AT91 USB CDC Driver Implementation

1. Introduction

The Communication Device Class (CDC) is a general-purpose way to enable all
types of communications on the Universal Serial Bus (USB). This class makes it pos-
sible to connect telecommunication devices such as digital telephones or analog
modems, as well as networking devices like ADSL or Cable modems.

While a CDC device enables the implementation of quite complex devices, it can also
be used as a very simple method for communication on the USB. For example, a CDC
device can appear as a virtual COM port, which greatly simplifies application pro-
gramming on the host side.

The purpose of this document is to explain how to implement CDC on AT91 ARM®
Thumb® based microcontrollers using the AT91 USB Framework offered by Atmel®.
For this purpose, a sample implementation of a USB to Serial converter is described
step-by-step.

2. Related Documents

[1] Universal Serial Bus Class Definitions for Communication Devices, Version 1.1,
January 19, 1999.

[2] Atmel Corp., AT91 USB Framework, 2006.

ATMEL

Y ()

AT91 ARM
Thumb
Microcontrollers

Application
Note

6269B-ATARM-01-Jul-09

ATMEL

3. Communication Device Class Basics

3.1 Purpose

3.2 Architecture

3.21

3.2.2

Figure 3-1.

2 Application Note

Interfaces

Endpoints

This section gives some basic information about the Communication Device Class, such as
when to use it and which drivers are available for it. Its architecture is also described.

CDC is used to connect communication devices, such as modems (digital or analog), tele-
phones or networking devices. Its generic framework supports a wide variety of physical layers
(xDSL, ATM, etc.) and protocols.

In this document, CDC is used to implement a USB to a serial data converter. Serial ports (also
known as COM or RS-232 ports) are still widely used, but most modern PCs (especially laptops)
are now shipped without serial ports. A USB to serial converter can be used in this case to
bridge a legacy RS-232 interface with a USB port.

Two interfaces are defined by the CDC specification 1.1. The first one, the Communication
Class Interface, is used for device management. This includes requests to manage the device
state, its responses, as well as event notifications. This interface can also be optionally used for
call management, i.e., setting up and terminating calls as well as managing their parameters.

Another interface is defined for generic data transmissions. It is referred to as the Data Class
Interface. It provides a means for a communication device to actually transfer data to and from
the host. In addition, it also enables the multiplexing of data and commands on the same inter-
face, through the use of wrappers.

The Communication Class Interface requires at least one endpoint, which is used for device
management. Default control endpoint 0 is used for this task. Optionally, another endpoint can
be dedicated to events notification. This will usually be an Interrupt IN endpoint.

For the Data Class Interface, endpoints must exist in pairs of the same type. This is necessary to
allow both IN and OUT communication. Only the Bulk and Isochronous types can be used for
these endpoints.

CDC Class Driver Architecture

Host

Device

[Data Class Interface Communication Class Interfacej

== N ________________
[

Communication per|phera|

6269B-ATARM-01-Jul-09

- ___ Application Note

3.23 Models
To account for the wide variety of existing communication devices, several models have been
defined. They describe the requirements in term of interfaces, endpoints and requests that a
device must fulfill to perform a particular role. Here is a list of models defined in the CDC specifi-
cation 1.1, grouped by their intended functionality:
* POTS (Plain Old Telephone Service)
— Direct Line Control Model
— Datapump Model
— Abstract Control Model
 Telephone
— Telephone Control Model
* ISDN
— Multi-Channel Model
— USB CAPI Model
* Networking
— Ethernet Networking Model
— ATM Networking Control Model

Some of these models and their uses will be detailled further in this document, along with the
corresponding implementation cases.

3.24 Class-Specific Descriptors
CDC-specific information is described using Functional Descriptors. They define various
parameters of an interface, such as how the device handles call management, or model-specific
attributes.

Since the CDC specification defines quite a number of functional descriptors, they are not
detailed here. Instead, they are presented in the various case studies of this document in which
they are used.

3.3 Host Drivers

Most Operating Systems (OS) now include generic drivers for a wide variety of USB classes.
This makes developing a device simpler, since the host complexity is now handled by the OS.
Manufacturers can thus concentrate on the device itself, not on developing specific host drivers.

Here is a brief list of the various CDC implementations supported by several OS:

+ Windows®
— Abstract Control Model
— Remote NDIS

« Linux®

— Abstract Control Model

— Ethernet Model

4. USB to Serial Converter

This section describes the implementation of an USB to serial converter using the CDC class
and the AT91 USB Framework. Refer to the Atmel document, literature no. 6263 for information

ATMEL ;

6269B-ATARM-01-Jul-09

4.1 Purpose
Figure 4-1.
4.2 Architecture

4.3

Model

ATMEL

on the USB framework, and to the CDC Specification 1.1 and the USB Specification 2.0 for
USB/CDC-related details.

While the USB is increasingly used for a lot of new products, many legacy devices still use a
basic RS-232 (also named serial or COM) port to connect to a PC. This kind of product is still
widely available, but most computer manufacturers are starting to ship their machines without
any COM port. A USB to serial converter can be used to add a virtual COM port to a computer,
enabling the connection to a legacy RS-232 device.

