
24.1. Model: Each lens is a thin lens. The image of the first lens is the object for the second lens. 
Visualize:  

 

The figure shows the two lenses and a ray-tracing diagram. The ray-tracing shows that the lens combination will 
produce a real, inverted image behind the second lens. 
Solve: (a) From the ray-tracing diagram, we find that the image is ≈ 50 cm from the second lens and the height 
of the final image is 4.5 cm. 
(b) s1 = 15 cm is the object distance of the first lens. Its image, which is a virtual image, is found from the thin-
lens equation: 

1 1 1

1 1 1 1 1 5
40 cm 15 cm 120 cms f s

= − = − = −
′

⇒ 1 24 cms′ = −  

The magnification of the first lens is 

( )1
1

1

24 cm
1.6

15 cm
sm
s

−′
= − = − =  

The image of the first lens is now the object for the second lens. The object distance is s2 = 24 cm + 10 cm = 34 
cm. A second application of the thin-lens equation yields: 

2 2 2

1 1 1 1 1
20 cm 34 cms f s

= − = −
′

⇒ 2
680 cm 48.6 cm

14
s′ = =  

The magnification of the second lens is 

2
2

2

48.6 cm 1.429
34 cm

sm
s
′

= − = − = −  

The combined magnification is ( )( )1 2 1.6 1.429 2.286m mm= = − = − . The height of the final image is (2.286)(2.0 cm) = 
4.57 cm. These calculated values are in agreement with those found in part (a). 
 



24.2. Model: Each lens is a thin lens. The image of the first lens is the object for the second lens. 
Visualize:  

 

The figure shows the two lenses and a ray-tracing diagram. The ray tracing shows that the lens combination will 
produce a virtual, inverted image in front of the second lens. 
Solve: (a) From the ray-tracing diagram, we find that the image is 20 cm in front of the second lens and the 
height of the final image is 2.0 cm. 
(b) s1 = 60 cm is the object distance of the first lens. Its image, which is a real image, is found from the thin-lens 
equation: 

1 1

1 1 1 1 1 1
40 cm 60 cm 120 cmss f s

= − = − =
′

⇒ 1 120 cms′ =  

The magnification of the first lens is 

1
1

1

120 cm 2
60 cm

sm
s
′

= − = − = −  

The image of the first lens is now the object for the second lens. The object distance is s2 = 160 cm −120 cm = 40 
cm. A second application of the thin-lens equation yields: 

2 2 2

1 1 1 1 1
40 cm 40 cms s f
−

= − + = +
′ + −

⇒ 2 20 cms′ = −  

The magnification of the second lens is 

2
2

2

20 cm 0.5
40 cm

sm
s
′ −

= − = − = +  

The overall magnification is ( )( )1 2 2 0.5 1.0m mm= = − = − . The height of the final image is (+1.0)(2.0 cm) = 2.0 
cm. The image is inverted because m has a negative sign. These calculated values are in agreement with those found 
in part (a). 
 



24.3. Model: Each lens is a thin lens. The image of the first lens is the object for the second lens. 
Visualize: 

 

The figure shows the two lenses and a ray-tracing diagram. The ray tracing shows that the lens combination will 
produce a real, upright image behind the second lens. 
Solve: (a) From the ray-tracing diagram, we find that the image is 10 cm behind the second lens and the height 
of the final image is 2 cm. 
(b) 1 20 cms = is the object distance of the first lens. Its image, which is real and inverted, is found from the thin 
lens equation: 

1 1
1

1 1 1 1 1

1 1 1 (10 cm)(20 cm) 20 cm
20 cm 10 cm

f ss
s s f s f

′+ = ⇒ = = =
′ − −

 

The magnification of the first lens is 

1
1

1

20 cm 1
20 cm

sm
s
′

= − = − = −  

The image of the first lens is now the object for the second lens. The object distance is 
2 30 cm 20 cm 10 cm.s = − =  A second application of the thin-lens equation yields 

2 2
2

2 2 2 2 2

1 1 1 (5 cm)(10 cm) 10 cm
10 cm 5 cm

f ss
s s f s f

′+ = ⇒ = = =
′ − −

 

The magnification of the second lens is 

2
2

2

10 cm 1
10 cm

sm
s
′

= − = − = −  

The combined magnification is 1 2 ( 1)( 1) 1.m mm= = − − =  The height of the final image is (1)(2.0 cm) 2.0 cm.=  
These calculated values are in agreement with those found in part (a). 
Assess: The thin-lens equation agrees with the ray tracing. 
 



24.4. Model: Each lens is a thin lens. The image of the first lens is the object for the second lens. 
Visualize: 

 

The figure shows the two lenses and a ray-tracing diagram. The ray tracing shows that the lens combination will 
produce a virtual, inverted image at the first lens. 
Solve:  (a) From the ray-tracing diagram, we find that the image is 30 cm in front of the second lens and the 
height of the final image is 6 cm. 
(b) 1 20 cms =  is the object distance of the first lens. Its image, which is real and inverted, is found from the thin 
lens equation: 

1 1
1

1 1 1 1 1

1 1 1 (10 cm)(20 cm) 20 cm
20 cm 10 cm

f ss
s s f s f

′+ = ⇒ = = =
′ − −

 

The magnification of the first lens is 

1
1

1

20 cm 1
20 cm

sm
s
′

= − = − = −  

The image of the first lens is now the object for the second lens. The object distance is 
2 30 cm 20 cm 10 cm.s = − =  A second application of the thin lens equation yields 

2 2
2

2 2 2 2 2

1 1 1 (15 cm)(10 cm) 30 cm
10 cm 15 cm

f ss
s s f s f

′+ = ⇒ = = = −
′ − −

 

The magnification of the second lens is 

2
2

2

( 30 cm) 3
10 cm

sm
s
′ −

= − = − =  

The combined magnification is 1 2 ( 1)(3) 3.m m m= = − = −  The height of the final image is (3)(2.0 cm) 6.0 cm.=  
The image is inverted because m has a negative sign. These calculated values are in agreement with those found 
in part (a). 
Assess: The thin lens equation agrees with the ray tracing. 



