
AT91 ARM
Thumb
Microcontrollers

Application
Note

 6273B–ATARM–29-Jun-09
AT91 USB HID Driver Implementation

1. Introduction
The Human Interface Devices (HID) class extends the USB specification in order to
provide a standard way of handling devices manipulated by humans. This includes
common computer devices such as keyboards, mice and joysticks, as well as elec-
tronic device controllers (e.g., VCR remote) and generic controls (e.g., knobs,
switches).

The HID class also encompasses devices which do not require human interaction but
provide HID-compatible data, like a thermometer. This flexibility makes it possible to
enable generic communications between an HID device and a host system, in a
very simple way.

HID also allows several functionalities to be multiplexed on the same endpoint. This
makes it possible to have a device perform several tasks (e.g. keyboard + mouse +
communication) while still only using a single endpoint. This means a device using
HID can be very versatile.

This application note describes how to implement an HID driver with the AT91 USB
Device Framework provided by Atmel® for use with its AT91 ARM® Thumb® based
microcontrollers. First, generic information about HID-specific definitions and require-
ments is given. This document then details how to use the HID class to create a
mouse, a keyboard and a generic communication device.

2. Related Documents
[1] Device Class Definitions for Human Interface Devices (HID), Version 1.11, June
27, 2001.

[2] HID Usage Tables, Version 1.12, January 21, 2005.

[2] Atmel Corp., AT91 USB Device Framework, 2006.

3. Human Interface Device Class Basics
This section gives generic details on the HID class, including its purpose, architecture and how it
is supported by various operating systems.

3.1 Purpose
The HID class has been specifically designed for Human Interface Devices, i.e., devices which
are manipulated by humans to control a computer or an electronic device. This includes com-
mon peripherals such as a keyboard, a mouse or a joystick, as well as many other interfaces:
remote controllers, switches, buttons, dedicated game controls, and so on.

It is also possible to use the HID class for devices which do not require human interaction, but
still deliver information in a similar format. For example, devices like a thermometer or a battery
indicator are supported.

In addition, the HID class also makes it possible to not only receive data from devices but also to
send commands to them. Indeed, many devices offer some kind of display to give back informa-
tion to the user, e.g., the LEDs on a keyboard.

Finally, since it is quite simple to send and receive data using the HID class, it can be used as a
generic means of communication between a device and a host. This is made possible because
of the very flexible framework defined in the HID specification.

In this document, three uses of the HID class will be detailed step-by-step, each showing one
particular feature of the class. The first example shows the interaction with a simple mouse. In
the second example, a keyboard is implemented to demonstrate the possibility to send data to a
peripheral. The last example explains how to use HID as a simple two-way communication
channel.

3.2 Architecture

3.2.1 Interfaces
An HID device only needs one interface descriptor. It should have the HID interface class code
in its bInterfaceClass field. There are special subclass and protocol codes to specify if the HID
device is a mouse or a keyboard, and must be supported by the BIOS. In such a case, the inter-
face must be declared as a Boot Interface, and the type of the device (mouse or keyboard) must
be given in the bInterfaceProtocol field.

3.2.2 Endpoints
Up to three endpoints can be used with an HID interface. The first two are the default Control
endpoint 0, as well as an Interrupt IN endpoint. They are mandatory and shall always be
declared. An optional Interrupt OUT endpoint can be added as well.

Endpoint 0 is used for class-specific requests, as well as receiving data from the host if no Inter-
rupt OUT endpoint has been defined. In addition, the host can also explicitly request or send
report data through this endpoint.

The Interrupt IN and OUT pipes are used for sending asynchronous data to the host, and to
receive low-latency information.
2
6273B–ATARM–29-Jun-09

Application Note

Application Note
Figure 3-1. HID Class Driver Architecture

3.2.3 Class-Specific Descriptors
There are three class-specific descriptors defined in the HID specification 1.11: the HID descrip-
tor, the report descriptor and the physical descriptor.

3.2.3.1 HID Descriptor
The HID descriptor gives information about the HID specification revision used, the country for
which a device is localized, and lists the number of class-specific descriptors, including their
length and type. The format is described in Table 3-1.

There is always at least one Report descriptor for an HID device, so the corresponding fields
must be present in the HID descriptor. If other descriptors are defined, they must also be
described here.

3.2.3.2 Report Descriptor
A HID device must have at least one Report descriptor. It defines the type of data manipulated
by the device, which is referred to as report. When the device wants to notify that the cursor has
moved, for example, it sends the corresponding report in the format previously defined in the
Report descriptor.

Table 3-1. HID Descriptor Format

Field Size (bytes) Description

bLength 1 Total length of the HID descriptor

bDescriptorType 1 HID descriptor type (21h)

bcdHID 2 HID specification release number in Binary Coded Decimal
(BCD) format.

bCountryCode 1 Code of the country for which the device is localized.
Should be 0 if the device is not localized.

bNumDescriptors 1 Number of class-specific descriptors used by the device.

bDescriptorType 1 Type of the first class-specific descriptor.

bDescriptorLength 1 Total length of the first class-specific descriptor.

[bDescriptorType] 1 Type of the second class-specific descriptor.

[bDescriptorLength] 1 Total length of the second class-specific descriptor.

...
3
6273B–ATARM–29-Jun-09

This descriptor is quite different from others, as it does not have a fixed table of values. Instead,
it is made up of a variable number of items, which collectively identify the information that a host
can expect from or send to the device.

There are five categories of items:

• Input items, which define the format and type of the data sent by the device.
• Output items, which define the format and type of the data expected by the device
• Feature items, which define data sent to or received from the device, and not intended for

the end user, such as configuration parameters.
• Collection items, which identify a set of data as related to the same group.
• End Collection items, which close other Collection items.

Usually, a Report descriptor defines only one use (report) for a device, e.g., a mouse. However,
it is possible to declare several reports to perform different tasks, e.g., mouse & keyboard. This
is done by assigning a different Report ID to each report; this makes it possible for the device to
send both reports through the same Interrupt endpoint, while still permitting the host to correctly
identify the data. Using only a single endpoint for several functionalities is very powerful, as the
remaining ones can then be used by other interfaces (CDC, MSD, etc.) for an even more versa-
tile device.

More details about Report descriptors will be given in the implementation examples. For more
information about the possible items, tags and values, please refer to the HID specification 1.11.

3.2.3.3 Physical Descriptor
A Physical descriptor can be used to give information about which human body part is used to
activate a particular control. While this is a useless piece of information for most devices, it can
be relevant for complex devices which provide many similar controls. In such a case, a Physical
descriptor allows an application to assign its functionalities more appropriately; for example, a
game controller often has a large number of buttons, with some of them more accessible than
the others. Those buttons would be assigned the most useful actions.

Since physical descriptors are not used very often, and are not useful in the case studies
described in this document, they will not be discussed further.

3.2.4 Class-specific Requests

3.2.4.1 GetDescriptor
While GET_DESCRIPTOR is a standard request (defined in the USB specification 2.0), new
descriptor type values have been added for the HID class. They make it possible for the host to
request the HID descriptor, Report descriptor and Physical descriptors used by the device.

When requesting a HID-specific descriptor, the wIndex field of the request must be set to the
HID interface number. For standard requests, this field is either set to 0 or, for String descriptors,
to the index of the language ID used.

3.2.4.2 SetDescriptor
Similarly, SET_DESCRIPTOR is a standard request with added HID-specific values. It is used
by the host to change the HID descriptors of a device. This is an optional request, and has few
practical uses.
4
6273B–ATARM–29-Jun-09

Application Note

Application Note
3.2.4.3 GetReport
The host can explicitly ask the device for a report by using the GET_REPORT request. How-
ever, it should be used primarily to get the state of feature items and absolute values at
initialization time, not for consistent device polling.

The requested report is identified either by its Report ID (if they are used), and/or by its type
(Input, Output or Feature).

Please note that a GET_REPORT request is different from a GET_DESCRIPTOR request for
the Report descriptor. The latter returns the whole Report descriptor, i.e., all the items declared.
The former returns the data defined by this descriptor.

3.2.4.4 SetReport
SET_REPORT is similar to GET_REPORT, except this request is used for changing the state of
a report, instead of simply retrieving it.

