import numpy as np import matplotlib.pyplot as plt data = np.genfromtxt('small_dataset.csv', delimiter=',',usecols=(0,1,2),names=['y','x','z']) plt.xlabel('Longitude') plt.ylabel('Latitude') x = data['x'] y = data['y'] z = data['z'] column_num=29 row_num=110 # Check if area has minimum allowed standard deviation def valid_cell(cell): return False # Iterate through all the data points and return the filtered data set def make_filtered_set(): result = [[]] for i in range(row_num): for g in range(column_num): cells(i,g) = small_dataset(small_dataset(:,1)>min_y + ((i-1)*diff_y) & small_dataset(:,1)min_x + ((g-1)*diff_x) & small_dataset(:,2)>min_x + g*diff_x,1:3 ); return result yolo = make_filtered_set() plt.scatter(x,y,c=z, alpha=0.5) plt.colorbar(label='RSS [dBm]') plt.show() #plt.savefig('small_dataset_reduced.png', format='png')