 



24.5. Model: Each lens is a thin lens. The image of the first lens is the object for the second lens. 
Visualize: 

 
The figure shows the two lenses and a ray-tracing diagram. The ray tracing shows that the lens combination will 
produce a virtual, inverted image in front of the second lens. 
Solve:  (a) From the ray-tracing diagram, we find that the image is 3.3 cm behind the second lens and the 
height of the final image is 0.7cm.≈  
(b) 1 20 cms =  is the object distance of the first lens. Its image, which is real and inverted, is found from the 
thin-lens equation: 

1 1
1

1 1 1 1 1

1 1 1 (10 cm)(20 cm) 20 cm
20 cm 10 cm

f ss
s s f s f

′+ = ⇒ = = =
′ − −

 

The magnification of the first lens is 

1
1

1

20 cm 1
20 cm

sm
s
′

= − = − = −  

The image of the first lens is now the object for the second lens. The object distance is 
2 30 cm 20 cm 10 cm.s = − =  A second application of the thin-lens equation yields 

2 2
2

2 2 2 2 2

1 1 1 ( 5 cm)(10 cm) 3.33 cm
10 cm 5 cm

f ss
s s f s f

−′+ = ⇒ = = = −
′ − +

 

The magnification of the second lens is 

2
2

2

( 3.3 cm) 0.33
10 cm

sm
s
′ −

= − = − =  

The combined magnification is 1 2 ( 1)(0.33) 0.33.m mm= = − = −  The height of the final image is 
(0.33)(2.0 cm) 0.66 cm.=  The image is inverted because m has a negative sign. These calculated values are in 
agreement with those found in part (a). 
Assess: The thin-lens equation agrees with the ray tracing. 
 



24.6. Model: s fW  so we can use Equation 24.1: / .m f s= −  
Solve: 

15 mm (2.0 m) 3.0 mm
10 m

fh mh h
s

′ = = − = − = −  

The height of the image on the detector is 3.0 mm. 
Assess: This seems reasonable given typical focal lengths and detector sizes. 
 



24.7. Visualize: Equation 24.2 gives -number / .f f D=  
Solve: 

35 mm-number 5.0
7.0 mm

ff
D

= = =  

Assess: This is in the range of -numbersf  for typical camera lenses. 

 



24.8. Visualize: Solve Equation 24.2 for D. 
Solve: 

12 mm 3.0 mm
-number 4.0
fD

f
= = =  

Assess: This is in the same ballpark as the example after Equation 24.2. 
 



24.9. Visualize: First we compute the -numberf  of the first lens and then the diameter of the second. 
Solve: 

12 mm-number 3.0
4.0 mm

ff
D

= = =  

Now for the new lens. 

18 mm 6.0 mm
-number 3.0
fD

f
= = =  

Assess: Given the same -number,f  the longer focal length lens has a larger diameter. 

 



24.10. Visualize: We want the same exposure in both cases. The exposure depends on shutter .I tΔ  We'll also 
use Equation 24.3. 
Solve: 

2

1exposure
( -number)

I t t
f

= Δ ∝ Δ  

2 2

1 1
( -number) ( -number)

t t
f f

′Δ = Δ
′

 

2 2

2 2

( -number) (4.0) 1 1 1s  s s
( -number) (5.6) 125 245 250
ft t
f

′ ⎛ ⎞′Δ = Δ = = ≈⎜ ⎟
⎝ ⎠

 

Assess: An alternate approach without a lot of calculation is that since we changed the lens (opened) by one f 
stop that doubles the intensity so we need half the time interval to achieve the same exposure. 
 



24.11. Visualize: We want the same exposure in both cases. The exposure depends on shutter .I tΔ  We'll also 
use Equation 24.3. The lens is the same lens in both cases, so .f f ′=  
Solve: 

2

2exposure DI t t
f

= Δ ∝ Δ  

2 2

2 2

D Dt t
f f

′
′Δ = Δ

′
 

Solve for ;D′  then simplify. 

2
2 1 125s(3.0 mm) (3.0 mm) 4 6.0 mm

1 500s
f t tD D D
f t t
′⎛ ⎞ Δ Δ⎛ ⎞′ = = = = =⎜ ⎟ ⎜ ⎟′ ′Δ Δ⎝ ⎠⎝ ⎠

 

Assess: Since we decreased the shutter speed by a factor of 4 we need to increase the aperture area by a factor 
of 4, and this means increase the diameter by a factor of 2. 
 



24.12. Model: Ignore the small space between the lens and the eye. 
Visualize: Refer to Example 24.4, but we want to solve for ,s′  the near point. 
Solve: 
(a) The power of the lens is positive which means the focal length is positive, so Ramon wears converging 
lenses. This is the remedy for hyperopia. 
(b) We want to know where the image should be for an object 25 cms =  given 11 2.0 m .f −=  

1 0.50 mf
P

= =  

(0.50 m)(0.25 m) 0.50 m
0.25 m 0.50 m

fss
s f

′ = = = −
− +

 

So the near point is 50 cm. 
Assess: The negative sign on s′  is expected because we need the image to be virtual. 
 



24.13. Model: Ignore the small space between the lens and the eye. 
Visualize: Refer to Example 24.5, but we want to solve for ,s′  the far point. 
Solve: 
(a) The power of the lens is negative which means the focal length is negative, so Ellen wears diverging lenses. 
This is the remedy for myopia. 
(b) We want to know where the image should be for an object ms = ∞  given 11 1.0 m .f −= −  

1 1.0 mf
P

= = −  

1 1 1
s s f
+ =

′
 

When  m,s = ∞  

1 1 1 1.0 m
 m

s f
s f

′+ = ⇒ = = −
′∞

 

So the far point is 100 cm. 
Assess: The negative sign on s′  is expected because we need the image to be virtual. 
 



24.14. Model: With normal vision the farthest distance at which a relaxed eye can focus (the far point) is 
infinity. Rays coming from infinity are nearly parallel, so the focal length of the lens would be 24 mm, the same 
as the length of the eye. However, the far point is less than infinity for many people, and most sources quote the 
focal length of the eye as 17 mm–22 mm. However, for simplicity of calculation, assume the vision is normal 
and the focal length of the lens/cornea combination is 24 mm 
Visualize: Equation 24.2 gives f-number .f D=  
Solve: (a) For the fully dilated pupil (dark-adapted eye): 

24 mm-number 3.0
8.0 mm

ff
D

= = =  

(b) For the fully contracted pupil (eye in bright light): 
24 mm-number 16
1.5 mm

ff
D

= = =  

Assess: These answers correspond to the values given in the text. 
 