For an Input report, this request can either be considered meaningless, or can be used to reset
the current status of a control. For example, it could be used to calibrate the neutral position of a
joystick.

3.2.4.5 SetIdle
This request is used to specify the minimum amount of time, called Idle rate, that a device must
wait before transmitting a report if its state has not changed. This means the device must NAK
all polls on its Interrupt IN endpoint until the report state changes, or the guarding period expires.

The SET_IDLE command can either be issued for a particular duration, or for an undefined
period of time. The upper byte of the wValue field is used to specify this duration. In addition, if
the device generates multiple reports, the Report ID of the target report to affect can be specified
in the lower byte.

In practice, this request is often used with a keyboard to put a small delay before a key is
repeated continuously. For a mouse, it must be set to 0, meaning that the device should never
report an unchanged state.

3.2.4.6 GetIdle
The GET_IDLE request is issued by the host to retrieve the current Idle rate of the device. A par-
ticular Report can be specified with its Report ID.

3.2.4.7 GetProtocol
This request returns the protocol currently used by the device. This can either be the Report pro-
tocol (wValue set to 0) or the Boot protocol (wValue set to 1). Since a device supporting the Boot
protocol can operate differently depending on which mode it is in, the host system can retrieve or
change this mode with the GET_PROTOCOL and SET_PROTOCOL requests.

This request is only need for devices supporting the Boot protocol.

3.2.4.8 SetProtocol
Whenever an HID device starts up, it should use the Report protocol by default. However, the
host driver shall still use the SET_PROTOCOL request to specify if the device should use the
Report protocol or the Boot protocol.

This request is only need for devices supporting the Boot protocol.
5
6273B–ATARM–29-Jun-09

3.3 Host Drivers
Most operating systems provide a generic HID driver which automatically handles standard
devices, such as keyboard, mice and joystick. In addition, the driver can also be used by the
application to easily access custom and vendor-specific devices.

4. HID Mouse
This section describes how to implement a mouse device using the HID class and the AT91
USB Device Framework. For more information about the framework, please refer to the AT91
USB Device Framework application note; details about the USB and the HID class can be found
in the USB specification 2.0 and the HID specification 1.11 documents, respectively.

4.1 Purpose
Along with the keyboard, the mouse is the principal way of interaction with a computer system.
Using HID for a mouse is both a low-cost and highly portable way for such a device. In addition,
the class driver design is the simplest possible one. Conversely to a PS/2 mouse, an HID mouse
can also be plugged or unplugged dynamically and be immediately operational.

Other devices can also identify themselves as an HID mouse. For example, sensors and triggers
targeted at people with disabilities can be affected the same functionalities as a mouse, e.g., left
click, right click or cursor movement. This is again a very cost-effective, portable and simple way
of implementing such a device.

4.2 Architecture
The AT91 USB Device Framework offered by Atmel makes it easy to create USB class drivers.
The example software described in the current chapter is based on this framework. Figure 4-1
shows the application architecture.

Figure 4-1. Application Architecture Using the AT91 USB Device Framework

4.3 Descriptors
An HID device specifies its functionalities by using both standard descriptors (such as the
device, configuration and interface descriptors), and several HID-specific descriptors such as
the HID descriptor and the Report descriptor. All these descriptors and their values will now be
detailed.
6
6273B–ATARM–29-Jun-09

Application Note

Application Note
4.3.1 Device Descriptor
The Device descriptor of an HID device is very basic, since the HID class code is only specified
at the Interface level. Thus, it only contains standard values, as shown below:

// HID Device Descriptor

const USBDeviceDescriptor sDevice = {

sizeof(USBDeviceDescriptor), // Size of this descriptor

USBGenericDescriptor_DEVICE, // DEVICE descriptor type

USBDeviceDescriptor_USB2_00, // USB 2.0 specification

HIDDeviceDescriptor_CLASS, // Class is in the interface descriptor.

HIDDeviceDescriptor_SUBCLASS, // No device subclass code

HIDDeviceDescriptor_PROTOCOL, // No device protocol code

BOARD_USB_ENDPOINTS_MAXPACKETSIZE(0), // Maximum packet size for EP0

HIDMouseDriverDescriptors_VENDORID, // ATMEL Vendor ID

HIDMouseDriverDescriptors_PRODUCTID, // Product ID = 0x0001

HIDMouseDriverDescriptors_RELEASE, // Device release number 0.01

0x01, // Index of manufacturer description

0x02, // Index of product description

0x03, // Index of serial number description

0x01 // One possible configuration

};

Note that the Vendor ID is a special value attributed by the USB-IF organization. The product ID
can be chosen freely by the vendor.

4.3.2 Configuration Descriptor
Since one interface is required by the HID specification, this must be specified in the Configura-
tion descriptor. There is no other value of interest to put here.

// HID Configuration Descriptor

{

sizeof(USBConfigurationDescriptor), // Size of this descriptor

USBGenericDescriptor_CONFIGURATION, // CONFIGURATION descriptor type

sizeof(HIDDMouseDriverConfigurationDescriptors), // Total length of data

0x01, // One interface is used by this configuration

0x01, // Value 0x01 is used to select this configuration

0x00, / No string is used to describe this configuration

BOARD_USB_BMATTRIBUTES, // Device is self-powered, no remote wakeup

USBConfigurationDescriptor_POWER(100) // maximum power consumption

}

When the Configuration descriptor is requested by the host (by using the GET_DESCRIPTOR
command), the device must also sent all the related descriptors, i.e. Interface, Endpoint and
Class-Specific descriptors. It is convenient to create a single structure to hold all this data, for
sending everything in one chunk. In the example software, a HIDDMouseDriverConfiguration-
Descriptors structure has been declared for that.
7
6273B–ATARM–29-Jun-09

4.3.3 HID Class Interface Descriptor
The only Interface descriptor is for the HID Class Interface, in this example. It should specify
the HID Class code (03h). In addition, if the mouse device supports the Boot protocol (which
means it can be recognized directly by the BIOS), this should be notified by setting the bInter-
faceSubclass and bInterfaceProtocol to 01h and 02h (respectively). There are only a few
additional requirements for a Boot-enabled mouse, so they will be implemented in the present
case study.

Furthermore, a mouse device only needs to send report data to the host. This means only the
Interrupt IN endpoint is needed, so the bNumEndpoints field will have to be set to 1. This inter-
face also uses the default Control endpoint, but this is not taken into account here.

Here is the whole Interface descriptor:

// HID Class Interface Descriptor

{

sizeof(USBInterfaceDescriptor), // Size of this descriptor

USBGenericDescriptor_INTERFACE, // INTERFACE Descriptor Type

0x00, // Interface 0

0x00, // No alternate settings

0x01, // One endpoint used

HIDInterfaceDescriptor_CLASS, // HID class code

HIDInterfaceDescriptor_SUBCLASS_NONE, // Boot protocol is not supported

HIDInterfaceDescriptor_PROTOCOL_MOUSE, // This is a mouse device

0x00 // No associated string descriptor

}

4.3.4 HID Descriptor
An Interface descriptor can be followed by a set of class-specific descriptors. For the HID class,
there are at least two of those: the HID descriptor and a Report descriptor. The first one to be
transmitted must always be the HID descriptor, since it gives information about the number and
types of the other defined descriptors (see Section 4.3.4 on page 8).

The software example for the mouse is only going to feature one Report and no Physical
descriptor. The latter is useless for a mouse device, since it only exhibits a few buttons. Also,
since the only requirement for a mouse is to send the displacement of the cursor and the state of
the buttons, a single Report is sufficient. Note that at this point, the total length of the Report
descriptor must already be known.

Finally, it is also useless for a mouse to be localized, since it does not deliver country-dependant
information. This means the bCountryCode field can be safely set to 00h.