A virtual COM port could also be used to provide a way for an USB device to connect to older
PC applications. This is also a simple way to communicate through the USB, as no custom
driver programming is needed.

Bridging a Legacy Device and a PC with a USB to Serial Converter

Legacy device USB to Serial converter

Serial port USART H USB Device USB Host

The AT91 USB Framework offers an APl which makes it easy to build USB class drivers. The
example software provided with this application note is based on this framework. Figure 4-2
shows the application architecture with the framework.

CDC serial driver

«— User application .

(Standard)}« Specific)

Hardware layer

UDP Controller

The CDC specification defines a model which suits this application perfectly: the Abstract Con-
trol Model (ACM). It implements the requests and notifications necessary to communicate with
an RS-232 interface.

The Abstract Control Model requires two interfaces, one Communication Class Interface and
one Data Class Interface. Each of them must have two associated endpoints. The former shall
have one endpoint dedicated to device management (default Control endpoint 0) and one for
events notification (additional Interrupt IN endpoint).

The Data Class Interface needs two endpoints through which to carry data to and from the host.
Depending on the application, these endpoints can either be Bulk or Isochronous. In the case of

Application Note m—————————

6269B-ATARM-01-Jul-09

- ___ Application Note

4.4 Descriptors

a USB to serial converter, using Bulk endpoints is probably more appropriate, since the reliability
of the transmission is important and the data transfers are not time-critical.

The descriptors used by the USB to serial converter are mostly standard ones, i.e., defined in
the USB Specification 2.0. The following code examples thus use the structures described in the
AT91 USB Framework application note.

For CDC-specific descriptors, new types are needed. Their implementation is trivial however, as
they are fully described in the CDC specification. Only the values contained in each descriptor
are detailed, but the list of the necessary structures for this example is found below:

» CDCHeaderDescriptor

+ CDCCallManagementDescriptor

» CDCAbstractControlIManagementDescriptor

* CDCUnionDescriptor

441 Device Descriptor

6269B-ATARM-01-Jul-09

The Device Descriptor must specify the value 02h, corresponding to the Communication
Device Class, in its bDeviceClass field. This is necessary to have the host driver correctly enu-
merate the device: since a CDC device often displays more than one interface, they have to be
logically grouped together and not considered separate functionalities.

No subclass codes or protocol codes are defined for the CDC.

Here is how the device descriptor looks when using the S_usb_device descriptor structure of
the AT91 USB Framework:

const USBDeviceDescriptor deviceDescriptor = {

sizeof (USBDeviceDescriptor),
USBGenericDescriptor DEVICE,
USBDeviceDescriptor USB2_ 00,
CDCDeviceDescriptor CLASS,
CDCDeviceDescriptor SUBCLASS,
CDCDeviceDescriptor PROTOCOL,
BOARD USB_ENDPOINTS MAXPACKETSIZE (0),
CDCDSerialDriverDescriptors_VENDORID,
CDCDSerialDriverDescriptors_PRODUCTID,
CDCDSerialDriverDescriptors RELEASE,
0, // No string descriptor for manufacturer
1, // Index of product string descriptor is #1
0, // No string descriptor for serial number
1 // Device has 1 possible configuration
i
The Vendor ID and Product ID fields are used to determine which driver to use when the device
is enumerated. The Vendor ID is provided by the USB-IF organization after registration; the
product ID is completely vendor-specific. In the example implementation provided with this doc-
ument, the Atmel vendor ID (03EBh) is used along with a custom product ID (6119h).

ATMEL ;

4.4.2

443

444

ATMEL

Configuration Descriptor

When requested by the host, the configuration descriptor is followed by interface, endpoint and
class-specific descriptors. While the CDC specification does not define any special values for
the configuration descriptor, a set of class-specific descriptors is provided. They are referred to
as Functional Descriptors, and some of them have to be implemented.

// Standard configuration descriptor
{

sizeof (USBConfigurationDescriptor),
USBGenericDescriptor CONFIGURATION,
sizeof (CDCDSerialDriverConfigurationDescriptors),
2, // There are two interfaces in this configuration
1, // This is configuration #1
0, // No string descriptor for this configuration
BOARD _USB_BMATTRIBUTES,
USBConfigurationDescriptor POWER (100)

b

Communication Class Interface Descriptor

The first interface to follow the configuration descriptor should be the Communication Class
Interface descriptor. It should specify the Communication Class Interface code (02h) in its
binterfaceClass field.

The binterfaceSubClass value selects the CDC Model used by the interface. In this case, the
code corresponding to the Abstract Control Model is 02h.

Finally, a protocol code can be supplied if needed. Since this is not necessary for the USB to
serial converter, it can be left at 0x00.