24.15. Model: The angle subtended by the image is 8×  the angle subtended by the object. 
Visualize: The angle subtended by the object is .h s  
Solve: 

14 cm(8 ) (8 ) 0.0622 rad 3.6
1800 cm

h
s

θ = × = × = = °  

Assess: The binoculars do indeed help. 
 



24.16. Visualize: Equation 24.10 relates the variables in question: 

obj eye

25 cmLM
f f

= −  

We are given 500 ,M = ×  20 cm,L =  and eye 5.0 cmf =  
Solve: Solve for obj.f  

obj

eye

25 cm 20 cm 25 cm 0.20 cm 2.0 mm
500 5.0 cm

Lf
M f

= − = − = =
−

 

Assess: This is in the same ball park as the case in the book. 
 



24.17. Visualize: Equation 24.10 relates the variables in question: 

obj eye

25 cmLM
f f

= −  

We are given 100 ,M = ×  160 mm,L =  and obj 8.0 cm.f =  
Solve: Solve for obj.f  

eye

obj

25 cm 160 mm 25 cm 5.0 cm
8.0 mm ( 100)

Lf
f M

= − = − =
−

 

Assess: This is the same eyef  as in the previous exercise. 

 



24.18. Model: Assume the thin-lens equation is valid. For part (b) refer to Equation 24.11 and the definition 
of .α  
Visualize: We are given obj 9.0 mmf =  and 

40 40sm s s
s
′

′= − = − ⇒ =  

Solve:  (a) Use the thin-lens equation. 

obj

1 1 1
s s f
+ =

′
 

obj

1 1 1
40s s f

+ =  

obj

41 1
40s f

=  

obj
41 41(9.0 mm) 9.2 mm
40 40

s f= = =  

(b) We are given n 1.00.=  Refer to Figure 24.14a to determine .α  
1 -1tan (3.0 mm /9.0 mm) = tan (1/3)α −=  

1 1NA sin (1.00) sin tan 0.32
3

n α −⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

Assess: We used s f=  in this calculation as suggested in the text. If we had used 9.2 mms = (from part (a)) 
we would get NA 0.31= , only a little different. These values of NA are typical for a simple microscope. 
 



24.19. Visualize: We are given objNA 0.90,  160 mm, 20,L m= = = −  and the book says 1.46.n =  
Solve: Start with Equation 24.11. 

1

1

NA sin
NAsin

NAtan tan sin

n

n

n

α

α

α

−

−

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

 

But from Figure 24.14a we also have obj
1tan /
2
D fα ⎛ ⎞= ⎜ ⎟

⎝ ⎠
, where D is the diameter of the lens. So combine those 

two expressions for tanα  and solve for D. 

1 NA2 tan sinobjD f
n

−⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

We need the side calculation using Equation 24.9: 

obj obj
obj obj

L Lm f
f m

= − ⇒ = −  

Insert this back in the equation for D. 

1

obj

NA2 tan sinLD
m n

−
⎛ ⎞ ⎛ ⎞⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

 

1160 mm 0.902 tan sin 13 mm
20 1.46

D −⎛ ⎞⎛ ⎞ ⎛ ⎞= − =⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠
 

Assess: The answer seems to be in a reasonable range for objective lens diameter. 
 



24.20. Visualize: Figure 24.15 shows from similar triangles that for the eyepiece lens to collect all the light 

obj eye

obj eye

D D
f f

=  

We also see from Equation 24.12 that obj eye/ .M f f= −  We are given 20M = −  and obj 12 cm.D =  
Solve: 

eye obj
eye obj

obj

12cm 0.60 cm 6.0 mm
20

f D
D D

f M
= = = = =

−
 

Assess: The answer is almost as wide as a dark-adapted eye. 
 



24.21. Model: Assume the eyepiece is a simple magnifier with eye eye25 cm /M f= . 

Visualize: eye 25 cm/10 2.5 cm.f = =  
Solve: 
(a) The magnification of a telescope is 

obj

eye

100 cm 40
2.5 cm

f
M

f
= − = =  

(b) 

1.00 m-number 5.0
0.20 m

ff
D

= = =  

Assess: These results are in reasonable ranges for magnification and f-number. 
 



24.22. Model: Diffraction prevents focusing light to an arbitrarily small point. Model the lens of diameter D 
as an aperture in front of an ideal lens with an 8.0 cm focal length. 
Solve: Assuming that the incoming laser beam is parallel, the focal length of the lens should be 8.0 cm. From 
Equation 24.13, the minimum spot size in the focal plane of this lens is 

2.44 fw
D
λ

= ⇒
( )( )9 2

6 2.44 633 10  m 8.0 10  m
10 10  m  

D

− −
−

× ×
× = ⇒ D = 0.012 m = 1.2 cm 

 



24.23. Model: Two objects are marginally resolvable if the angular separation between the objects, as seen 
from the lens, is 1.22 / .Dα λ=  
Solve: Let Δy be the separation between the two light bulbs, and let L be their distance from a telescope. Thus, 

1.22y
L D

λα Δ
= = ⇒

( )( )
( )

2

9

1.0 m 4.0 10  m
55 km

1.22 1.22 600 10  m
y DL
λ

−

−

×Δ
= = =

×
 

 



24.24. Visualize: Equation 24.15 gives the smallest resolvable distance: min 0.61 / NA.d = λ  We are given 
500 nmλ =  and NA 1.0.=  

min
0.61λ (0.61)(500 nm) 305 nm 310 nm
NA 1.0

d = = = ≈  

Assess: The smallest object one can see is on the order of the wavelength. 
 



24.25. Visualize: Equation 24.15 gives the smallest resolvable distance: min 0.61 / NA.d = λ  We are given 
λ = 600 nm and min 0.75 m 750 nm.d μ= =  
Solve: 

min

0.61λ (0.61)(600 nm)NA 0.49
750 nmd

= = =  

Assess: This is in the normal range for NA. 
 