// HID-Specific Descriptor

{

sizeof(HIDDescriptor), // Size of this descriptor in bytes (9)

HIDGenericDescriptor_HID, // HID descriptor type

HIDDescriptor_HID1_11, // HID Class Specification 1.11

0x00, // No country code

0x01, // 1 HID class descriptor

HIDGenericDescriptor_REPORT, // First HID-specific descriptor type

sizeof(hiddReportDescriptor) // Total length of first descriptor
8
6273B–ATARM–29-Jun-09

Application Note

Application Note
}

4.3.5 Report Descriptor
The Report descriptor is used to specify the data sent or received by the device (see Section
3.2.3.2 on page 3). For a mouse device, there are two different types of information to transmit,
and none to receive.

A mouse is used both for moving the cursor and clicking on buttons. Thus, the two pieces of data
that an HID mouse must send is the mouse movement and the buttons state. Usually, the dis-
placement is specified in the relative format, which means that the data sent by the mouse
reflects its movement regarding its previous position. In the absolute format, it would be neces-
sary to indicate the exact position of the cursor on the whole screen.

The format of a Report descriptor is a bit more complex than standard descriptors. Indeed, there
is no fixed format for a Report descriptor, it all depends on the data described. However, there
are items and tags which are almost always present. Basically, the descriptor is a byte array;
each byte is either an item, or its associated data. Items are defined in the HID specification
1.11, and each one of them has a particular code. In addition, the item value must reflect the
number of bytes associated with the item, which is one most of the time.

A Report descriptor starts with a Global Usage Page item:

const unsigned char hiddReportDescriptor[] = {

HIDReport_GLOBAL_USAGEPAGE + 1, HIDGenericDesktop_PAGEID,

This item is used to specify the global functionality of the device. In this example, the Generic
Desktop usage page is defined. This page encompasses mouse, keyboard, joystick and tablet
devices. For more information about the available usage pages, please refer to the HID Usage
Table 1.12.

A Local Usage item is then used to give more details about the device functionality, in the con-
text of the previously defined usage page. Here, the usage value provided is the mouse one:

HIDReport_LOCAL_USAGE + 1, HIDGenericDesktop_MOUSE,

According to the HID Usage Tables document, the mouse usage is intended to be included in a
collection of type Application. Collection are used to group data together; Application collec-
tions denote data which some applications may be familiar with.

HIDReport_COLLECTION + 1, HIDReport_COLLECTION_APPLICATION,

Since the data delivered by a mouse device is collected at a single geometric point, it must now
be included in a Physical collection. Each collection must have an usage associated with it, so
this collection will be defined as a Pointer:

HIDReport_LOCAL_USAGE + 1, HIDGenericDesktop_POINTER,

HIDReport_COLLECTION + 1, HIDReport_COLLECTION_PHYSICAL,

Now, the actual data sent by the device will be described. The first byte of the report will contain
the state of the mouse buttons, in the form of a bitmap value. In this example, three buttons are
defined, so the first three bits will either be 0 (button not pressed) or 1 (button pressed). The fol-
lowing items are used to define this behavior:

HIDReport_GLOBAL_USAGEPAGE + 1, HIDButton_PAGEID,

HIDReport_GLOBAL_REPORTCOUNT + 1, 3,

HIDReport_GLOBAL_REPORTSIZE + 1, 1,

HIDReport_LOCAL_USAGEMINIMUM + 1, 1,

HIDReport_LOCAL_USAGEMAXIMUM + 1, 3,
9
6273B–ATARM–29-Jun-09

HIDReport_GLOBAL_LOGICALMINIMUM + 1, 0,

HIDReport_GLOBAL_LOGICALMAXIMUM + 1, 1,

HIDReport_INPUT + 1, HIDReport_VARIABLE,

First, the usage page is changed to Buttons. The Local Usage Minimum and Maximum values
specify the range of buttons ID defined; in this case, button 1 to button 3 are used. The different
values returned for each button is expressed using Global Logical Minimum and Maximum: it is
either 0 or 1 here. Finally, the number of reports (one for each button) is specified, along with
each report size (one bit). The last item creates an Input report with the previously defined
parameter. The data must be specified as Variable because the field contains the state of sev-
eral controls.

Since the value returned for the buttons is smaller than one byte, it needs to be padded with an
extra 5 bits. This is done by adding one 5-bit Input report with a constant value:

HIDReport_GLOBAL_REPORTCOUNT + 1, 1,

HIDReport_GLOBAL_REPORTSIZE + 1, 5,

HIDReport_INPUT + 1, HIDReport_CONSTANT,

The last step is to define the pointer functionality of the mouse. Basically, two bytes of data are
returned: one for the displacement along the X (horizontal) axis, and one for the displacement
along the Y (vertical) axis. The displacement value can go both ways (left/right, up/down), so
each byte will be signed and return a value between -127 and +127. The convention defined in
the HID specification is that a negative value moves the cursor left (for the X axis) or up (for Y),
and a positive value right or down.

HIDReport_GLOBAL_USAGEPAGE + 1, HIDGenericDesktop_PAGEID,

HIDReport_GLOBAL_REPORTSIZE + 1, 8,

HIDReport_GLOBAL_REPORTCOUNT + 1, 2,

HIDReport_LOCAL_USAGE + 1, HIDGenericDesktop_X,

HIDReport_LOCAL_USAGE + 1, HIDGenericDesktop_Y,

HIDReport_GLOBAL_LOGICALMINIMUM + 1, (unsigned char) -127,

HIDReport_GLOBAL_LOGICALMAXIMUM + 1, 127,

HIDReport_INPUT + 1, HIDReport_VARIABLE | HID_RELATIVE,

Note that the usage page must be switched back to Generic Desktop, because the X and Y-axis
functionalities are defined in it. The Input report must be relative, as specified earlier in this
document.

Finally, the two collections that were previously started must be closed using two End Collec-
tion items:

HIDReport_ENDCOLLECTION,

HIDReport_ENDCOLLECTION

};

This Report descriptor defined here enables the device to send a three-bytes report with the fol-
lowing data:

Table 4-1. Mouse Report Data

Field Length Description

bmButtons 3 bits of 1byte Bitmap state of the three mouse buttons.

bX 1 byte Pointer displacement along the X axis.

bY 1 bytes Pointer displacement along the Y axis.
10
6273B–ATARM–29-Jun-09

Application Note

Application Note
It is useful to actually declare the corresponding structure, to easily modify, send and receive
report values. This has been done in the example program provided with this document: the
structure is named HIDDMouseInputReport.

As a side note, the Report descriptor defined in this section is compliant with the Boot protocol,
as highlighted by Appendix B of the HID specification 1.11.

4.3.6 Physical Descriptor
A Physical descriptor is useless for a mouse device, so there will not be any defined in this
example.

4.3.7 Endpoint Descriptor
Since it has be specified that the HID interface uses one endpoint, the corresponding Endpoint
descriptor must now be defined. As mentioned previously, this is an Interrupt IN endpoint. The
USB controllers of AT91SAM chips all support the Interrupt type at any available address, so
this endpoint will be given address 01h.

Additionally, an Interrupt endpoint maximum packet size should be as small as possible. The
host must reserve a minimum amount of bandwidth which depends on this value. Defining a
small value minimizes the loss of bandwidth, but is only possible when the data size is known. In
this case, it will always be 3 bytes, so wMaxPacketSize can be set accordingly.

Finally, since a mouse device response latency is not extremely critical, it can be safely set to a
high value. In this example, the endpoint is polled every 10 ms.

// Endpoint Descriptor

{

sizeof(USBEndpointDescriptor), // Size of this descriptor

USBGenericDescriptor_ENDPOINT, // ENDPOINT descriptor type

0x01 | HIDDKeyboardDriverDescriptors_INTERRUPTIN, // EP 1, IN

USBEndpointDescriptor_INTERRUPT, // Endpoint type interrupt

sizeof(HIDDMouseInputReport), // Endpoint maximum packet size (3)

0x0A // Interval for polling: 10ms

}

4.3.8 String Descriptors
Several descriptors can be commented with a String descriptor. The latter are completely
optional and do not influence the detection of the device by the operating system. Whether or
not to include them is entirely up to the programmer.

4.4 Class-Specific Requests
A number of HID-only requests are defined in the corresponding specification. They have
already been described in Section 3.2.4 on page 4. This section details their implementation
regarding the current example of a HID mouse device.

