
(c) Using the thin-lens formula, 

1 1 1
s s f
+ =

′
⇒

1 1 1
25 cm 4.0 cm f

+ = ⇒
1 29

100 cmf
= ⇒  f ≈ 3.4 cm 

 



23.72. Model: Assume the projector lens is a thin lens. 
Solve: (a) The absolute value of the magnification of the lens is 

98 cm 49
2 cm

hM
h
′

= = =  

Because the projector forms a real image of a real object, the image will be inverted. Thus, 

49 sM
s
′

= − = −  ⇒  49s s′ =  

We also have 
s + s′ = 300 cm ⇒  s + 49s = 300 cm ⇒  s = 6.0 cm ⇒ s′ = 294 cm 

Using these values of s and s′, we can find the focal length of the lens: 
1 1 1 1 1 5.9 cm

6.0 cm 294 cm
f

f s s
= + = + ⇒ =

′
 

(b) From part (a) the lens should be 6.0 cm from the slide. 
 



23.73. Visualize: The lens must be a converging lens for this scenario to happen, so we expect f to be 
positive. In the first case the upright image is virtual 2( 0)s′ <  and the object must be closer to the lens than the 
focal point. The lens is then moved backward past the focal point and the image becomes real 2( 0).s′ >  

1 1 1 ssf
s s f s s

′
+ = ⇒ =

′ ′+
 

We are given 1 10cms =  and 1 2.m =  
Solve:  Since the first image is virtual, 0.s′ <  We are told the first magnification is 

1 1 1 12 20 cm.m s s s′ ′= = − ⇒ = −  We can now find the focal length of the lens. 

1 1

1 1

(10 cm)( 20 cm) 20 cm
10 cm 20 cm

s sf
s s

′ −
= = =

′+ −
 

After the lens is moved, 2 2 22 .m s s′= − = −  Start with the thin lens equation again. 

2 2

1 1 1
s s f
+ =

′
 

Replace 2s′  with 2 2.m s−  

2 2 2

1 1 1
s m s f
+ =
−

 

Now solve for 2.s  

2 2 2

2 2 2

1
( )
m s s
s m s f
− +

=
−

 

2 2 2
2

2 2

1m s s
m s f

− +
=

−
 

Cancel one 2.s  

2

2 2

1 1m
m s f
−

=  

Multiply both sides by 2.fs  

2
2

2

1 2 1(20 cm) 30 cm
2

ms f
m

⎛ ⎞− − −⎛ ⎞= = =⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠
 

The distance the lens moved is 2 1 30 cm 10 cm 20 cm.s s− = − =  
Assess: We knew 2s  needed to be bigger than f; it is, and is in a reasonable range. The final answer for the 
distance the lens moved also seems reasonable. 
 



23.74. Model: Assume the symmetric converging lens is a thin lens. 
Solve: Because the lens forms a real image on the screen of a real object, the image is inverted. Thus, 

2 .M s s′= − = −  Also, 
s + s′ = 60 cm ⇒  s +2s = 60 cm ⇒  s = 20 cm ⇒ s′ = 40 cm 

We can use the thin-lens formula to determine the radius of curvature of the symmetric converging lens 
( )1 2R R=  as follows: 

( )
1 2

1 1 1 1 11n
s s f R R

⎛ ⎞
+ = = − −⎜ ⎟′ ⎝ ⎠

 

Using 1R R= +  (convex toward the object), 2R R= −  (concave toward the object), and n = 1.59, 

( )1 1 1 11.59 1
20 cm 40 cm R R

⎛ ⎞
+ = − −⎜ ⎟⎜ ⎟−⎝ ⎠

 ⇒ 3 1.18
40 cm R

= ⇒ 15.7 cm 16 cmR = ≈  

 



23.75. Visualize: We are given 2 40 cm 2 20 cm.f R= = =  We are also given 3.m s s′= − =  
Solve: Solve the thin lens equation for .s′  

1 1 1
s s f
+ =

′
 

fss
s f

′ =
−

 

Plug this into the magnification equation, .s s m′= −  

1 fss
m s f

= −
−

 

Cancel an s  from the numerator of each side, and multiply both sides by .s f−  

fs f
m

− = −  

( )1 11 20 cm 1 13.3 cm
3

fs f f
m m

⎛ ⎞ ⎛ ⎞= − = − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Assess: This answer is within the focal length of the concave mirror as we expect for an upright, magnified, 
virtual image. 
 