24.26. Visualize: We are given 1 1 11.0 cm, 4.0 cm, 5.0 cm,h s f= = =  and 2 8.0 cm.f = −  
Solve: First compute the image from the first lens. 

( )( )1 1
1

1 1

5.0 cm 4.0 cm
20 cm

4.0 cm 5.0 cm
f ss
s f

′ = = = −
− −

 

1
1 1

1

20 cm(1.0 cm) 5.0 cm
4.0 cm

sh h
s
′ −′ = − = − =  

This is a virtual, upright image 20 cm  to the left of the first lens. 
The second lens is 12 cm  to the right of the first one, so 2 32 cm.s =  

( )( )2 2
2

2 2

8.0 cm 32 cm
6.4 cm

32 cm ( 8.0 cm)
f ss
s f

−
′ = = = −

− − −
 

2 1 5.0 cmh h′= =  

( )2
2 2

2

6.4 cm5.0 cm 1.0 cm
32 cm

sh h
s
′ −′ = − = − =  

This is a virtual, upright image 6.4 cm to the left of the second lens (5.6 cm to the right of the first lens). The image 
is 1.0 cm tall (the same size as the object). 
Assess: Ray tracing confirms these results. 
 



24.27. Model: The parallel rays can be considered to come from an object infinitely far away: 1s = ∞ . The 
lens is a diverging lens. 
Visualize: If 1s = ∞  the thin lens equation tells us that 1 1;s f′ ′=  we are given that 1 10 cm.f = −  We are also 
given for the mirror 2 10 cm.f =  
Solve: Since 1 10 cms′ = − the image is virtual 10 cm to the left of the lens. The image from the lens becomes the 
object for the mirror 2 30 cm;s⇒ =  this is three times the mirror's focal length, or 2 23 .s f=  

( )2 22 2
2 2

2 2 2 2

3 3 15 cm
3 2
f ff ss f

s f f f
′ = = = =

− −
 

Therefore the initial parallel rays are brought to a focus 15 cm to the left of the mirror, or 5 cm to the right of the 
lens. 
Assess: The answer is reasonable and can be verified by ray tracing. 
 



24.28. Visualize: The object is within the focal length of the converging lens, so we expect the image to be 
upright, virtual, and to the left of the lens. The image of the lens becomes the object for the mirror, and we expect 
the second image to be upright and virtual behind (to the right of) the mirror. 
Solve: 

( )( )1 1
1

1 1

10 cm 5 cm
10 cm

5 cm 10 cm
f ss
s f

′ = = = −
− −

 

The image of the lens becomes the object for the mirror 2 15 cm,s⇒ =  and we expect the second image to be 
upright and virtual behind (to the right of) the mirror. 

( )( )
( )

2 2
1

2 2

30 cm 15 cm
10 cm

15 cm 30 cm
f ss
s f

−
′ = = = −

− − −
 

( )1 2

1 2

10 cm 10 cm1.0 cm 1.3 cm
5.0 cm 15 cm

s sh h
s s
′ ′ − −⎛ ⎞⎛ ⎞′ = = =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

The final image is 10 cm  to the right of the mirror, or 15 cm  to the right of the lens. It is upright with a height 
of 1.3 cm.  
Assess: Ray tracing will verify the answer. 
 



24.29. Solve: (a) The image location from the first lens is 

1 1
1

1 1

( 2.5 cm)(2.5 cm) 1.25 cm
2.5 cm ( 2.5 cm)

f ss
s f

−′ = = = −
− − −

 

So the image from the first lens is 1.25 cm to the left of the first lens, upright and virtual. 
Now, 2 1.25 cm.s d= +  
We are told the final image is at infinity: 2 2 2 2 1.25 cms s f f d′ = ∞ ⇒ = ⇒ = +  

2 1.25cm 3.75 cmd f= − =  

(b) 

 
(c) 

1

1

0.50 cmsh h
s
′

′ = − =  

The angular size is 

2 2

0.50 cmtan 0.10 rad
5.0 cm

h h
f f

θ
′ ′

= ≈ = =  

(d) If the object were held at the eye’s near point, it would subtend: 

NP
1.0 cm 0.040 rad

25 cm 25 cm
hθ = = =  

The angular magnification is 

NP

0.10 rad 2.5
0.040 rad

M θ
θ

= = =  

Assess: The numerical answers seem to agree with the drawing. 
 



24.30. Visualize: See Figure 24.15. Parallel rays coming into the first lens will focus at the focal point of the 
first lens. If that position is also the focal point of the second lens then the rays will also leave the second lens 
parallel. 

 
Solve: (a) This is similar to a telescope. 

1 2d f f= +  

(b) Looking at the similar triangles in the diagram shows that 

1 2

1 2

w w
f f
=  

2
2 1

1

fw w
f

=  

Assess: Figure P24.30 says 2 1f f>  and our answer then shows that 2 1w w>  which is the goal of a beam 
expander. 
 



24.31. Visualize: Hard thought shows that if the left focal points for both lenses coincide then the parallel 
rays before and after the beam splitter are reproduced. The first lens diverges the rays as if they had come from 
the focal point of the converging lens. 

 
Solve: (a) 

2 1| |d f f= −  

But since we are given 1 0,f <  this is equivalent to 

2 1d f f= +  

(b) Looking at the similar triangles in the diagram shows that 

1 2

1 2| |
w w
f f

=  

2
2 1

1| |
fw w
f

=  

Assess: Figure P24.31 says 2 1| |f f>  and our answer then shows that 2 1w w>  which is the goal of a beam 
expander. 
 



24.32. Visualize: We simply need to work backwards. We are given 1 7.0 cmf =  and 2 15 cm.f =  We are 
also given 2 10 cm.s′ = −  We use this to find 2.s  
Solve: (a) 

2 2
2

2 2

(15 cm)( 10 cm) 6.0 cm
10 cm 15 cm

f ss
s f

′ −
= = =

′ − − −
 

So the final image is 6.0 cm to the left of the second lens, or 14 cm to the right of the first lens. That is, the object 
for the second lens is the image from the first lens, so 1 20 cm 6.0 cm 14 cm.s′ = = − =  

1 1
1

1 1

(7.0 cm)(14 cm) 14 cm
14 cm 7.0 cm

f ss
s f

′
= = =

′ − −
 

Thus, 14 cm.L =  
(b) To find the height and orientation we need to look at the magnification. 