A driver request handler should first differentiate between class-specific and standard requests
using the corresponding bits in the bmRequestType field. In most cases, standard requests can
be immediately forwarded to the standard request handler method; class-specific methods must
be decoded and treated by the custom handler.
11
6273B–ATARM–29-Jun-09

4.4.1 GetDescriptor
Three values have been added by the HID specification for the GET_DESCRIPTOR request.
The high byte of the wValue field contains the type of the requested descriptor; in addition to the
standard types, the HID specification adds the HID descriptor (21h), the Report descriptor
(22h) and the Physical descriptor (23h) types.

There is no particular action to perform besides sending the descriptor. This can be done by
using the USBD_Write method, after the requested descriptor has been identified:

//----------------------

case USBGenericRequest_GETDESCRIPTOR:

//----------------------

{

unsigned char type = USBGetDescriptorRequest_GetDescriptorType(request);

unsigned char length = USBGenericRequest_GetLength(request);

switch(type) {

case HIDGenericDescriptor_REPORT:

// Adjust length and send report descriptor

if (length > HIDDMouseDriverDescriptors_REPORTSIZE) {

length = HIDDMouseDriverDescriptors_REPORTSIZE;

}

USBD_Write(0, &hiddReportDescriptor, length, 0, 0);

break;

case HIDGenericDescriptor_HID:

if (USBD_IsHighSpeed()) {

pConfiguration =

hiddMouseDriver.usbdDriver.pDescriptors->pHsConfiguration;

}

else {

pConfiguration =

hiddMouseDriver.usbdDriver.pDescriptors->pFsConfiguration;

}

// Parse the device configuration to get the HID descriptor

USBConfigurationDescriptor_Parse(pConfiguration, 0, 0,

(USBGenericDescriptor **) &hidDescriptor);

// Adjust length and send HID descriptor

if (length > sizeof(HIDDescriptor)) {

length = sizeof(HIDDescriptor);

}

USBD_Write(0, hidDescriptor, length, 0, 0);

break;

default:

USBDDriver_RequestHandler(&(hiddMouseDriver.usbdDriver),request);

}

}

A slight complexity of the GET_DESCRIPTOR and SET_DESCRIPTOR requests is that those
are standard requests, but the standard request handler (USBDDriver_RequestHandler) must
not always be called to treat them (since they may refer to HID descriptors). The solution is to
12
6273B–ATARM–29-Jun-09

Application Note

Application Note
first identify GET/SET_DESCRIPTOR requests, treat the HID-specific cases and, finally, forward
any other request to the standard handler.

In this case, a GET_DESCRIPTOR request for the Physical descriptor is first forwarded to the
standard handler, and STALLed there because it is not recognized. This is done because the
device does not have any Physical descriptors, and thus, does not need to handle the associ-
ated request.

4.4.2 SetDescriptor
This request is optional and is never issued by most hosts. It is not implemented in this example.

4.4.3 GetReport
When a GET_REPORT request is received, the current status of the device Report must be
returned. It will be assumed here that the current report is held in a structure and is accessible:

//------------------

case HIDGenericRequest_GETREPORT:

//------------------

if (length <= HIDDTransferDriver_REPORTSIZE && type ==
HIDReportRequest_INPUT) {

USBD_Write(0,

hiddTransferDriver.oReportBuf,

length,

HIDDTransferDriver_ReportSent,

0);

}

else {

USBD_Stall(0);

}

break;

Note that since a Report ID is not defined in the Report descriptor, only the Report Type value
defined in the wValue field is meaningful. It should be parsed to check if it is Input, but in prac-
tice, the host should never request a Report which does not exist.

4.4.4 SetReport
Since a mouse device has no Output report, the only usage of the SET_REPORT request is to
initialize the state of the Input report. According to the HID specification, this is completely
optional; the data still has to be read from the USB, but can be safely discard:

//------------------

case HIDGenericRequest_SETREPORT:

//------------------

if (length <= HIDDTransferDriver_REPORTSIZE && type ==
HIDReportRequest_OUTPUT) {

USBD_Read(0,
13
6273B–ATARM–29-Jun-09

hiddTransferDriver.iReportBuf,

length,

HIDDTransferDriver_ReportReceived,

0); // No argument to the callback function } else {

USBD_Stall(0);

}

break;

4.4.5 SetIdle
The SET_IDLE request is used to change the Idle rate of a HID device. This is the minimum
amount of time before an unchanged report can be transmitted again.

A mouse device should never send a report indicating an unchanged state. Usually, a
SET_IDLE command with 0 as a parameter, indicating that the Idle rate is indefinite, is sent by
the host.

In practice, it is not necessary to perform any action, apart from sending a zero-length packet to
acknowledge it. The main application however has to make sure that only new reports are sent
by the device.

//----------------

case HIDGenericRequest_SETIDLE:

//----------------

hiddMouseDriver.inputReportIdleRate = idleRate;

USBD_Write(0, 0, 0, 0, 0);

break;

Since the next request, GET_IDLE, needs to send back the current Idle rate, it needs to be
stored in a variable; in the example, this is done at the class driver level (HIDDMouseDriver
structure).

4.4.6 GetIdle
The only necessary operation for this request is to send the previously saved Idle rate. This is
done by calling the USBD_Write method with the one-byte variable as its parameter:

//----------------

case HIDGenericRequest_GETIDLE:

//----------------

USBD_Write(0, &(hiddMouseDriver.inputReportIdleRate), 1, 0, 0)

break;

4.4.7 GetProtocol
When a HID device implements the Boot protocol, the host can request the current mode of
operation by using the GET_PROTOCOL command. If the device is currently using the Boot
protocol, then it must return 0 to the host, and 1 otherwise.

For the current example, the operation is similar whether in Boot protocol mode or not. However,
to be consistent between the SET and GET_PROTOCOL requests, the current operating mode
should still be stored. The inputProtocol field of the HIDDMouseDriver structure can be used to
do this in a efficient way:

//--------------------
14
6273B–ATARM–29-Jun-09

Application Note

Application Note
case HIDGenericRequest_GETPROTOCOL:

//--------------------

USBD_Write(0, &hiddMouseDriver.inputProtocol, 1, 0, 0);

break;

inputProtocol is used as a bitmap field, and the data is sent using the wData field to have a per-
sistent storage variable (needed by the USBD_Write method).

4.4.8 SetProtocol
Similarly to the previous request, the device should simply store the new mode given by the
SET_PROTOCOL value in a variable, and acknowledge the request with a ZLP:

//--------------------

case HIDGenericRequest_SETPROTOCOL:

//--------------------

hiddMouseDriver.inputProtocol = request->wValue;

USBD_Write(0, 0, 0, 0, 0);

break;

4.5 Main Application
The main function of the application has to perform two actions. The first one is to monitor the
physical buttons and sensors of the device, to detect a movement or a pressed button.

In addition, the device must also report those changes, by sending the Report value through the
Interrupt IN endpoint. This is done by using the USBD_Write function on endpoint 01h.

In the example software, the pointer is moved using the joystick present on the evaluation board.
A left or right click can be performed by pushing either buttons 1 or 2.

4.6 Example Software Usage

4.6.1 File Architecture
The software example provided along with this application note is divided into four parts:

• at91lib\usb\common\hid: Folder for all general definitions for USB HID devices
• HIDDescriptor.h: header with definition of HID descriptor
• HIDDeviceDescriptor.h: header with definitions used in HID device descriptor
• HIDGenericDescriptor.h: header with definitions for using HID-specific descriptors
• HIDGenericDesktop.h: header with constants for using the HID generic desktop usage page
• HIDInterfaceDescriptor.h: header with definitions used in HID interface descriptor
• HIDGenericRequest.h: header with definition of constants for using HID-specific requests
• HIDReport.h: header with definitions used when declaring an HID report descriptor.
• HIDReportRequest.c, HIDReportRequest.h: methods and defintions to manipulate HID-

specific GET_REPORT and SET_REPORT requests
• HIDIdleRequest.c HIDIdleRrequest.h: Methods and constants for manipulating HID-specific

GET_IDLE and SET_IDLE requests
• HIDButton.h: definitions for the HID Buttons usage page
• at91lib\usb\device\hid-mouse: Folder for all source for USB HID mouse driver
• HIDDMouseDriver.c, HIDDMouseDriver.h: methods and definitions for HID mouse driver
15
6273B–ATARM–29-Jun-09

• HIDDMouseDriverDescriptors.c, HIDDMouseDriverDescriptors.h: definition for HID mouse
descritpros

• HIDDMouseInputReport.c, HIDDMouseInputReport.h: methods and defintions for HID
mouse to handle input report

4.6.2 Compilation
The software is provided with a Makefile to build it. It requires the GNU make utility, which is
available on www.GNU.org. Refer to the Atmel AT91 USB Device Framework application note
for more information on general options and parameters of the Makefile.