// Communication class interface standard descriptor
{
sizeof (USBInterfaceDescriptor),
USBGenericDescriptor INTERFACE,
0, // This is interface #0
0, // This is alternate setting #0 for this interface
1, // This interface uses 1 endpoint
CDCCommunicationInterfaceDescriptor CLASS,
CDCCommunicationInterfaceDescriptor ABSTRACTCONTROLMODEL,
CDCCommunicationInterfaceDescriptor NOPROTOCOL,
0 // No string descriptor for this interface
j
While the Communication Class Interface uses two endpoints (one for device management and
one for events notification), the interface descriptor should have its bNumEndpoints field set to
0x01: the default control endpoint 0 is not included in the count.

Functional Descriptors

Several Functional Descriptors must follow the communication class interface descriptor.
They are necessary to define several attributes of the device. The functional descriptor structure
contains the descriptor length, type and subtype, followed by functional information.

Application Note m—————————

6269B-ATARM-01-Jul-09

- ___ Application Note

4.4.4.1 Header

The bDescriptorType value is always equal to CS_INTERFACE (24h), since CDC-specific
descriptors only apply to interfaces. The values for the other two fields, bFunctionLength and
bDescriptorSubType, are function-dependent.

The first functional descriptor must always be the Header Functional Descriptor. It is used to
specify the CDC version on which the device is based (current version is 1.1):

// Class-specific header functional descriptor
sizeof (CDCHeaderDescriptor),
CDCGenericDescriptor INTERFACE,
CDCGenericDescriptor HEADER,
CDCGenericDescriptor CDC1 10

4.4.4.2 Call Management

Next comes the Call Management Functional Descriptor. This one indicates how the device
processes call management. If the device performs the call management duty itself, the first bit
of the bmCapabilities field must be set to one. In addition, call management requests can be
multiplexed over the data class interface instead of being sent on the Control endpoint 0, by set-
ting the second bit. According to the CDC specification, a device using the Abstract Control
Model should process call management itself, so bit DO will be set. The last byte (bDatalnter-
face) has no meaning here, since bit D1 of bmCapabilities is cleared.

// Class-specific call management functional descriptor
sizeof (CDCCallManagementDescriptor),
CDCGenericDescriptor INTERFACE,
CDCGenericDescriptor CALLMANAGEMENT,
CDCCallManagementDescriptor SELFCALLMANAGEMENT,

0 // No associated data interface

b

4.4.4.3 Abstract Control Management

6269B-ATARM-01-Jul-09

Since the USB to serial converter uses the Abstract Control Model, the corresponding functional
descriptor (Abstract Control Management Functional Descriptor) must be transmitted to give
more information on which requests/notifications are implemented by the device. For this exam-
ple, the driver is going to support all optional requests/notification except NetworkConnection;
thus, the bmCapabilities field value will be set to 07h.

// Class-specific abstract control management functional descriptor
sizeof (CDCAbstractControlManagementDescriptor),
CDCGenericDescriptor INTERFACE,

CDCGenericDescriptor ABSTRACTCONTROLMANAGEMENT,
CDCAbstractControlManagementDescriptor LINE

ATMEL v

ATMEL

4.4.4.4 Union

Finally, the Union Functional Descriptor makes it possible to group several interfaces into one
global function. In this case, the Communication Class Interface will be set as the master inter-
face of the group, with the Data Class Interface as slave 0:

// Class-specific union functional descriptor with one slave interface
sizeof (CDCUnionDescriptor),
CDCGenericDescriptor INTERFACE,
CDCGenericDescriptor_UNION,
0, // Number of master interface is #0

1 // First slave interface is #1

b

445 Notification Endpoint Descriptor

As said previously, the notification element used by the Abstract Control Model is an Interrupt IN
endpoint. The user-defined attributes are the endpoint address and the polling rate.

When choosing endpoint addresses, the specificities of the USB controller should be taken into
account. For example, on AT91SAMY7S chips, the UDP has only four endpoints, one of which is
used by the default Control endpoint 0. Since only the second and third endpoints have dual
FIFO banks, it seems wiser to use them for the Data Class Interface and have the last one used
for events notification.

Finally, the polling rate should be set depending on the interrupt source. In this case, this will be
a USART. Since this is a fairly slow interface, the polling rate can be relatively low, meaning the
binterval value can be high.

Here is how the natification endpoint descriptor is declared in the example software:

// Notification endpoint standard descriptor
{
sizeof (USBEndpointDescriptor),
USBGenericDescriptor ENDPOINT,
USBEndpointDescriptor ADDRESS (USBEndpointDescriptor IN,
CDCDSerialDriverDescriptors NOTIFICATION),
USBEndpointDescriptor INTERRUPT,
MIN (

BOARD USB_ ENDPOINTS MAXPACKETSIZE (CDCDSerialDriverDescriptors NOTIFICATION)
, USBEndpointDescriptor MAXINTERRUPTSIZE FS),

10 // Endpoint is polled every 10ms

b

4.4.6 Data Class Interface Descriptor

The Data Class Interface Descriptor follows the Communication Class Interface and its related
functional and endpoint descriptors. The Data Class Interface itself will have two endpoint
descriptors following it.