1 2
1 2

1 2

14 cm 10 cm 1.7
14 cm 6.0 cm

s sm mm
s s

⎛ ⎞⎛ ⎞′ ′ −⎛ ⎞⎛ ⎞= = − − = − − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 

(1.0 cm)( 1.7) 1.7 cmh hm′ = = − = −  

The negative sign indicates that the image is inverted. 
Assess: Ray tracing would verify the answers. 
 



24.33. Model: The plane faces have an infinite radius of curvature. We are assuming the lens(es) are thin. 
Visualize: Use Equation 23.27, the lens makers’ equation: 

1 2

1 1 1( 1)n
f R R

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 

Solve: (a) For a symmetric convex lens call 1 2| | | |R R R= =  where the sign convention says 1 0R > and 2 0.R <  

1 2

1 1 1 1 1 2( 1) ( 1) ( 1)n n n
f R R R R R

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − = − + = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

Invert both sides. 

1
( 1) 2

Rf
n

=
−

 

Now for the plano-convex halves: 

1 1

1 1 1 1 1( 1) ( 1) 0 ( 1)n n n
f R R R

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − = − + = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∞ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

Invert both sides. 

1
1

( 1)
f R

n
=

−
 

2 2

1 1 1 1 1( 1) ( 1) 0 ( 1)n n n
f R R R

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − = − + = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∞ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

Invert both sides. 

2
1

( 1)
f R

n
=

−
 

From the three results we see that 1 2 2 .f f f= =  
(b) Use the thin-lens equation. 
As a single lens with 1

2 :s f=  

1
2

1
2

( )fs f fs f
s f f f

′ = = = −
− −

 

As a two-lens system with 1 2 2f f f= =  and 1 1
1 12 4 :s f f= =  

21
1 1 2

1 31
1 1 2 2

(2 )( ) 2
2 3

f s f f fs f
s f f f f

′ = = = = −
− − −

 

Since this is to the left of the lens 2
2 3s f=  

22 4
2 2 3 3

2 2 4
2 2 3 3

(2 )( )
2

f f ff ss f
s f f f f

′ = = = = −
− − −

 

We get the same result treating it as one symmetric convex lens or as two plano-convex halves (with zero 
separation). 
Assess: We can think of each plano-convex half as providing half the refraction. The answers are consistent. 
 



24.34. Model: Use the ray model of light. Assume both the lenses are thin lenses. 
Visualize:  

 
Solve: Begin by finding the image of the diverging lens, 

1 1 1

1 1 1
s s f
+ =

′
⇒

1

1 1 1
20 cm 20 cms

+ =
′ −

⇒ 1 10 cms′ = −  

This image is the object for the second lens. Its distance from the screen is 2 2 110 cm 10 cm 100 cm.s s′+ = − =  
The overall magnification is 

1 2 2hM mm
h
′

= = − = −  

The magnification of the diverging lens is 

( )1
1

1

10 cm 1
20 cm 2

sm
s

−′
= − = − =  

Thus the magnification of the converging lens needs to be 

2
2

2

4sm
s
′

= − = − ⇒ 2 24s s′ =  

Substituting this result into 2 2 100 cm,s s′+ =  we have s2 + 4s2 = 100 cm, which means s2 = 20 cm and 

2 80 cm.s′ =  We can find the focal length by using the thin-lens equation for the converging lens: 

2 2 2

1 1 1
s s f
+ =

′
⇒

2

1 1 1
20 cm 80 cmf

= + ⇒  f2 = 16 cm 

Hence, the second lens is a converging lens of focal length 16 cm. It must be placed 10 cm in front of the 
diverging lens, toward the screen, or 80 cm from the screen. 
 



24.35. Model: Yang has myopia. Normal vision will allow Yang to focus on a very distant object. In 
measuring distances, we'll ignore the small space between the lens and her eye. 
Solve: Because Yang can see objects at 150 cm  with a fully relaxed eye, we want a lens that creates a virtual 
image at 150 cms′ = −  (negative because it's a virtual image) of an object at cm.s = ∞  From the thin-lens 
equation, 

1 1 1 1 1 0.67 D
 m 1.5 mf s s

= + = + = −
′ ∞ −

 

So Yang gets a prescription for a 0.67 D−  lens which has 150 cm.f = −  
Since Yang can accommodate to see things as close as 20 cm  we need to create a virtual image at 20 cm  of 
objects that are at new near point.s =  That is, we want to solve the thin-lens equation for s  when 20 cms′ = −  
and 150 cm.f = −  

( )( )
( )

150 cm 20 cm
23 cm

20 cm 150 cm
fss
s f

− −′
= = =

′ − − − −
 

Assess: Diverging lenses are always used to correct myopia. 
 



24.36. Visualize: Use Equation 23.21: 

1 2 2 1n n n n
s s R

−
+ =

′
 

where 1 1.00n =  for air and 2 1.34n =  for aqueous humor. If we think of incoming parallel rays coming to a focus 
in the humor then we have s = ∞  and .s f′ =  
Solve: 

2 2 11.0 n n n
f R

−
+ =

∞
 

Solve for .R  

( )2 1

2

1.34 1.003.0 cm 0.76 cm
1.34

n nR f
n
− −

= = =  

Assess: If you think about the dimensions of an eye, this answer seems physically 
possible. 
 



24.37. Visualize: Use Equation 23.27, the lens makers' equation: 

( )
1 2

1 1 11n
f R R

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 

For a symmetric lens 1 2R R=  and 

( ) ( ) and  2 1
2 1
Rf R n f
n

= = −
−

 

Also needed will be the magnification of a telescope: obj eye eye obj/ /M f f f f M= − ⇒ = −  (but we will drop the 
negative sign). 
We are given obj 100 cm and 20.R M= =  
Solve: 

( ) ( ) ( )
obj

obj obj
eye eye

2 1 100 cm2 1 2( 1) 2 1 5.0 cm
20

R
f Rn

R n f n n
M M M

−
= − = − = − = = =  

Assess: We expect a short focal length and small radius of curvature for telescope eyepieces. 
 