23.76. Visualize: We are given 2.0 cmh =  and 1.0 cmh′ =  so we know 0.5.m =  
Solve: Solve m s s′= −  for s . 

ss
m
′−

=  

Plug this result into the thin lens equation. 
1 1 1 ssf
s s f s s

′
+ = ⇒ =

′ ′+
 

( ) ( )
11

s ss s
ss m mf ss s s s

m m

′ ′− −⎛ ⎞ ⎛ ⎞′ ′⎜ ⎟ ⎜ ⎟′ ⎝ ⎠ ⎝ ⎠= = =′−′+ ⎛ ⎞′+ ′ −⎜ ⎟
⎝ ⎠

 

Cancel one s′  and distribute the m  in the denominator. 
150 cm 300 cm

1 1 0.5 11

s sf
mm

m

′ ′− −
= = = = −

⎛ ⎞ − −−⎜ ⎟
⎝ ⎠

 

Assess: The negative value for f  tells us this is a convex mirror. 

 



23.77. Visualize: We are given 25 cm.f =  From the thin mirror equation we know that .fss
s f

′ =
−

 The five 

points under consideration are 50 cm,  75 cm, 100 cm,  125 cm,  150 cm.s =  

Solve: (a) Use fss
s f

′ =
−

 for each of the five points. 

s (cm) s′ (cm) h (cm) h′ (cm) 
 50  50 10  10 
 75  37.5 10  5.0 
 100  33.3 10  3.3 
 125  31.3 10  2.5 
 150  30 10  2.0 

(b) 

 

(c) The image is curved and not parallel to the axis. 
Assess: For further reading, see “Longitudinal Magnification Drawing Mistake” by Héctor Rabal, Nelly Cam, 
and Marcelo Trivi in The Physics Teacher, vol. 42, January 2004, pp. 31–33, but know that Equation 4 there is 
missing a couple of minus signs. 
 



23.78. Visualize: First concentrate on the optic axis and the ray parallel to it. Geometry says if parallel lines 
are both cut by a diagonal (in this case the line through the center of curvature and normal to the mirror at the 
point of incidence) the interior angles are equal; so i.φ θ=  The law of reflection says that i r ,θ θ=  so we 
conclude r.φ θ=  Now concentrate on the triangle whose sides are R, a, and b. Because two of the angles are 
equal then it is isosceles; therefore .b a=  Apply the law of cosines to this triangle. 
Solve: 

2 2 2 2 cosb a R aR φ= + −  

Because ,a b=  they drop out. 

2 2 cosR aR φ=  

2 cosR a φ=  

We want to know how big a  is in terms of ,R  so solve for .a  

2cos
Ra
φ

=  

If 1φ  then cos 1,φ ≈  so in the limit of small ,  2,a Rφ =  and then since f R a= −  it must also be that 

2
Rf =  

Assess: Many textbooks forget to stress that 2f R=  only in the limit of small ,φ  i.e., for paraxial rays. 

 



23.79. Model: Use the ray model of light and assume the lens is a thin lens. 
Visualize: Please refer to Figure 23.47. 
Solve: Let n1 be the refractive index of the fluid and n2 the refractive index of the lens. The lens consists of two 
spherical surfaces having radii of curvature R1 and R2 and the lens thickness t → 0. For the refraction from the 
surface with radius R1, we use Equation 23.21: 

1 2 2 1

1 1 1

n n n n
s s R

−
+ =

′
 

For the refraction from surface with radius R2, 

2 1 1 2

1 2 2

n n n n
s s R

−
+ =
′ ′−

 