The Data Class Interface code is 0Ah, and there is no subclass code. Several protocol codes
are available; in this example, none is used. However, the v.42bis protocol could be used to
compress the data if supported by the legacy device.

// Data class interface standard descriptor

8 Application Note m—————————
6269B—-ATARM-01-Jul-09

- ___ Application Note

sizeof (USBInterfaceDescriptor),

USBGenericDescriptor INTERFACE,

1, // This is interface #1

0, // This is alternate setting #0 for this interface
2, // This interface uses 2 endpoints
CDCDatalInterfaceDescriptor CLASS,
CDCDhataInterfaceDescriptor SUBCLASS,
CDCDataInterfaceDescriptor NOPROTOCOL,

0 // No string descriptor for this interface

b

4.4.7 Data IN & OUT Endpoint Descriptors
The Data Class Interface requires two additional endpoints, so the corresponding Endpoint
Descriptors must follow. It was decided previously that those endpoints would be Bulk IN/OUT,
since it is more appropriate for this particular application.

Since addresses 00h and 03h are already taken by the default Control endpoint 0 and the Inter-
rupt IN notification endpoint (respectively), the data OUT and IN endpoints will take addresses
01h and 02h.

Here are the two descriptors:

// Bulk-OUT endpoint standard descriptor
{
sizeof (USBEndpointDescriptor),
USBGenericDescriptor ENDPOINT,
USBEndpointDescriptor ADDRESS (USBEndpointDescriptor OUT,
CDCDSerialDriverDescriptors_ DATAOUT) ,
USBEndpointDescriptor BULK,
MIN (BOARD USB_ ENDPOINTS MAXPACKETSIZE (CDCDSerialDriverDescriptors DATAOUT) ,
USBEndpointDescriptor MAXBULKSIZE FS),
0 // Must be 0 for full-speed bulk endpoints
b
// Bulk-IN endpoint descriptor
{
sizeof (USBEndpointDescriptor),
USBGenericDescriptor ENDPOINT,
USBEndpointDescriptor ADDRESS (USBEndpointDescriptor IN,
CDCDSerialDriverDescriptors DATAIN) ,
USBEndpointDescriptor BULK,
MIN (BOARD_USB_ENDPOINTS_ MAXPACKETSIZE (CDCDSerialDriverDescriptors_DATAIN),
USBEndpointDescriptor MAXBULKSIZE FS),
0 // Must be 0 for full-speed bulk endpoints

b

ATMEL ;

6269B-ATARM-01-Jul-09

ATMEL

4438 String Descriptors

Several descriptors (device, configuration, interface, etc.) can specify the index of a string
descriptor to comment their use. These strings are completely user-defined and have no impact
on the actual choice of driver made by the OS for the device.

4.5 Class-specific Requests

The CDC specification defines a set of class-specific requests for devices implementing the
Abstract Control Model. This section details those requests, including their uses and implemen-
tation. Please refer to section 3.6.2.1 of the CDC specification 1.1 for more information about the
Abstract Control Model Serial Emulation and the associated requests and notifications.

4.51 SendEncapsulatedCommand, GetEncapsulatedResponse

4.5.1.1 Purpose

These two requests are used when a particular control protocol is used with the communication
class interface. This is not the case for a virtual COM port, so they do not have to be imple-
mented, even though they are supposed to be mandatory. In practice, they should never be
received.

4.5.2 SetCommFeature, GetCommFeature, ClearCommFeature

4.5.2.1 Purpose

The Set/Get/ClearCommFeature requests are used to modify several attributes of the
communication.

The first attribute is the currently used Country Code. Some devices perform differently, or have
different legal restrictions depending on the country in which they operate. Therefore, a country
code is necessary to identify the corresponding parameters. However, this is useless for a USB
to serial converter, since it does not connect to a national or country-dependent network.

The Abstract State of the device can also be modified through the use of those requests. The
first feature which can be altered is whether or not calls are multiplexed over the data class inter-
face. Since it has already been specified in the call management functional descriptor (see
Section 4.4.4.2 on page 7) that this is not supported in this example, it is not meaningful.

The Idle state of the device can be toggled using this request. When in idle state, a device shall
not accept or send data to and from the host.

453 SetLineCoding, GetLineCoding

4.5.3.1 Purpose

These two requests are sent by the host to either modify or retrieve the configuration of the
serial line, which includes:

» Baudrate

* Number of stop bits

* Parity check

* Number of data bits

When the terminal application (such as HyperTerminal) on the host (PC) side changes the set-
ting of the COM port, a SetLineCoding request is sent with the new parameters. The host may
also retrieve the current setting using GetLineCoding, not modifying them if they are correct.

10 Application Note m——————

6269B-ATARM-01-Jul-09

- ___ Application Note

4.5.3.2 Implementation

When a SET_LINE_CODING request is received, the device should first read the new parame-
ters, which are held in a 7-byte structure described in the CDC specification 1.1, section 6.2.13.
The device must then program the new parameters in the USART. A callback must be provided
to the USBD_Read function, with a pointer to access the received data.