24.38. Model: Assume that each lens is a simple magnifier with 25 cm / .M f=  
Visualize: 

obj obj
obj obj

25 cm 25 cmM f
f M

= ⇒ =  

eye eye
eye

25 cm 25 cm

eye

M f
f M

= ⇒ =  

Solve: (a) The magnification of a telescope is 

obj obj eye

eye obj

eye

25 cm

25 cm
f M M

M
f M

M

= − = − = −  

The way to maximize the magnitude of this is to have eye obj.M M>  

5.0 2.5
2.0

M = − = −  

The magnification is usually given without the negative sign, so it is 2.5 .×  
(b) To achieve this we used the 2.0×  lens as the objective, which coincides with the text which says the 
objective should have a long focal length and the eyepiece a short focal length. 
(c) 

obj eye
obj eye

25 cm 25 cm 25 cm 25 cm 17.5 cm
2.0 5.0

L f f
M M

= + = + = + =  

Assess: This is not a very powerful telescope. 
 



24.39. Model: To make a telescope you need an objective with a long focal length and an eyepiece with a 
short focal length. 
Visualize: 

1f
P

=  

Solve: 
(a) The lens with the smaller refractive power has the longer focal length and should be used as the object—
that’s the lens with 3.0 D.P = +  The 4.5 D+  lens should be used as the eyepiece. 
(b) 

obj eye

eye obj

4.5 D 1.5
3.0 D

f P
M

f P
= − = − = = −  

(c) In a telescope the lenses should be a distance apart equal to the sum of their focal lengths. 

obj eye
obj eye

1 1 1 1 0.56m
3.0 D 4.5 D

d f f
P P

= + = + = + =  

Assess: These numbers are reasonable, although a 4.5 D+  lens is fairly strong. You really could make yourself 
a telescope by holding the lenses a half-meter apart and get a little (1.5 )×  magnification. 
This cannot be done with the glasses of nearsighted people since they wear diverging lenses. 
 



24.40. Model: Assume thin lenses and treat each as a simple magnifier with 25cm/ .M f=  
Visualize: Equation 24.10 gives the magnification of a microscope. 

obj eye
obj eye

25cmLM m M
f f

= = −  

Solve: (a) The more powerful lens (4 )×  with the shorter focal length should be used as the objective. 
(b) Solve the equation above for L (drop the negative sign). 

25cm 25cm
4 2(12)( )( )

37.5 cm
25 cm 25 cm
obj eyeMf f

L = = =  

Assess: This is a long microscope tube. 
 



24.41. Visualize: We’ll use the thin-lens equation and also Equation 24.10: 

obj eye

25 cmLM
f f

= −  

Also recall that 1/ .P f=  
Solve: The power of each lens is 

1
1

1 1 50 D
0.020 m

P
f

= = =  2
1

1 2 100 D
0.010 m

P
f

= = =  

Since we want to use the more powerful lens as the objective, the lens labeled P2 will be the objective. This 
means the focal lengths of the objective and eyepiece are obj 1.0 cmf =  and eye 2.0 cm.f =  

(a) We want the eyepiece to 16 cmL =  from the objective, so eye16 cm 16 cm 2.0 cm 14 cm.s f′ = − = − =  The 
object distance for the objective is 

(1.0 cm)(14 cm) 1.1 cm
14 cm 1.0 cm

fss
s f

′
= = =

′ − −
 

(b) obj eye
eye

25 cm (14 cm) 25 cm 160
(1.08 cm) (2.0 cm)

sM m M
s f
′−

= = = − = −  

Assess: As expected, s is just beyond the focal point. We can use approximation in Equation 24.9 to get a similar 
answer: 

obj eye

25 cm (16 cm) 25 cm 200
(1.0 cm) (2.0 cm)

LM
f f

= = − = −  

but the approximation isn’t very good for this microscope. 
 



24.42. Model: While objs f≈  we will not assume they are equal. 

Visualize: Equation 24.9 says obj obj/ .m L f≈ −  We are given 180 mmL =  and obj 40,m = −  where the negative 
sign means the image is inverted. 
Solve: Solve for obj.f  

obj
obj

180 mm 4.5 mm
40

Lf
m

= − = =  

From Equation 24.8, eye eye eye(25 cm) / 25 cm/ 20 1.25 cm.M f f= ⇒ = =  For relaxed eye viewing the image of the 
objective must be 1.25 cm 12.5 mm=  from the eyepiece, so 180 mm 12.5 mm 167.5 mm.s′ = − =  Thus the sample 
distance is 

11 1 4.6 mm
4.5 mm 167.5 mm

s
−

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 

Assess: You need a short focal length to achieve 800×  magnification. We can also verify that obj.s f≈  

 



24.43. Model: The width of the central maximum that accounts for a significant amount of diffracted light 
intensity is inversely proportional to the size of the aperture. The lens is an aperture that focuses light. 
Solve: To focus a laser beam, which consists of parallel rays from ,s = ∞  the focal length needs to match the 
distance to the target: 5.0 cm.f L= = The minimum spot size to which a lens can focus is 

( )( )6 2
6 2.44 1.06 10  m 5.0 10  m2.44 5.0 10  m  fw

D D
λ − −

−
× ×

= ⇒ × = ⇒D = 2.6 cm. 

 



24.44. Model: Two objects are marginally resolved if the angular separation between the objects, as seen 
from your eye lens, is 1.22 ,Dα λ=  but the λ we want to use is the λ  in the eye: air / .nλ λ=  Let xΔ  be the 
separation between the two headlights of the oncoming car and let L be the distance of these lights from your 
eyes. For small angles, .x LαΔ =  
We are given 37 10  m,D −= ×  1.2 m,xΔ =  and air / 600 nm /1.33 450 nm.nλ λ= = =  
Solve: Let Δy be the separation between the two headlights of the incoming car and let L be the distance of 
these lights from your eyes. Then, 

( )
( )3

1.22 450 nm1.20 m 1.22
7.0 10  m

x
L L D

λα
−

Δ
= = = =

×
⇒

( )( )
( )( )

3

9

1.20 m 7.0 10  m
15 km

1.22 450 10  m
L

−

−

×
= =

×
 

Assess: The two headlights are not resolvable if L > 15 km, marginally resolvable at 15 km, and resolvable at L < 15 
km. 
 