A negative sign is used with 1s′  because the image formed by the first surface of the lens is a virtual image. This 
virtual image is the object for the second surface. Adding the two equations, 

1 1
2 1

1 2 1 2

1 1n n n n
s s R R

⎛ ⎞
+ = − −⎜ ⎟′ ⎝ ⎠

⇒ 2 1

1 2 1 1 2

1 1 1 ( ) 1 1n n
s s f n R R

⎛ ⎞−
+ = = −⎜ ⎟′ ⎝ ⎠

 

(b) In air, R1 = +40 cm (convex toward the object), R2 = −40 cm (concave toward the object), n1 = 1.0, and n2 = 
1.50. So, 

1 1.50 1.0 1 1
1.0 40 cm 40 cmf
−⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

⇒  f = 40 cm 

In water, n1 = 1.33 and n2 = 1.50. So, 

1 1.50 1.33 1 1
1.33 40 cm 40 cmf
−⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

⇒  f = 156 cm 

 



23.80. Model: Use the ray model of light. 
Solve: (a) The time (t) is the time to travel from A to the interface (t1) and from the interface to B (t2). That is, 

( )22 2 21 2 1 2 1 1 2 2 1 2
1 2

1 2 1 2

d d d d n d n d n nt t t x a w x b
v v c n c n c c c c

= + = + = + = + = + + − +  

(b) Because t depends on x and there is only one value of x for which the light travels from A to B in the least 
possible amount of time, we have 

( )
( )

21
2 2 2 2

0
n w xdt n x

dx c x a c w x b

−
= = −

+ − +
 

The solution (hard to do!) would give xmin. 
(c) From the geometry of the figure, 

12 2
1

sinx x
dx a

θ= =
+

  
( )

22 2 2

sinw x w x
dw x b

θ− −
= =

− +
 

Thus, the condition of part (b) becomes 

1 2
1 2sin sin 0n n

c c
θ θ− = ⇒ 1 1 2 2sin sinn nθ θ=  

 



23.81. Model: Assume the ray model of light. The ball is not a thin lens. However, the image due to 
refraction from the first surface is the object for the second surface. 
Visualize:  

 
Solve: (a) For refraction from the first surface, R = +5 cm (convex toward the object). Thus, 

1 2 2 1
1

1 1 1 1

1.0 1.50 0.50 1.50 1 22.5 cm
6 cm 5 cm 15 cm

n n n n s
s s R s s

− ′+ = ⇒ + = ⇒ = − ⇒ = −
′ ′ ′

 

The image is virtual (to the left of the surface) and upright. For refraction from the second surface, s2 = 22.5 cm + 
10 cm = 32.5 cm and R = −5.0 cm (concave toward the object). Thus, 

2

1.50 1.0 1 1.50 1
32.5 cm 5.0 cm 10 cms

−
+ = =

′ −
⇒ 2

2

1 1 1.50 18.6 cm
10 cm 32.5 cm

s
s

′= − ⇒ =
′

 

The image is 18.6 cm from the right edge of the ball and thus 23.6 cm from the center. 
(b) The ray diagram showing the formation of the image is shown above. 
(c) Using the thin-lens equation, 

1 1 1 1 1 1
6 cm 5 cm 18.6 cm 5 cms s f f

+ = ⇒ + =
′ + +

⇒  f = 7.5 cm 

 



23.82. Model: Use the ray model of light. 
Visualize:  

 

The angle of refraction is 2θ δθ+  for those wavelengths that have a refractive index of n + δn. 
Solve: (a) Applying Snell’s law to the diagrams, 

( ) ( ) ( ) ( )1 2 1 21 sin sin           1 sin sinn n nθ θ θ δ θ δθ= = + +  

Equating the right hand sides of the above two equations and using the formula for the sine of a sum, 

( )( ) ( )( )2 2 2 2 2sin sin cos cos sin sin cosn n n n nθ δ θ δθ θ δθ δ θ θ δθ= + + = + +  

where we have assumed that δθ θ . Multiplying the expressions, 

2 2 2 2 2sin sin cos sin cosn n n n nθ θ θ δθ δ θ δ δθ θ= + + +  

We can ignore the last term on the right-hand side because it is the product of two small terms. The equation 
becomes 