The code handling GET_LINE_CODING shall simply invoke the USBD_Write function to send
the current settings of the USART to the host.

There are two possible options for storing the current settings. The most obvious one is to store
and retrieve them directly from the USART. This has the advantage of saving memory. But,
since the parameters are unlikely to be stored in the same way as the CDC-defined structure,
they will have to be parsed for each GET_LINE_CODING request. Another option is to store the
received values in a dedicated member structure of the class driver, for easy access.

454 SetControlLineState

4.5.4.1 Purpose
This request is sent by the host to notify the device of two state changes. The first bit (D0O) of the
wValue field of the request indicates whether or not a terminal is connected to the virtual COM
port. Bit D1 indicates that the USART should enable/disable its carrier signal to start/stop receiv-
ing and transmitting data.
In practice, the USB to serial converter should operate only when those two bits are set. Other-
wise, it should not transmit or receive data.

4.5.4.2 Implementation

4.5.5 SendBreak

4.5.5.1 Purpose

4.6 Notifications

6269B-ATARM-01-Jul-09

Since the SET_CONTROL_LINE_STATE request does not have a data payload, the device
only has to acknowledge the request by sending a ZLP (zero-length packet), using the
USBD_Write method with data sent zero.

Before that, the wValue field should be parsed to retrieve the new control line state. A single
boolean variable can be used to keep track of the connection state. If both the DO and D1 bits
are set, then the converter should operate normally, i.e., forward data between the USART and
the USB host. Otherwise, it should stop its activity.

The SendBreak request is used to instruct the device to transmit a break of the specified length
on the RS-232 line. This signal is sometimes used to get the attention of the connected machine.

Notifications are sent by the device when an event, such as a serial line state change, has
occurred. In this example, they are transmitted through a dedicated Interrupt IN endpoint. A spe-
cial header must precede the data payload of each notification. This header has the same
format of a SETUP request, so the USBGenericRequest structure defined in the AT91 USB
framework can be used.

Note that the device should only send a natification when there is a state change, and not con-
tinuously. This does not really matter in practice, but only sending notifications sporadically will
reduce the stress on the device.

ATMEL :

4.6.1

4.6.1.1

4.6.2

4.6.2.1

4.6.3

4.6.3.1

4.6.3.2

12

ATMEL

NetworkConnection

Purpose

The NetworkConnection notification is used to tell the host whether the USB to serial converter
is connected on its RS-232 side. In the case of a USART, there is no way get this information,
unless coupled with an extra signal. Therefore, this notification is not supported by the USB to
serial converter.

ResponseAvailable

Purpose

SerialState

Purpose

This notification allows the device to tell the host that a response is available. However, since it
has already been mentioned that the GetEncapsulatedResponse request is not relevant to this
case study (see Section 4.5.1.1 on page 10), this notification is useless.

This command acts as an interrupt register for the serial line. It notifies the host that the state of
the device has changed, or that an event has occured. The following events are supported:

+ Buffer overrun

* Parity error

* Framing error

* Ring signal detection mechanism state

* Break detection mechanism state

» Transmission carrier state

* Receiver carrier detection mechanism state

Several of these values are only used for modem device, namely ring signal detection, transmis-
sion carrier state and receiver carrier detection.

Implementation

This notification can be directly tied with the status register of the USART. Indeed, the latter con-
tains all the required information. An interrupt can be used to notify the device when the USART
state changes; the corresponding notification can then be sent to the host.

To send a SERIAL_STATE notification, the device should first transmit the corresponding notifi-
cation header. As noted previously, it has a format identical to a SETUP request, so a
USBGenericRequest instance can be used to store the necessary information. In the following
example, a typedef has been defined to rename USBGenericRequest to
CDCNotificationHeader:

CDCNotificationHeader cdcNotificationHeader = {

CDC_NOTIFICATION_ TYPE,
CDC_NOTIFICATION SERIAL STATE,
0,

0,

0

}i

Application Note m—————————

6269B-ATARM-01-Jul-09

- ___ Application Note

The actual state information is transmitted in two bytes. Only the first 7 bits of the first byte are
significant; the others can be set to 0. The device should set the bits corresponding to the cur-
rent USART state, and then send the data using USBD_Write.

Depending on the size of the interrupt endpoint, the header and data will have either have to be
transmitted in one chunk (size superior to 8 bytes), or separately. In the first case, the simplest is
probably to define a CDCSerialState structure to hold both the header and the data payload.

In the second case, the transmission can be done by two consecutive USBD_Write calls (since
the header is 8 bytes long); however, this may not be convenient, as the first transfer must be
finished before the second one can start. This means that the second call must either be done in
a callback function (invoked upon the first transfer completion), or in a loop verifying that the
returned result code is USB_STATUS SUCCESS (indicating that the endpoint is not locked
anymore).

4.7 Main Application
The job of the main application is to bridge the USART and the USB. This means that data read
from one end must be forwarded to the other end. This section describes several possibilities to
do this.