24.45. Visualize: The angle subtended at the eye due to a circle of diameter d at a near point of 25 cm is 
/ 25 cm.dα =  The angle to the first dark minimum in a circular diffraction pattern is 1 1.22 / ,Dθ λ=  where 

air /nλ λ=  is the wavelength of the light in the eye and D is the pupil diameter. To just barely see the circle as a 
circle the condition 1α θ=  must be met. 

We are given 32.0 10  mD −= ×  and air / 600 nm /1.33 450 mm.nλ λ= = =  
Solve: Equating α  and 1θ  we have / 25 cm 1.22 / ,d Dλ=  which may be solved for the diameter of the circle. 

9
5

3

(25 cm)(1.22λ) (25 cm)(1.22)(450 10 m) 6.9 10  m 0.069 mm
2.0 10  m

d
D

−
−

−

×
= = = × =

×
 

Assess: The above number is about the size of a needle point. 
 



24.46. Visualize: For telescopes the angular resolution is 
1.22
D
λθ =  

And for small angles, .s rθ=  We want to know s. 
We are given 650 nm, 2.4 m,Dλ = =  and 1733,000 ly 2.8 10  km.r = = ×  
Solve: Combine the two equations. 
(a) 

9
17 101.22 (1.22)(650 10  m) 2.8 10  km 9.4 10  km

2.4 m
s r r

D
λθ

−×
= = = × = ×  

(b) The distance from the sun to Jupiter is 117.8 10  m.×  So we divide the answer from part (a) by this number. 
10

11

9.4 10  km 120
7.8 10  m
×

=
×

 

Assess: The HST is good but not good enough to resolve two objects as close together as the sun and Jupiter 
from a distance of 30,000 ly. 
 



24.47.  Model:  Two objects are marginally resolved if the angular separation between the objects is 
1.22 / .Dα λ=  

Visualize:  

 
Solve: (a) The angular separation between the sun and Jupiter is 

( ) ( )
( )

9 9
5

8

9

780 10  m 780 10  m 1.92 10  rad
4.3 light years 4.3 3.0 10 365 24 3600  m 

1.22 600 10  m1.22 0.038 m 3.8 cmD
D D

α

λα

−

−

× ×
= = = ×

× × × × ×

×
= = ⇒ = =

 

(b) The sun is vastly brighter than Jupiter, which is much smaller and seen only dimly by reflected light. In 
theory it may be possible to resolve Jupiter and the sun, but in practice the extremely bright light from the sun 
will overwhelm the very dim light from Jupiter. 
 



24.48. Visualize: We’ll start with Equation 24.15 and substitute in Equation 24.11 and an expression for α  
from Figure 24.14a. 
We are given obj min1.6 mm, 400 nm, 1.0, and 550 nm.f d n λ= = = =  
Solve: Solve for D. 

min
1

obj

0.61 0.61 0.61
NA sin / 2sin tan

d
n Dn

f

λ λ λ
α

−

= = = =
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

1

obj min

/ 2 0.61sin tan D
f nd

λ−
⎛ ⎞

=⎜ ⎟⎜ ⎟
⎝ ⎠

 

1 1

obj min

/ 2 0.61tan sinD
f nd

λ− −=  

1

obj min

/ 2 0.61tan sinD
f nd

λ−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

1 1
obj

min

0.61 0.61(550 nm)2 tan sin 2(1.6 mm) tan sin 4.9 mm
(1.0)(400 nm)

D f
nd

λ− −⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

The diameter of the lens must exceed 4.9 mm. 
Assess: A half centimeter is in the ballpark for microscope lens diameters. 
 



24.49. Model: For a diffraction-limited lens, the minimum focal length is the same size as its diameter. The 
smallest spot diameter over which you can focus light is wmin ≈ 2.5λ. 
Solve: (a) The smallest spot size is ( )9

min 2.5 2.5 800 10  m 2 m.w λ μ−≈ = × =  

(b) The total usable area of the optical disk is 

( ) ( )2 22 2 25.5 10  m 2 10  m 0.00825 mπ − −⎡ ⎤× − × =⎢ ⎥⎣ ⎦
 

The area of each pit is the area of one bit of information and is ( )( ) [ ]2 21.25 2 m 2.5 m .μ μ=⎡ ⎤⎣ ⎦  The area of 1 byte 
is 8 times this quantity and the area of 1 megabyte (MB) of information is 106 times more. This means the 
number of megabytes (MB) of data that can be stored on the disk is 

( )
2

26 6 1

0.00825 m 165 MB
8 2.5 10  m 10  MB− −

=
× × ×

 

Assess: A memory storage capacity of 165 MB is reasonable. 
 



24.50. Visualize: Physically, the light rays can either go directly through the lens or they can reflect from the 
mirror and then go through the lens. We can consider the image from the lens alone and then consider the image 
from mirror becoming the object for the lens. 
Solve: 
(a) First case: the lens gets the subscript 1’s and the mirror the 2’s. The location of the image from the lens is 

1 1
1

1 1

(10 cm)(5 cm) 10 cm
5 cm 10 cm

f ss
s f

′ = = = −
− −

 

The image is right at the mirror plane and a calculation for a mirror shows that when 2 0s =  then 2 0,s′ =  too. So 
the final image is at the mirror, 10 cm to the left of the lens. 

1

1

10 cm 2.0
5 cm

sm
s
′ −

= − = − =  

so (1.0 cm)(2.0) 2.0 cm.h hm′ = = =  
Second case: the mirror gets the subscript 1’s and the lens the 2’s. The location of the image from the mirror is 

1 1
1

1 1

(10 cm)(5 cm) 10 cm
5 cm 10 cm

f ss
s f

′ = = = −
− −

 

or 10 cm behind (to the left of) the mirror. This image now becomes the object for the lens and 2 20 cm.s =  

2 2
2

2 2

(10 cm)(20 cm) 20 cm
20 cm 10 cm

f ss
s f

′ = = =
− −

 

So the image is 20 cm to the right of the lens. 