To build the USB HID mouse example just run “make” in directory usb-device-hid-mouse-proj-
ect, and two parameters may be assigned in command line, the CHIP= and BOARD=, the
default value of these parameters are “at91sam7se512” and “at91sam7se-ek”:

make CHIP=at91sam7se512 BOARD=at91sam7se-ek

In this case, the resulting binary will be named usb-device-hid-mouse-project-at91sam7se-ek-
at91sam7se512-flash.bin and will be located in the usb-device-hid-mouse-project/bin directory.

4.7 Using a Generic Host Driver
HID devices probably have the best native support for a USB class. As such, all operating sys-
tems can detect and use an HID mouse without any problem whatsoever.

5. HID Keyboard
This section describes how to implement a keyboard device using the HID class and the AT91
USB Device Framework. For more information on the framework, refer to the Atmel AT91 USB
Device Framework application note; details about the USB and the HID class can be found in
the USB specification 2.0 and the HID specification 1.11, respectively.

Most topics have already been discussed in Section 4., but in greater detail. The reader is
advised to read Section 4. first.

5.1 Purpose
The keyboard is the primary way of interaction with a computer. An HID keyboard has several
advantages, e.g., it can be plugged in anytime and is immediately functional. In addition, new
functionalities can be added by using the HID class: for example, it is easy to add an integrated
pointing device (like a trackball) to an HID keyboard.

This example demonstrates how to not only send but also receive data using the HID class.
Indeed, the computer needs to transmit the state of the LEDs to the keyboard.

5.2 Architecture
Please refer to Section 4.2 on page 6 for more information about the HID driver architecture
used in this example, which is identical to the one used for the HID mouse.

5.3 Descriptors

5.3.1 Device Descriptor, Configuration Descriptor
Please refer to Section 4.3.1 on page 7 for more information about the Device descriptor of a
HID device, and to Section 4.3.2 on page 7 for the Configuration descriptor.
16
6273B–ATARM–29-Jun-09

Application Note

http://www.gnu.org/software/make/

Application Note
5.3.2 HID Class Interface Descriptor
Since a keyboard device needs to transmit as well as receive data, two Interrupt (IN & OUT)
endpoints are needed. This must be indicated in the Interface descriptor. Conversely to the
mouse example, the Boot protocol is not implemented here, since there are more constraints on
a keyboard device.

// HID Class Interface Descriptor

{

sizeof(USBInterfaceDescriptor), // Size of this descriptor

USBGenericDescriptor_INTERFACE, // INTERFACE Descriptor Type

0x00, // Interface 0

0x00, // No alternate settings

0x02, // Two endpoints used

HIDInterfaceDescriptor_CLASS, // Class HID (Human Interface Device)

HIDInterfaceDescritpor_SUBCLASS_NONE, // No subclass

HIDInterfaceDescritpor_PROTOCOL_NONE, // No protocol

0x00 // No associated string descriptor

}

5.3.3 HID Descriptor
While a HID keyboard produces two different reports, one Input and one Output, only one
Report descriptor can be used to describe them. Since having Physical descriptors is also use-
less for a keyboard, there will only be one HID class descriptor specified here.

For a keyboard, the bCountryCode field can be used to specify the language of the key caps. As
this is optional, it is simply set to 00h in the example:

// HID-Specific Descriptor

{

sizeof(HIDDescriptor), // Size of this descriptor in bytes (9)

HIDGenericDescriptor_HID, // HID descriptor type

HIDDescriptor_HID1_11, // HID Class Specification 1.11

0x00, // No country code

0x01, // 1 HID class descriptor

HIDGenericDescriptor_REPORT, // First HID-specific descriptor type

sizeof(hiddReportDescriptor) // Total length of first descriptor

}

5.3.4 Report Descriptor
Two current reports are defined in the Report descriptor. The first one is used to notify the host
of which keys are pressed, with both modifier keys (alt, ctrl, etc.) and alphanumeric keys. The
second report is necessary for the host to send the LED (num lock, caps lock, etc.) states.

The Report descriptor starts with the global device functionality, described with a Usage Page
and a Usage items:

const unsigned char hiddReportDescriptor[] = {

HIDReport_GLOBAL_USAGEPAGE + 1, HIDGenericDesktop_PAGEID,

HIDReport_LOCAL_USAGE + 1, HIDGenericDesktop_KEYBOARD,

As in the mouse example, the Generic Desktop page is used. This time, the specific usage is the
Keyboard one. An Application collection is then defined to group the reports together:
17
6273B–ATARM–29-Jun-09

HIDReport_COLLECTION + 1, HIDReport_COLLECTION_APPLICATION,

The first report to be defined is the modifier keys. They are represented as a bitmap field, indi-
cating whether or not each key is pressed. A single byte is used to map keys #224-231 defined
in the HID Usage Tables document: LeftControl, LeftShift, LeftAlt, LeftGUI (e.g. Windows key),
RightControl, RightShift, RightAlt and RightGUI. The Keypad usage page must be specified for
this report, and since this is a bitmap value, the data is flagged as Variable:

HIDReport_GLOBAL_REPORTSIZE + 1, 1,

HIDReport_GLOBAL_REPORTCOUNT + 1, 8,

HIDReport_GLOBAL_USAGEPAGE + 1, HIDKeyboard_PAGEID,

HIDReport_LOCAL_USAGEMINIMUM + 1,

HIDDKeyboardDriverDescriptors_FIRSTMODIFIERKEY,

HIDReport_LOCAL_USAGEMAXIMUM + 1,

HIDDKeyboardDriverDescriptors_LASTMODIFIERKEY,

HIDReport_GLOBAL_LOGICALMINIMUM + 1, 0,

HIDReport_GLOBAL_LOGICALMAXIMUM + 1, 1,

HIDReport_INPUT + 1, HIDReport_VARIABLE,

Then, the actual alphanumeric key report is described. This is done by defining several bytes of
data, one for each pressed key. In the example, up to three keys can be pressed at the same
time (and detected) by the user. Once again, the usage page is set to Keypad. This time how-
ever, the data must be specified as an Array, since the same control (the keypad) produces
several values:

HIDReport_GLOBAL_REPORTCOUNT + 1, 3,

HIDReport_GLOBAL_REPORTSIZE + 1, 8,

HIDReport_GLOBAL_LOGICALMINIMUM + 1,

HIDDKeyboardDriverDescriptors_FIRSTSTANDARDKEY,

HIDReport_GLOBAL_LOGICALMAXIMUM + 1,

HIDDKeyboardDriverDescriptors_LASTSTANDARDKEY,

HIDReport_GLOBAL_USAGEPAGE + 1, HIDKeyboard_PAGEID,

HIDReport_LOCAL_USAGEMINIMUM + 1,

HIDDKeyboardDriverDescriptors_FIRSTSTANDARDKEY,

HIDReport_LOCAL_USAGEMAXIMUM + 1,

HIDDKeyboardDriverDescriptors_LASTSTANDARDKEY,

HIDReport_INPUT + 1, 0, // Data Array

The LED array is finally defined, with the associated usage page. The Report descriptor is for-
matted in this order to avoid redefining unchanged Global items, in order to save memory. This
time again, the LED status is reported as a bitmap field. Three LEDs are used here: Num Lock,
Caps Lock and Scroll Lock (IDs 01h to 03h). It is important to note that this is an Output report:

HIDReport_GLOBAL_REPORTCOUNT + 1, 3,

HIDReport_GLOBAL_REPORTSIZE + 1, 1,

HIDReport_GLOBAL_USAGEPAGE + 1, HIDLeds_PAGEID,

HIDReport_GLOBAL_LOGICALMINIMUM + 1, 0,

HIDReport_GLOBAL_LOGICALMAXIMUM + 1, 1,

HIDReport_LOCAL_USAGEMINIMUM + 1, HIDLeds_NUMLOCK,

HIDReport_LOCAL_USAGEMAXIMUM + 1, HIDLeds_SCROLLLOCK,

HIDReport_OUTPUT + 1, HIDReport_VARIABLE,
18
6273B–ATARM–29-Jun-09

Application Note

Application Note
Since the previous report only contains 3 bits, the data must be padded to a multiple of one byte.
This is done by using constant Output data, as follows:

HIDReport_GLOBAL_REPORTCOUNT + 1, 1,

HIDReport_GLOBAL_REPORTSIZE + 1, 5,

HIDReport_OUTPUT + 1, HIDReport_CONSTANT, // LED report padding

The last item, End Collection, is necessary to close the previously opened Application
Collection.