2 2 2cos sin tan nn n
n
δθ δθ δ θ δθ θ ⎛ ⎞= − ⇒ = − ⎜ ⎟
⎝ ⎠

 

Note that δθ  has to be in radians. 
We can obtain the same result in the following way as well. From Snell’s law, 

1
2

sinsin
n
θθ =  

Differentiating relative to n 

( )2 2 2
2 1 2 2

2

sin 1 sin sincos sin

tan

n
n n n n n

n
n

θ δθ θ θδ θ θ
δ δ

δδθ θ

−⎛ ⎞ ⎛ ⎞= = − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⇒ = − ⎜ ⎟
⎝ ⎠

 

(b) We have θ1 = 30° and nred = 1.552. Because the red wavelength is larger than the violet wavelength, nred < 
nviolet. Also, if the refraction angle for the red light is θ2, the refraction angle for the violet is less than θ2. Thus, δθ 
= −0.28°. From the formula obtained in part (a), 

2tan n
n
δδθ θ ⎛ ⎞= − ⎜ ⎟
⎝ ⎠

⇒
2tan

nnδ δθ
θ

= −  

To determine tanθ2, we note that 

red 2 airsin sin30n nθ = ° ⇒ 1
2

sin30sin 18.794
1.552

θ − °⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 ⇒  2tan 0.3403θ =  

Thus, the expression for the change in the index of refraction is 

( )1.552  rad0.28 0.0223
0.3403 180

n πδ ⎛ ⎞= − − ° =⎜ ⎟°⎝ ⎠
⇒ nviolet = nred + δn = 1.552 + 0.022 = 1.574 

 



23.83. Visualize: The lateral magnification is .m s s′= −  
Solve: We need to solve the thin-lens equation for .s′  

1 1 1
s s f
+ =

′
 

1 1 1
s f s
= −
′

 

1
1 1

fss
s f

f s

′ = =
−−

 

Now insert this expression for s′  into the expression for .m  

fs
s fs fm
s s s f
′ −= − = − = −

−
 

Now define the longitudinal magnification as the rate of change of s′  with respect to .s  

( )d d d
d d d
s fsM s
s s s s f
′ ⎛ ⎞′= = = ⎜ ⎟−⎝ ⎠

 

Use the quotient rule of differentiation. 

( )
( ) ( )

2

2 2

d
d

s f f fsfs fM
s s f s f s f

− −⎛ ⎞ −
= = =⎜ ⎟− − −⎝ ⎠

 

This last result is equal to 2,m−  so 2.M m= −  
Assess: For further reading, see “Longitudinal Magnification Drawing Mistake” by Héctor Rabal, Nelly Cam, 
and Marcelo Trivi in The Physics Teacher, vol. 42, January 2004, pp. 31–33, but know that Equation 4 there is 
missing a couple of minus signs. 
 



23.84. Model: Assume the lens is thin so we can solve the thin-lens equation for .fss
s f

′ =
−

 

Visualize:  We are given 0.150 m and 10 m.f s= =  We are also given d d 5.0 m s.s t =  Refer to Problem 

23.83 to learn about longitudinal magnification: 2d d .M s s m′= = −  
Solve: The speed of the image is d d .s t′  Use the chain rule. Then apply .m s s′= −  

2

22
2d d d d d d d d

d d d d d d d d

fs
s s s s s s s s f ss fM m
t s t t t s t s t s f t

⎛ ⎞
⎜ ⎟′ ′ ′ ⎛ ⎞−⎛ ⎞ ⎜ ⎟= = = − = − = − = −⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠ ⎝ ⎠

 

( )
2 2

10 m 10 m

d d 0.15 m 5.0 m s 1.16 mm s
d d 10 m 0.15 ms s

s f s
t s f t= =

′ ⎛ ⎞ ⎛ ⎞= − = = −⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠
 

Assess: The negative answer indicates the image is moving toward the lens. 
 