1 2

1 2

10 cm 20 cm 2.0
5 cm 20 cm

s sm
s s

⎛ ⎞⎛ ⎞′ ′ −⎛ ⎞⎛ ⎞= − − = − − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 

so (1.0 cm)( 2.0) 2.0 cm,h hm′ = = − = −  where the negative sign indicates the image is inverted. 
In summary, both images are 2.0 cm tall; one is upright 10 cm left of the lens, the other is inverted 20 cm to the 
right of the lens. 
(b) 



 
Assess: The ray tracing verifies the calculations. 
 



24.51. Model: In the small angle approximation the angle subtended by Mars without the telescope is 
obj /D dθ =  where D is the diameter and d is the distance from the earth. 

Visualize: We are given eye 2.5 cm.f =  
Solve: 

eye
3 11

obj

0.50 0.50  rad 141
/ 6800 10  m /1.1 10  m 180

M
D d

θ π
θ

° ° ⎛ ⎞= = = =⎜ ⎟× × °⎝ ⎠
 

Ignoring the negative sign, 

obj

eye

f
M

f
=  

obj eye 141(2.5 cm) 353 cmf Mf= = =  

The length of the telescope is 

obj eye 352.5 cm 2.5 cm 355 cm 3.55 m 3.5 mL f f= + = + = = ≈  

Assess: This is longer than most amateur telescopes. 
 



24.52. Visualize: The plane left face will not refract any of the rays (which are parallel to each other and 
perpendicular to the face), so nothing happens until the rays hit the first curved surface between lens 1 and lens 2. 
We’ll need to twice (once for each curved surface) apply Equation 23.21: 

1 2 2 1n n n n
s s R

−
+ =

′
 

Solve: (a) For the first curved surface we say s = ∞  because the incoming rays are parallel. 

1 2 2 1 2

2 1

n n n n ns R
s R n n

− ′+ = ⇒ =
′∞ −

 

For the second curved surface (where the rays exit into the air) n2 is on the left and air 1.0n =  is on the right (so 
those will take the place of n1 and n2, respectively). Since the distance between the lenses is zero, s′  from the 
previous result will be plugged in for s for the second case. The final thing to note is that the magnitude of the 
new s f′ =  because the doublet brings parallel rays to a focus at f, but s′  is negative due to the sign convention 
in Table 23.3. 

2 air air 2

2

2 1

n n n n
n f RR

n n

−
+ =
−

−

 

Now solve for f. 

2 1 21 1n n n
R f R
− −

+ =
−

 

2 2 11 1 n n n
f R

− − +
=

−
 

2 12 1
Rf

n n
=

− −
 

(b) 

( ) ( )blue
2 1blue blue

2 1
Rf

n n
=

− −
    

( ) ( )red
2 1red red

2 1
Rf

n n
=

− −
 

In the condition we desire blue redf f= , so the two denominators must be equal. 

( ) ( ) ( ) ( )2 1 2 1blue blue red red
2 1 2 1n n n n− − = − −  

( ) ( ) ( ) ( )2 1 1 1blue red blue red
2 n n n n⎡ ⎤− = −⎣ ⎦  

2 1
1
2

n nΔ = Δ  

(c) Simply find the nΔ  for each type of glass and hope one is twice the other. 

crown 1.525 1.517 0.008nΔ = − =  

flint 1.632 1.616 0.016nΔ = − =  

Since flint
1
2crownn nΔ = Δ  then crown glass must be the second material, or the converging lens, while flint glass 

must be the first material, or the diverging lens. 
(d) Solve the original focal length expression for R. 

( )2 12 1R f n n= − −  



Since blue red ,f f=  it doesn’t matter which color we choose for the n’s (as long as we are consistent). Say we pick 
blue, so 1 1.632n =  and 2 1.525.n =  We are given 10.0 cm.f =  

( ) ( )10.0 cm 2 1.525 1.632 1 4.18 cmR = − − =⎡ ⎤⎣ ⎦  

Assess: The answers to the various parts fit together and the final result is reasonable. 
 



 
 

24-1 

24.53. Visualize: The effective focal length is defined as the distance from the midpoint between 
the two lenses to the point that initially parallel rays come to a focus. Because d f<  the image 
from the first lens is to the right of the second lens, so we will use a negative object distance 
when we analyze the second lens. 
Solve: (a) If the original object distance is very large 1( )s ≈ ∞ then 1 .s f′ =  This image is to the right of the right lens by 
an amount ,f d−  but since we are treating this as a negative object distance we will put in 2 ( ) .s f d d f= − − = −  The 
thin-lens equation for the second lens (the diverging one, with a negative focal length) becomes: 

2

1 1 1
d f s f

+ =
′− −

 

Solve for 2.s′  

2
2

( )
( ) ( )
f d f f fds

d f f d
− − −′ = =
− − −

 

This is the distance of the focus to the right of the second lens, however, we want the distance from the midpoint between 
the lenses, so we add 1

2 d  to the answer. 

2 2 2 21 1
2 2 2

eff 2
1 1
2 2

f fd f fd d f fd df s d d
d d d d
− − − +′= + = + = + =  

(b) We'll plug 1
2d f=  and 1

4d f=  in turn into the previous result. Then Equation 24.1 shows that if we take the ratios of 
the resulting efff ’s we'll have the zoom. 

( )
( )

2 21 1 1
4 2 4

1
4

2 21 1 1
2 2 2

1
2

( ) ( )
2 2 21 11

eff 1 4 4 322
2 2 21 1 1( ) ( )

eff 1 2 4 2 8

( )
zoom

( )

f f f f
fd f

f f f f
d f f

f f f f
f f f f

− +

=

− +
=

⎛ ⎞ − +
= = = ⎜ ⎟ − +⎝ ⎠

 

Cancel 2f  from each term. 

251 1
4 32 32

51 1
2 8 8

14 5 5(2) (2) 2.5
2 1 4 2

− +⎛ ⎞ = − = =⎜ ⎟ − +⎝ ⎠
 

So the lens is a 2.5× zoom lens. 
Assess: This is a reasonable amount of zoom. The magnification spans a factor of 2.5. 
 