HID_MAIN_ENDCOLLECTION

};

The Input and Output reports defined by this descriptor can be modeled by the following
structures:

The two corresponding structures have been defined for these reports in the example software;
they are named HIDDKeyboardInputReport and HIDDKeyboardOutputReport. An instance of
each one of them is stored in a HIDDKeyboardDriver structure, which holds the standard class
driver and HID keyboard-specific data.

5.3.5 Physical Descriptor
A Physical descriptor is useless for a keyboard device, so none are defined in this example.

5.3.6 Endpoint Descriptors
Following the Interface and HID-specific descriptors, the two necessary endpoints are defined.
The parameters are similar as those defined in Section 4.3.7 on page 11, except the Interrupt
OUT endpoint is given address 02h. The maximum packet size is also adjusted to 7 and 1 byte
for the IN and OUT endpoints (respectively):

// Interrupt IN endpoint descriptor

{

sizeof(USBEndpointDescriptor),

USBGenericDescriptor_ENDPOINT,

USBEndpointDescriptor_ADDRESS(

USBEndpointDescriptor_IN,

HIDDKeyboardDriverDescriptors_INTERRUPTIN),

USBEndpointDescriptor_INTERRUPT,

Table 5-1. HID Keyboard Input Report Structure

Field Size Description

bmModifierKeys 1 byte Bitmap field reporting the state of the 8 modifier keys.

pressedKeys 3 byte Pointer to pressed keys array.

Table 5-2. HID Keyboard Output Report Structure

Field Size Description

numLockStatus 1 bit Status of the NumLock keyboard LED.

capsLockStatus 1 bit Status of the CapsLock keyboard LED.

scrollLockStatus 1 bit Status of the ScrollLock keyboard LED.

bPadding 5 bits Padding data.
19
6273B–ATARM–29-Jun-09

sizeof(HIDDKeyboardInputReport),

HIDDKeyboardDriverDescriptors_INTERRUPTIN_POLLING

},

// Interrupt OUT endpoint descriptor

{

sizeof(USBEndpointDescriptor),

USBGenericDescriptor_ENDPOINT,

USBEndpointDescriptor_ADDRESS(

USBEndpointDescriptor_OUT,

HIDDKeyboardDriverDescriptors_INTERRUPTOUT),

USBEndpointDescriptor_INTERRUPT,

sizeof(HIDDKeyboardOutputReport),

HIDDKeyboardDriverDescriptors_INTERRUPTIN_POLLING

}

5.3.7 String Descriptors
Please refer to Section 4.3.8 on page 11 for more information on String descriptors.

5.4 Class-specific Requests

5.4.1 GetDescriptor, SetDescriptor
Those requests are handled in the same way as described in Section 4.4 on page 11. Refer to
the corresponding sections for details.

5.4.2 GetReport
Since the HID keyboard defines two different reports, the Report Type value specified by this
request (upper byte of the wValue field) must be examined to decide which report to send. If the
type value is 01h, then the Input report must be returned; if it is 02h, the Output report is
requested:

//------------------

case HIDGenericRequest_GETREPORT:

//------------------

{

unsigned char type = HIDReportRequest_GetReportType(request);

unsigned short length = USBGenericRequest_GetLength(request);

if (type == HIDReportRequest_INPUT) {

// Adjust size and send report

if (length > sizeof(HIDDKeyboardInputReport)) {

length = sizeof(HIDDKeyboardInputReport);

}

USBD_Write(0, &(hiddKeyboardDriver.inputReport), length, 0, 0);

}

else if (type == HIDReportRequest_OUTPUT) {

// Adjust size and send report

if (length > sizeof(HIDDKeyboardOutputReport)) {

length = sizeof(HIDDKeyboardOutputReport);

}

20
6273B–ATARM–29-Jun-09

Application Note

Application Note
USBD_Write(0, &(hiddKeyboardDriver.outputReport), length, 0, 0);

}

else {

// Unknown report type

USB_Stall(0);

}

}

break;

5.4.3 SetReport
For an HID keyboard, the SET_REPORT command can be sent by the host to change the state
of the LEDs. Normally, the dedicated Interrupt OUT endpoint will be used for this; but in some
cases, using the default Control endpoint can save some bandwidth on the host side.

Note that the SET_REPORT request can be directed at the Input report of the keyboard; in this
case, it can be safely discarded, according to the HID specification. Normally, most host drivers
only target the Output report. The Report Type value is stored in the upper byte of the wValue
field.

The length of the data phase to follow is stored in the wLength field of the request. It should be
equal to the total length of the Output report. If it is different, the report status must still be
updated with the received data as best as possible.

When the reception of the new data is completed, some processing must be done to enable/dis-
able the corresponding LEDs. This is done in the callback function passed as an argument to
USBD_Read:

//------------------

case HIDGenericRequest_SETREPORT:

//------------------

{

unsigned char type = HIDReportRequest_GetReportType(request);

unsigned short length = USBGenericRequest_GetLength(request);

if (type == HIDReportRequest_OUTPUT) {

if (length != sizeof(HIDDKeyboardOutputReport)) {

USBD_Stall(0);

}

else {

// Read the new report value

USBD_Read(0, &(hiddKeyboardDriver.outputReport), length,

(TransferCallback) HIDDKeyboardDriver_ReportReceived,

0); // No argument to the callback function

}

}

else {

USB_Stall(0);

}

}

break;
21
6273B–ATARM–29-Jun-09

5.4.4 SetIdle
In this case study, the SET_IDLE request is used to set a delay before a key is repeated. This is
common behavior on keyboard devices. Usually, this delay is set to about 500 ms by the host.

The only action here is to store the new Idle rate. The management of this setting must be done
in the main function, since Interrupt IN reports are sent from there.

Refer to Section 4.4.5 on page 14 for the sample code associated with this request.

5.4.5 GetIdle
Refer to Section 4.4.6 on page 14 for more information on the GET_IDLE request.

5.4.6 GetProtocol, SetProtocol
This HID keyboard example does not support the Boot protocol, so there is no need to imple-
ment the SET_PROTOCOL and GET_PROTOCOL requests. This means they can be safely
STALLed when received.

5.5 Main Application
Like the mouse example, the main program must perform two different operations. First, it has to
monitor the physical inputs used as keys. In the example software, the buttons present on the
evaluation boards are used to produce several modifier and alphanumeric keys.

Also, the main program is in charge of sending reports as they are modified, taking into account
the Idle rate specified by the host. Idle rate management can be carried out by firing/resetting a
timer once a new report is sent; if the timer expires, this means the Input report has not changed
since. According to the HID specification, a single instance of the report must be sent in this
case.

Finally, the HID specification also defines that if too many keys are pressed at the same time,
the device should report an ErrorRollOver usage value (01h) in every byte of the key array. This
has to be handled by the main application as well.