471 USB Operation
Reading data coming from the host is done using the USBD_Read function on the correct end-
point. Since this is an asynchronous function, it does not block the execution flow. This means
that other actions (like reading data from the USART) can be performed while the transfer is
going on. Whenever some data is sent by the host, the transfer terminates and the associated
callback function is invoked. This callback can be programmed to forward the received data
through the USART.

Likewise, the USBD_Write function can be called as soon as there is data to transmit, again
without block the program flow. However, there cannot be two write operations at the same time,
so the program must check whether or not the last transfer is complete. This can be done by
checking the result code of the USBD_Write method. If USB_STATUS_LOCKED is returned,
then there is already another operation in progress. The device will have to buffer the data
retrieved from the USART until the endpoint becomes free again.

4.7.2 USART Operation
The USART peripheral present on AT91 chips can be used in two different ways. The classic
way is to read and write one byte at a time in the correct registers to send and receive data.

A more powerful method is available on AT91SAM chips, by using the embedded Peripheral
DMA Controller (PDC). The PDC can take care of transfers between the processor, memory and
peripherals, thus freeing the processor to perform other tasks.

Since the focus of this application note is on the USB component, the USART usage will not be
described further here.

4.8 Example Software Usage

481 File Architecture
In the example program provided with this application note, the actual driver is divided into three
files:

ATMEL 1

6269B-ATARM-01-Jul-09

4.8.2

4.9

14

Compilation

ATMEL

+ at91lib\usb\common\cdc: folder contains all generic CDC definitions and methods.
» CDCAbstractControlManagementDescriptor.h: header file with CDC ACM definitions.
» CDCCallManagementDescriptor.h: header file with CDC Call Management definitions.

» CDCCommunicationinterfaceDescriptor.h: header file with Communication Interface
Definitions.

» CDCDatalnterfaceDescriptor.h: header file with definitions for the Data Interface.

» CDCDeviceDescriptor.h: definitions used in CDC device descriptor.

* CDCGenericDescriptor.h: definitions used for CDC descriptors.

* CDCGenericRequest.h: definitions used for CDC requests handling.

» CDCHeaderDescriptor.h: definitions for CDC Header Descriptor.

» CDCUnionDescriptor.h: definitions for CDC Union Descriptor.

* CDCLineCoding.h: definitions for CDC LineCoding requests.

* CDCLineCoding.c: methods to handle CDC LineCoding requests.

* CDCSetControlLineStateRequest.h: definitions for CDC SetControlLineState request.

» CDCSetControlLineStateRequest.c: methods to handle CDC SetControlLineState request.

+ at91liblusb\device\cdc-serial: Folder with all files used for CDC serial driver.

» CDCSerialDriver.h: header file with definitions for the USB to serial converter driver.

» CDCSerialDriver.c: source file for the USB to serial converter driver.

» CDCSerialDriverDescriptors.h: header file with definitions for the USB to serial converter
driver descriptors.

» CDCSerialDriverDescriptors.c: source file for the USB to serial converter driver descriptors.

+ usb-device-cdc-serial-project: folder containes main application code.

* main.c: main application source code

Having all generic CDC definitions in a separate file makes it possible to easily reuse it for other
CDC-related drivers.

The main application, which uses the driver to bridge the USART and USB interfaces, is imple-
mented in the main.c file.

The software is provided with a Makefile to build it. It requires the GNU make utility, which is
available on www.GNU.org. Please refer to the AT91 USB Device Framework application note
for more information on general options and parameters of the Makefile.

To build the USB to serial converter example just run “make” in directory usb-device-cdc-
serial-project, and two parameters may be assigned in command line, the CHIP= and
BOARD=, the default value of these parameters are “at91sam7s256” and “at91sam7s-ek”:

make CHIP=at9lsam7se512 BOARD=at9lsam7se-ek

In this case, the resulting binary will be named usb-device-cdc-serial-project-at91sam7se-ek-
at91sam7se512-flash.bin and will be located in the usb-device-cdc-serial-project/bin directory.

Using a Generic Host Driver

Both Microsoft® Windows and Linux offer a generic driver for using a USB to serial converter
device. This section details the steps required to make use of them.

Application Note m—————————

6269B-ATARM-01-Jul-09

http://www.gnu.org/software/make/

- ___ Application Note

491

4.9.1.1

Windows

On Microsoft Windows, the standard USB serial driver is named usbser.sys and is part of the
standard set of drivers. It has been available since Windows 98SE. However, conversely to
other generic driver such as the one for Mass Storage Devices (MSD), usbser.sys is not auto-
matically loaded when a CDC device is plugged in.

Writing a Windows Driver File

6269B-ATARM-01-Jul-09

For Windows to recognize the device correctly, it is necessary to write a .inf file. The Windows
Driver Development Kit (DDK) contains information on this topic. A basic driver, named
6119.inf in the example software provided, will now be described. The driver file is made up of
several sections.

