
Tessy
Automated, dynamic unit/module test

for embedded applications

CTE
Classification Tree Editor

for test case specifications

Automated Unit Testing
And Debugging At Its Best

Test Interface Editor and Test
Definition Editor (parts of Tessy)

State Your Case
Using the Test Definition Editor (TDE), test cases for
functions are then defined by specifying values for input
parameters, the expected results and how to compare
the actual results with the expected results to determine
if a test case has passed or failed. The test cases are
saved automatically in a database.

Meet Your Test Driver
Tessy now generates source code for the test driver,
which calls the function under test. If this function calls
subroutines that are not yet implemented, Tessy is able
to create stub functions to replace them. The user may
provide source code for a stub function or Tessy can
optionally check the values of parameters passed to
the stub function. It can also check the order of stub
function calls.

Go Tessy Go
Using a suitable compiler, Tessy compiles and links the
driver source code, the function under test and any stub
functions, and then downloads the resulting executable
to the test system. This might be a Hitex in-circuit
emulator in stand-alone mode or one connected to a
target system. Testing can also be performed on a host
PC. Tessy executes each test case and then determines if
it has succeeded or failed. Tessy may accept deviations
from the exact results. A test report will then be
generated in configurable levels of detail and in various
formats such as html, doc, xls, or txt. Test results can
even be displayed graphically, using MATLAB®.

Tessy – The Invaluable Test Tool
Tessy performs automatic dynamic unit testing of
embedded software and facilitates all other aspects of
software testing. It saves an embedded development
project tremendous amounts of time, particularly when
it comes to regression testing. Regression testing itself is
a key feature in achieving software quality.

Unleash It For A Test Run
Tessy starts off by analyzing the source module and then
lets the user specify the function to be tested. It then
identifies parameters of this function, such as inputs,
outputs or both and any external or global variables
associated with the function and the subroutines within
it. Initial results are displayed in the Test Interface
Editor (TIE), where they can be modified should this ever
become necessary.

Batch Testing – Let’s You Go Home
Tessy allows the user to run a selected set of test
cases without any user intervention. So an extensive
regression test can be run overnight and the results can
be analyzed the next day.

Easy Management Of Test Data
Tessy is able to export and import test data to and from
other tools e.g. Excel. This includes data from CTE test
case specifications. Furthermore, Tessy is capable of
running a test using input parameters only, with no
expected results specified. If the actual results of this
test match the predicted ones, Tessy may use them as the
expected output values for subsequent test runs. Tessy
can generate random test data.Interface Data Assign Editor IDA (part of Tessy)

Regression Testing –
Did Your Modifications Cause Errors?
Regression testing can reveal if new errors have
been introduced during further development of
the application, such as bug fixes in other sections,
rewriting of the tested function, switching to a new
compiler version or porting the software to another
microcontroller architecture. Tessy’s easy-to-use
regression testing ability is an extremely helpful method
of checking modified software and thus ensuring
software quality.

The test documentation
can be generated in HTML format

Why Tessy
Eases Testing

Tessy And HiTOP – Dream Debugging
Using Tessy together with HiTOP, one thing’s for sure:
if a test case fails, an easy and efficient debugging is
guaranteed. Tessy is able to re-execute the test case
and have HiTOP set a breakpoint at the function’s point
of entry. So HiTOP is directed to the beginning of the
function under test, with the parameters that caused the
wrong result. HiTOP’s extremely powerful features and
the debug system can now be used to reveal the culprit.
Tessy’s built-in editor can be used to fix the bug, and the
test case can be re-run.

Re-Use Test Data And Save Time
If any interface element of a tested function has been
changed in the course of the development process, Tessy
allows the user to reassign old interface elements to
new ones. Test data from an earlier interface can thus be
re-used with the new one, which considerably aids the
regression testing process.

HiTOP Source Window with Breakpoint set by Tessy

ASAP2 Files Recognized
Tessy recognizes ASAP2 files, which enables the user to
use physical values (e.g. the temperature in degrees
Celsius) instead of the integer representation (used by
the microcontroller) of that physical value. Additional
information from the ASAP2 file (e.g. unit description,
minimum and maximum values) may be displayed
within the Tessy tools and reports.

Code Coverage – Ensure Everything’s Tested
This feature identifies which code branches and
subroutines are used and how often. It reveals if any
sections of code are left untested and hence if any
additional test cases are needed.