5.6 Example Software Usage

5.6.1 File Architecture
The software example provided along with this application note is divided into several groups:

• at91lib\usb\common\hid: Folder for all general definitions for USB HID devices
• HIDDescriptor.h: header with definition of HID descriptor
• HIDDeviceDescriptor.h: header with definitions used in HID device descriptor
• HIDGenericDescriptor.h: header with definitions for using HID-specific descriptors
• HIDGenericDesktop.h: header with constants for using the HID generic desktop usage page
• HIDInterfaceDescriptor.h: header with definitions used in HID interface descriptor
• HIDLeds.h: header with definition for the HID LEDs usage page
• HIDGenericRequest.h: header with definition of constants for using HID-specific requests
• HIDReport.h: header with definitions used when declaring an HID report descriptor.
• HIDReportRequest.c, HIDReportRequest.h: methods and defintions to manipulate HID-

specific GET_REPORT and SET_REPORT requests
22
6273B–ATARM–29-Jun-09

Application Note

Application Note
• HIDIdleRequest.c HIDIdleRrequest.h: Methods and constants for manipulating HID-specific
GET_IDLE and SET_IDLE requests

• HIDKeypad.c, HIDKeypad.h: constants and methods for the HID keypad usage page
• at91lib\usb\device\hid-keyboard: Folder for all definitions for HID keyboard device driver
• HIDDKeyboardDriver.c, HIDDKeyboardDriver.h: Definition of methods for using a HID

keyboard device driver
• HIDDKeyboardDriverDescriptors.c, HIDDKeyboardDriverDescriptors.h: Definitions of the

descriptors required by the HID device keyboard driver.
• HIDDKeyboardCallbacks.h: Definitions of callbacks used by the HID keyboard device driver

to notify the application of events
• HIDDKeyboardCallbacks_LedsChanged.c: source code to implement the callback for LED

status change
• HIDDKeyboardInputReport.c, HIDDKeyboardInputReport.h: Class for manipulating HID

keyboard input reports
• HIDDKeyboardOutputReport.c, HIDDKeyboardOutputReport.h: Definition of a class for

manipulating HID keyboard output reports
• usb-device-hid-keyboard-project: Foler for main program of the keyboard example
• main.c: main program for the keyboard example

5.6.2 Compilation
The software is provided with a Makefile to build it. It requires the GNU make utility, which is
available on www.GNU.org. Please refer to the AT91 USB Device Framework application note
for more information on general options and parameters of the Makefile.

To build the HID keyboard example just run “make” in directory usb-device-hid-keyboard-proj-
ect, and two parameters may be assigned in command line, the CHIP= and BOARD=, the
default value of these parameters are “at91sam7s256” and “at91sam7s-ek”:

make CHIP=at91sam7se512 BOARD=at91sam7se-ek

In this case, the resulting binary is named usb-device-hid-keyboard-project-at91sam7se-ek-
at91sam7se512.bin and is located in the usb-device-hid-keyboard-project/bin directory.

5.7 Using a Generic Host Driver
HID devices probably have the best native support for a USB class. As such, all operating sys-
tems are able to detect and use a HID keyboard without any problem whatsoever.

6. Generic Data Transfer Using HID

6.1 Purpose
While there are several classes dedicated to communicating over the USB, most of them are
slightly complex to implement. In addition, they often require that a complex host-side driver be
developed to be able to use the device.

The HID class can be used with as a very simple way of communication between a device and a
host on the USB. This is so because most operating systems provide a generic HID driver,
which makes it possible to use custom-defined Report descriptors. An application can thus use
the standard API provided by the OS vendor.
23
6273B–ATARM–29-Jun-09

http://www.gnu.org/software/make/

This case study describes the work needed on both sides (device and host) to use the HID class
as a communication pipe. However, some topics have already been discussed in Section 4. and
Section 5. of this application note, and are only treated briefly here.

6.2 Architecture
On the host side, a custom application must be developed to use the generic HID driver with the
communication device. However, this is a simple task since the OS API should offer the neces-
sary methods.

The HID driver on the device uses two Interrupt endpoints to receive and transmit data to the
host. The default Control endpoint is used for the device enumeration.

Figure 6-1. Host and Device Architecture when Using HID as a Communication Medium

6.3 Descriptors

6.3.1 Device Descriptor, Configuration Descriptor
Refer to Section 4.3.1 on page 7 for more information about the Device descriptor of a HID
device, and to Section 4.3.2 on page 7 for the Configuration descriptor.

6.3.2 HID Class Interface Descriptor, HID Descriptor
These two descriptors are similar to the ones described in Section 5.3.2 on page 17 and Section
5.3.3 on page 17. Like the HID keyboard, two Interrupt endpoints are defined, the Boot protocol
is not used (it is meaningless here), and only one Report descriptor is used.

6.3.3 Report Descriptor
The Report descriptor is going to be entirely custom, since the HID Usage Tables document
does not define any usage which may be appropriate for raw communication. To do that, the
Usage Page and Usage items can be specified as vendor-specific:

const unsigned char hiddReportDescriptor[] = {

HIDReport_GLOBAL_USAGEPAGE+2, 0xFF, 0xFF, // Vendor-defined

HIDReport_LOCAL_USAGE+1, 0xFF, // Vendor-defined

Two one-byte reports, Input and Output, are defined in this descriptor. This makes it possible for
the host and the device to easily exchange data. An Application collection is defined to group the
two reports:

HIDReport_COLLECTION+1, HIDReport_COLLECTION_APPLICATION,
24
6273B–ATARM–29-Jun-09

Application Note

Application Note
The first report follows:

HIDReport_LOCAL_USAGE+1, 0xFF, // Vendor-defined usage

HIDReport_GLOBAL_LOGICALMINIMUM+1, (unsigned int) -128,

HIDReport_GLOBAL_LOGICALMAXIMUM+1, (unsigned int) 127,

HIDReport_GLOBAL_REPORTCOUNT+1, 1,

HIDReport_GLOBAL_REPORTSIZE+1, 8,

HIDReport_INPUT+1, 0, // No modifiers

The Output report is almost identical:

HIDReport_LOCAL_USAGE+1, 0xFF, // Vendor-defined usage

HIDReport_GLOBAL_LOGICALMINIMUM+1, (unsigned int) -128,

HIDReport_GLOBAL_LOGICALMAXIMUM+1, (unsigned int) 127,

HIDReport_GLOBAL_REPORTCOUNT+1, 1,

HIDReport_GLOBAL_REPORTSIZE+1, 8,

HIDReport_INPUT+1, 0, // No modifiers

Finally, the collection must be closed:

HID_MAIN_END_COLLECTION

};

6.3.4 Physical Descriptor
A Physical descriptor is meaningless in this example, so none is defined.

6.3.5 Endpoint Descriptors
The two endpoint descriptors are similar to the ones defined in Section 5.3.6 on page 19, except
that in order to maximize the data throughput, the maximum packet size can be set to 64 and the
polling rate to 1ms, for both endpoints.

6.3.6 String Descriptors
Refer to Section 4.3.8 on page 11 for more information about String descriptors.

6.4 Class-specific Requests

6.4.1 GetDescriptor, SetDescriptor
These requests are handled in the same way as described in Section 4.4 on page 11; refer to
the corresponding subsections for details.

6.4.2 GetReport, SetReport
The GET_REPORT and SET_REPORT requests can be used by the host when a low-latency
transfer is not required. Normally, reports are exchanged over the two Interrupt endpoints.

In the current example, those two requests are not necessary, since it is more efficient to trans-
fer the data using the Interrupt endpoints. Therefore, they need not be implemented, and the PC
application makes sure that neither of them is ever sent.

6.4.3 SetIdle, GetIdle
As the two previous ones, these requests are not useful for a generic communication driver.

6.4.4 GetProtocol, SetProtocol
The Boot protocol is meaningless for this example, so these requests are not implemented.
25
6273B–ATARM–29-Jun-09

6.5 Device-side Application
The main program of the device should simply use the USBD_Write and USBD_Read functions
on the two Interrupt endpoints (endpoints 01h and 02h) to either send or receive data. Since
these two methods are asynchronous, they can be called without blocking the program execu-
tion flow.

6.6 Host-side Application
This section explains how to program a PC application to communicate with the custom HID
device driver described previously. This example is targeted at a Microsoft® Windows® platform;
it uses the Windows Device Driver Kit (DDK) provided by Microsoft for developers.

The application is divided into three parts. The first part consists of detecting the connection or
disconnection of the HID device designed in this case study. Once the device is connected, the
program can then open it and start communicating with the device. Finally, once the application
terminates, it must free the device resources that have been used.