The first section of the .inf file must be the [Version] section. It contains information about the
driver version, provider, release data, and so on.

[Version]

Signature="$Chicagos"

Class=Ports

ClassGuid={4D36E978-E325-11CE-BFC1-08002BE10318}

Provider=%ATMEL%

DriverVer=09/12/2006,1.1.1.1
The Signature attribute is mandatory and can be either “$Windows 95%”, “$Windows NT$” or
“$Chicago$”, depending on which Windows version(s) the driver supports. “$Chicago$” is used
to notify that every Windows version is supported. Since in this example, the USB to serial con-
verter is a virtual COM port, the Class attribute should be equal to “Ports”. The value of
ClassGuid depends on which class the device uses. The Provider value indicates that the string
descriptor for the driver provider will be defined further, under the tag ATMEL. Finally, the last
tag show the driver version and release date. For the version number, each digit is optional
(except the first one), but must not be null if present.

Next come two sections, [SourceDisksNames] and [SourceDisksFiles]. They are used to
specify the installation disks required and the location of each needed files on these disks.

[SourceDisksNames]

1="Windows Install CD"

[SourceDisksFiles]

usbser.sys=1
The first one lists the names of source disks on which the user can find missing files. Since the
driver requires usbser.sys, present on the Windows install CD, it will have to be listed here. The
disk ID must be a unique and non-null digit. The second section indicates on which disk each file
can be found. In this case, usbser.sys can be found on disk #1 (which is “Windows Install CD”).
Optionally, the exact path of the file on the CD can be specified.

The driver file must now specify where copied files will be stored, using the [DestinationDirs]
section.

[DestinationDirs]

DefaultDestDir=12
The target directory must be identified by its ID, which is system-defined. The ID for the drivers
directory is 12.

ATMEL 1

ATMEL

The [Manufacturer] section lists the possible manufacturers for all devices supported by this
driver. In this case, the only supported device is an ATMEL one, so this will be the only value.

[Manufacturer]
$ATMEL%=AtmelMfg
The attribute must be a string tag; its value must be the name of the Models section in which all

supported devices from this manufacturer will be listed. In this case, it will be named AtmelMfg,
which is the next section.

Each Models section must list the hardware ID of each supported device. For USB devices, the
hardware ID is made up of the Vendor ID, the Product ID and (optionally) the Device Release
Number. Those values are extracted from the device descriptor provided during the enumeration
phase.

[AtmelMEfg]

%USBtoSerialConverter%=USBtoSer.Install,USB\VID_O3EB&PID_6119
The attribute name is again a string tag, which will be used to describe the device. The value is
comprised of both the device install section name (USBtoSer.Install) and the hardware ID. The
hardware ID is the same as the one specified in Section 4.4.1 on page 5.

Now, the .inf file must detail the install section of each device previously listed. In this example,
there is only one install section, named USBtoSer.Install:

[USBtoSer.Install]
CopyFiles=USBtoSer.CopyFiles
AddReg=USBtoSer.AddReg

[USBtoSer.CopyFiles]
usbser.sys,,,0x00000002

[USBtoSer.AddReg
HKR, ,DevLoader, , *ntkern

HKR, ,NTMPDriver, ,usbser.sys

[USBtoSer.Install.Services]
AddService=usbser, 0x00000002,USBtoSer.AddService

[USBtoSer.AddService]

DisplayName=%USBSer$%

ServiceType=1r

StartType=3

ServiceBinary=%12%\usbser.sys
The install section is actually divided in five. In the first section, two other section names are
specified: one for the list of files to copy, and one for the keys to add to the Windows registry.
There is only one file to copy, usbser.sys; a flag (0x00000002) is used to specify that the user
cannot skip copying it. The registry keys are needed to install the driver on older versions of Win-
dows (such as Windows 98). For newer versions, the [USBtoSer.Install.Services] registers the
needed kernel services; each service is actually listed in a section on its own.

Finally, the last section, [Strings], defines all the string constants used through this file:

[Strings]

16 Application Note m————
6269B—-ATARM-01-Jul-09

- ___ Application Note

ATMEL="ATMEL Corp."
USBtoSerialConverter="AT91 USB to Serial Converter"

USBSer="USB Serial Driver"

4.9.1.2 Using the Driver

4.9.2 Linux

6269B-ATARM-01-Jul-09

When a new device is plugged in for the first time, Windows looks for an appropriate specific or
generic driver to use it. If it does not find one, the user is asked what to do.

This is the case with the USB to serial converter, since there is no generic driver for it. To install
the custom driver given in the previous section, Windows must be told where to look for it. This
can be done by selecting the second option, “Install from a list or specific location”, when the
driver installation wizards pops up. It will then ask for the directory where the driver is located.
After that, it should recognize the “AT91 USB to Serial Converter” driver as an appropriate one
and display it in the list.

During the installation, the wizard asks for the location of the usbser.sys file. If it is already
installed on the system, it can be found in “C:\Windows\System32\Drivers\”. Otherwise, it is
present on the Windows installation CD.