Software Quality
Needs Tessy

Supported Compilers/Architectures
Since Tessy analyzes source code intended for a
specific embedded systems compiler and a specific
microcontroller architecture, and it also compiles and
links the test object using that compiler, Tessy must
be adapted to the particular compiler/architecture
in question. Currently Tessy supports more than 60
combinations of microcontroller/compiler/debugger.

Please check our web sites www.hitex.com/perm/tessy.
htm or www.hitex.de/perm/tessy.htm for a list of
compilers/architectures supported.

Tessy runs on WindowsNT/2000/XP machines.

Both Tessy and the CTE originate from DaimlerChrysler’s
software technology laboratory in Berlin, Germany.

User’s Original Binary Testing
In collaboration with HiTOP, this feature lets the
user run tests with the original application in place
of the special test application created by Tessy. This
significantly simplifies the test process and ensures
that the real application is being tested with all its
peculiarities and located in its final target configuration.
The test cases are specified and run as usual using
Tessy’s unit testing features.

ASAP support allows
to use physical test values

Classification Tree Editor (CTE)

CTE And The
Classification Tree Method
The Classification Tree Method supports a developer
confronted with issues such as:

-> Finding the ”right” test cases
-> Minimizing a set of test cases while assuring
 that none are missing
-> Estimating the amount of testing required
-> Defining criteria needed to conclude testing
 without risking integrity of the test process

The Classification Tree Method transforms a problem
specification systematically into a set of error-sensitive,
low-redundancy test cases. This method classifies test
relevant aspects using the equivalence partitioning
method and leads to test case specifications.

This approach is intuitive and easy to learn. It requires
and encourages the developer to employ their creativity.
Because thinking about the problem specification is at the
very beginning, the Classification Tree Method also reveals
inconsistencies or omissions in the problem specification.

Design Tests
For Confidence

The Classification Tree Editor (CTE) is a graphical tool
that supports the Classification Tree Method. In the
upper window, the classification tree is drawn. In the
lower window, a line in the combination table specifies
a test case. You can annotate information such as state
descriptions, expected results, values for classes to the
tree as well as to the test case specifications. Bigger
trees may be split into sub-trees. The editor is able to
export test case specifications to Tessy and in various
file formats such as plain text or HTML and to Tessy, of
course.

Although CTE is included in Tessy, its use is not only
limited to embedded systems and it is therefore
available as a separate product also.

Specification of test sequences in the CTE

Tessy/CTE
-> Jump start into testing
-> Test data management
-> Automated test execution
-> Seamless integration with HiTOP
-> Powerful regression testing
-> Unlimited number of test cases
-> Test coverage
-> Test documentation

What is Unit Testing?
During unit testing of C programs, a single C-level
function is tested rigorously and in isolation from
the rest of the application. Rigorous means that the
test cases are specially made for the unit in question
and that they comprise of input data that may be
unexpected by the unit under test. Isolated means that
the test result does not depend on the behavior of the
other units in the application. Isolation from the rest of
the application can be achieved by directly calling the
unit under test and replacing calls to other units by stub
functions.

What are the Benefits of Unit Testing?
Reduces Complexity of Test Case Specification
Instead of trying to create test cases that test the whole
set of interacting units, the test cases for unit testing
are specific to the unit under test (divide-and-conquer).
Test cases can easily comprise of input data that is
unexpected by the unit under test or by even random
input test data, something which is hard to achieve if
the unit under test is called by a fully-functioning unit
located elsewhere in the application.

Easy Fault Isolation
If the unit under test is tested in isolation from the other
units, detecting the cause of a failed test case is easy. The
fault must be related to the unit under test, and not to
an unit further down the calling hierarchy.

Finds Errors Early
Unit testing can be conducted as soon as the unit to be
tested compiles successfully. Therefore errors inside the
unit can be detected very early.

Saves Money
It is generally accepted that errors detected late in a
project are more expensive to correct than errors that
are detected early. Hence unit testing saves money.

Gives Confidence
Unit testing gives confidence. After the unit testing, the
application will be made up of single, fully tested units.
A test for the whole application will then be more likely
to pass. If some tests fail, the reason will probably stem
from the interaction of the units and not from an error
inside a particular unit. The search for the failure can
concentrate on this and need not question the internal
operation of the units.

B0-Tessy.indd July 2005-004