6.6.1 Detecting the Device
There are two possibilities when the application starts: the device may be either connected or
not. This means the program must first check if the device is present; if not, it will have to wait for
its connection on the bus.

6.6.1.1 Finding a Connected Device
One way of checking that the device is connected is to look at the whole list of connected HID
peripherals. The particular device developed in this example can be identified by its Vendor ID
and Product ID. However, to get the Vendor ID and Product ID of a device, it must first be
opened with the CreateFile function, which requires the name of the device.

The SetupDiGetClassDevs method of the DDK can be used to retrieve a set of device with par-
ticular properties. It can be used to retrieve all the devices which implement the HID class. To do
that, the Globally Unique Identifier (GUID) or the HID class must be passed to the function.
GUID are used in driver development to identify devices, interfaces or classes in a unique way.
Getting the GUID of the HID class can be done by calling the HidD_GetHidGuid function.

Once a handle on the set of HID devices has been retrieved, the application must look for the
correct device among the set. SetupDiEnumDeviceInterfaces is used to retrieve information
about the interfaces of each device. Another function, SetupDiGetDeviceInterfaceDetail, is
finally called to get a structure containing the name of the device.

The CreateFile method can now be invoked with the device name as its parameters. The
returned handle can be exploited through a call to HidD_GetAttributes, which finally return the
Vendor ID, Product ID and Serial number of the device. Those values must be checked to see if
the current device is the one expected by the application. If it is not, then the application shall
continue to examine all other connected devices; if this is the right one, the program closes all
unneeded resources (list of HID devices, etc.) and can now use the device.

6.6.1.2 Handling Device Connection & Disconnection
In the event that the device was not found at program startup, the latter must register to be noti-
fied by the operating system of its connection. Also, even if the device was actually connected, it
can still be brutally removed from the bus by the user; the application should be ready to handle
this case.
26
6273B–ATARM–29-Jun-09

Application Note

Application Note
When a device is plugged or unplugged, a WM_DEVICECHANGE message is issued to applica-
tions which are listening to it. The message parameters indicate if the device has been inserted,
removed, and various other states.

By using the RegisterDeviceNotification with the appropriate parameters, a PC program can
start listening to all events generated by HID devices. However, since it is not possible to
request messages only from devices with particular Vendor ID and Product ID values, the appli-
cation will have to check whether or not each message is relevant.

6.6.2 Communication
Once the device is connected and its handle has been retrieved by using CreateFile, the appli-
cation can start communicating with it. Conversely to the previous subsection, this step is very
straightforward: the ReadFile and WriteFile are used to read and send data to the device.

Note that when using Report IDs, the correct ID value must be prepended manually before each
transfer, in the first byte of the read/write buffer. In addition, a single call to ReadFile only return
one report, regardless of the data sent by the device. The bandwidth can be really cut down
because of this. A workaround is to define a larger report (e.g. 63 bytes plus the report ID). How-
ever, keep in mind that a report must always contain the correct number of bytes, so a smaller
report will have to be padded before transmission.

6.6.3 Freeing Resources
When the application has finished using the device, it must first free it using the CloseHandle
method, and unregister the notification of the WM_DEVICECHANGE message.
27
6273B–ATARM–29-Jun-09

7. Revision History

Table 7-1. Revision History

Document
Reference Date Comments Change Request Ref.

6273A 20-Oct-06 First issue.

6273B 25-Jun-09 Section 4.6.2, Section 5.6.2: Need more informations on the nmake
utility 3927
28
6273B–ATARM–29-Jun-09

Application Note

Application Note
29
6273B–ATARM–29-Jun-09

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com
www.atmel.com/AT91SAM

Technical Support
AT91SAM Support
Atmel techincal support

Sales Contacts
www.atmel.com/contacts/

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, and others are registered trademarks or trade-
marks of Atmel Corporation or its subsidiaries. ARM® and Thumb® are registered trademarks of ARM Ltd. Microsoft®, Windows® and others are
registered trademarks or trademarks of Microsoft Corporation. Other terms and product names may be trademarks of others.

6273B–ATARM–29-Jun-09

http://www.atmel.com/
www.atmel.com
http://www.atmel.com/products/AT91CAP/
http://www.atmel.com/products/AT91/
http://www.atmel.com/dyn/products/ip_blocks.asp?family_id=615
http://www.atmel.com/products/PowerManage/
http://www.atmel.com/products/Dream/
http://www.atmel.com/products/Dream/
http://support.atmel.no/bin/customer
http://support.atmel.no/bin/customer
mailto:info@dream.fr <info@dream.fr>
mailto:asic@atmel.com <asic@atmel.com>
http://www.atmel.com/dyn/products/support.asp
http://www.atmel.com/contacts/
http://www.atmel.com/contacts/

	1. Introduction
	2. Related Documents
	3. Human Interface Device Class Basics
	3.1 Purpose
	3.2 Architecture
	3.2.1 Interfaces
	3.2.2 Endpoints
	3.2.3 Class-Specific Descriptors
	3.2.3.1 HID Descriptor
	3.2.3.2 Report Descriptor
	3.2.3.3 Physical Descriptor

	3.2.4 Class-specific Requests
	3.2.4.1 GetDescriptor
	3.2.4.2 SetDescriptor
	3.2.4.3 GetReport
	3.2.4.4 SetReport
	3.2.4.5 SetIdle
	3.2.4.6 GetIdle
	3.2.4.7 GetProtocol
	3.2.4.8 SetProtocol

	3.3 Host Drivers

	4. HID Mouse
	4.1 Purpose
	4.2 Architecture
	4.3 Descriptors
	4.3.1 Device Descriptor
	4.3.2 Configuration Descriptor
	4.3.3 HID Class Interface Descriptor
	4.3.4 HID Descriptor
	4.3.5 Report Descriptor
	4.3.6 Physical Descriptor
	4.3.7 Endpoint Descriptor
	4.3.8 String Descriptors

	4.4 Class-Specific Requests
	4.4.1 GetDescriptor
	4.4.2 SetDescriptor
	4.4.3 GetReport
	4.4.4 SetReport
	4.4.5 SetIdle
	4.4.6 GetIdle
	4.4.7 GetProtocol
	4.4.8 SetProtocol

	4.5 Main Application
	4.6 Example Software Usage
	4.6.1 File Architecture
	4.6.2 Compilation

	4.7 Using a Generic Host Driver

	5. HID Keyboard
	5.1 Purpose
	5.2 Architecture
	5.3 Descriptors
	5.3.1 Device Descriptor, Configuration Descriptor
	5.3.2 HID Class Interface Descriptor
	5.3.3 HID Descriptor
	5.3.4 Report Descriptor
	5.3.5 Physical Descriptor
	5.3.6 Endpoint Descriptors
	5.3.7 String Descriptors

	5.4 Class-specific Requests
	5.4.1 GetDescriptor, SetDescriptor
	5.4.2 GetReport
	5.4.3 SetReport
	5.4.4 SetIdle
	5.4.5 GetIdle
	5.4.6 GetProtocol, SetProtocol

	5.5 Main Application
	5.6 Example Software Usage
	5.6.1 File Architecture
	5.6.2 Compilation

	5.7 Using a Generic Host Driver

	6. Generic Data Transfer Using HID
	6.1 Purpose
	6.2 Architecture
	6.3 Descriptors
	6.3.1 Device Descriptor, Configuration Descriptor
	6.3.2 HID Class Interface Descriptor, HID Descriptor
	6.3.3 Report Descriptor
	6.3.4 Physical Descriptor
	6.3.5 Endpoint Descriptors
	6.3.6 String Descriptors

	6.4 Class-specific Requests
	6.4.1 GetDescriptor, SetDescriptor
	6.4.2 GetReport, SetReport
	6.4.3 SetIdle, GetIdle
	6.4.4 GetProtocol, SetProtocol

	6.5 Device-side Application
	6.6 Host-side Application
	6.6.1 Detecting the Device
	6.6.1.1 Finding a Connected Device
	6.6.1.2 Handling Device Connection & Disconnection

	6.6.2 Communication
	6.6.3 Freeing Resources

	7. Revision History