Once the driver is installed properly, a new COM port is added to the system and can be used
with HyperTerminal, for example.

Linux has two different generic drivers which are appropriate for a USB to serial converter. The
first one is an Abstract Control Model driver designed for modem devices, and is simply named
acm. The other one is a generic USB to serial driver named usbserial.

If the support for the acm driver has been compiled in the kernel, Linux will automatically load it.
A new terminal device will be created under /dev/ttyACMXx.

The usbserial driver must be loaded manually by using the modprobe command with the vendor
ID and product ID values used by the device:

modprobe usbserial vendor=0x03EB product=0x6119

Once the driver is loaded, a new terminal entry appears and should be named /dev/ttyUSBx.

ATMEL L

5. Revision History

Table 5-1.
Document Ref. Date Comments Change Request Ref.
6269A 10-Oct-06 | Firstissue.
Section 4.8.2: Need more informations on the nmake utility 3926
6269B 17-Jun-09
un Entire document: Update with new framework 5842
18 Application Note m——

6269B-ATARM-01-Jul-09

ATMEL

6269B-ATARM-01-Jul-09

AIMEL

Y (5

Headquarters

International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA

Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Unit 1-5 & 16, 19/F

BEA Tower, Millennium City 5

418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong

Tel: (852) 2245-6100
Fax: (852) 2722-1369

Atmel Europe

Le Krebs

8, Rue Jean-Pierre Timbaud
BP 309

78054 Saint-Quentin-en-
Yvelines Cedex

France

Tel: (33) 1-30-60-70-00

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033
Japan

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Fax: (33) 1-30-60-71-11

Product Contact

Sales Contacts
www.atmel.com/contacts/

Web Site Technical Support
www.atmel.com AT91SAM Support
www.atmel.com/AT91SAM Atmel techincal support

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, and others are registered trademarks or trade-
marks of Atmel Corporation or its subsidiaries. ARM® and Thumb® are registered trademarks of ARM Ltd. Windows® and others are registered
trademarks or trademarks of Microsoft Corporation in U.S. and/or other countries.. Other terms and product names may be trademarks of others.

6269B-ATARM-01-Jul-09

http://www.atmel.com/
www.atmel.com
http://www.atmel.com/products/AT91CAP/
http://www.atmel.com/products/AT91/
http://www.atmel.com/dyn/products/ip_blocks.asp?family_id=615
http://www.atmel.com/products/PowerManage/
http://www.atmel.com/products/Dream/
http://www.atmel.com/products/Dream/
http://support.atmel.no/bin/customer
http://support.atmel.no/bin/customer
mailto:info@dream.fr <info@dream.fr>
mailto:asic@atmel.com <asic@atmel.com>
http://www.atmel.com/dyn/products/support.asp
http://www.atmel.com/contacts/
http://www.atmel.com/contacts/

	1. Introduction
	2. Related Documents
	3. Communication Device Class Basics
	3.1 Purpose
	3.2 Architecture
	3.2.1 Interfaces
	3.2.2 Endpoints
	3.2.3 Models
	3.2.4 Class-Specific Descriptors

	3.3 Host Drivers

	4. USB to Serial Converter
	4.1 Purpose
	4.2 Architecture
	4.3 Model
	4.4 Descriptors
	4.4.1 Device Descriptor
	4.4.2 Configuration Descriptor
	4.4.3 Communication Class Interface Descriptor
	4.4.4 Functional Descriptors
	4.4.4.1 Header
	4.4.4.2 Call Management
	4.4.4.3 Abstract Control Management
	4.4.4.4 Union

	4.4.5 Notification Endpoint Descriptor
	4.4.6 Data Class Interface Descriptor
	4.4.7 Data IN & OUT Endpoint Descriptors
	4.4.8 String Descriptors

	4.5 Class-specific Requests
	4.5.1 SendEncapsulatedCommand, GetEncapsulatedResponse
	4.5.1.1 Purpose

	4.5.2 SetCommFeature, GetCommFeature, ClearCommFeature
	4.5.2.1 Purpose

	4.5.3 SetLineCoding, GetLineCoding
	4.5.3.1 Purpose
	4.5.3.2 Implementation

	4.5.4 SetControlLineState
	4.5.4.1 Purpose
	4.5.4.2 Implementation

	4.5.5 SendBreak
	4.5.5.1 Purpose

	4.6 Notifications
	4.6.1 NetworkConnection
	4.6.1.1 Purpose

	4.6.2 ResponseAvailable
	4.6.2.1 Purpose

	4.6.3 SerialState
	4.6.3.1 Purpose
	4.6.3.2 Implementation

	4.7 Main Application
	4.7.1 USB Operation
	4.7.2 USART Operation

	4.8 Example Software Usage
	4.8.1 File Architecture
	4.8.2 Compilation

	4.9 Using a Generic Host Driver
	4.9.1 Windows
	4.9.1.1 Writing a Windows Driver File
	4.9.1.2 Using the Driver

	4.9.2 Linux

	5. Revision History

