
Final Thesis

8VLQJ�;0/�IRU�,PSRUW�DQG�([SRUW�RI�'DWD
E\

0DUWLQ�$[OLG

LiTH-IDA-Ex-01/61

2001-06-08

Linköpings universitet
Department of Computer and Information Science

Final Thesis

8VLQJ�;0/�IRU�,PSRUW�DQG�([SRUW�RI�'DWD
E\

0DUWLQ�$[OLG

LiTH-IDA-Ex-01/61

2001-06-08

Supervisor: Torbjörn Eriksson (Ericsson Radio Systems)

Examiner: Zebo Peng (Linköping University)

Using XML for Import and Export of Data

Abstract

$EVWUDFW

Ericsson is developing a Corba service for data storage of radio networks. This
service is implemented on top of an object database. The database contains data that
describes a model of the physical network and its configuration. One task is to import
and export the configuration data. Today XML is used as the file-format for the
import and export. The current implementation of the import/export function has a
linear growth of heap-memory consumption when the XML-files are processed. This
causes the possibility of a fatal error when large amount of data should be handled.
The purpose with the first part of the thesis has been to study and compare alternative
XML-parsing techniques with limited memory consumption. The study shows that
the best solution would be to use a combination of a SAX and DOM-parser in the
import, and a non-standard “hardcoded” solution in the export.

Another task is to migrate data from one network model format to another; this is
today performed outside the service. This can be very time-consuming, especially
when the network model contains many elements, and there is therefore a need to
make the process fully- or semi-automatic. The purpose of the thesis’s second part
has been to find a suitable technique to perform the conversion. The study shows that
an implementation of a new conversion tool in Java will be most effective and
flexible. The use of a standard XML-conversion technique like XSL or a third party
product would be less effective.

There is a need to make the format of the XML-file as effective as possible with
respect to the following factors: correct functionality, easy implementation, simple
readability and good runtime performance. In the third part of the thesis, the current
format has been compared to several other “standard” XML-formats. The conclusion
of this study is that the other formats do not have any significant advantage over the
current format. The best solution would be to apply some minor changes to the
current format and continue to use that.

Using XML for Import and Export of Data

Table of Contents

7DEOH�RI�&RQWHQWV

� ,QWURGXFWLRQ ��� ��

��� %DFNJURXQG�DQG�3XUSRVH ��

��� 7DUJHW�*URXS���

��� 'HILQLWLRQV ���

��� 5HDGHUV�*XLGHOLQHV ��

� &RQILJXUDWLRQ�6HUYLFH�2YHUYLHZ�� ��

��� ,QWURGXFWLRQ���

��� 0DQDJHG�,QIRUPDWLRQ�0RGHO ��

��� 0DQDJHG�,QIRUPDWLRQ�%DVH ��

��� 0DQDJHG�2EMHFW ��

��� 5HODWLRQV ���

2.5.1 Containment Relations ..15

2.5.2 Association Relations..15

��� ([DPSOH���

� %DVLF�7KHRU\�$ERXW�;0/�DQG�3DUVHUV ������������������������������ ��

��� ;0/�2YHUYLHZ ���

3.1.1 Tags and Attributes ...18

3.1.2 DTD/Schema Validation ..19

3.1.3 Why Is XML Important?...20

3.1.4 Summary...22

��� ;6/ ��

��� 3DUVHUV ��

3.3.1 SAX Details...23

3.3.2 DOM Details..25

� /DUJH�,PSRUW�DQG�([SRUW�)LOHV ��� ��

��� 3UREOHP�'HVFULSWLRQ���

��� 0HPRU\�&RQILJXUDWLRQ�LQ�-DYD���

��� ,PSRUW ��

4.3.1 SAX Import Prototype Design..................................28

4.3.2 DOM Alternatives ..30

��� ([SRUW ��

��� 0HPRU\�&RQVXPSWLRQ�&RPSDULVRQ ������������������������������������

��� 5XQWLPH�3HUIRUPDQFH�&RPSDULVRQ �������������������������������������

��� 3DUVHU�7HFKQLTXHV�3URV�DQG�&RQV�6XPPDU\���������������������

4.7.1 DOM (Xerces) ...32

Using XML for Import and Export of Data

Table of Contents

4.7.2 SAX...33

4.7.3 SAX and DOM Combined33

4.7.4 PDOM ...33

��� &RPSDULVRQ�7DEOHV���

4.8.1 Import Comparison..34

4.8.2 Export Comparison ...35

��� 6XPPDU\�DQG�5HFRPPHQGHG�6ROXWLRQV�����������������������������

� 0LJUDWLQJ�'DWD�%HWZHHQ�'LIIHUHQW�0,0�YHUVLRQV�������������� ��

��� 3UREOHP�'HVFULSWLRQ���

��� &RQYHUVLRQ�$FWLRQ�$QDO\VLV ��

��� 7HFKQLTXH�$QDO\VLV ��

��� ;6/ ��

��� �33�$SSOLFDWLRQ ��

��� -DYD�$SSOLFDWLRQ ���

5.6.1 Prototype Design...38

��� 0LJUDWLRQ�:LWKLQ�&6��

5.7.1 LDAP Query..41

5.7.2 MO-conversion Plug-in..41

��� 6XPPDU\�DQG�5HFRPPHQGHG�6ROXWLRQV�����������������������������

� '7'�6FKHPD�)RUPDW��� ��

��� 3UREOHP�'HVFULSWLRQ���

��� &&0�,53 ��

��� 9;0/ ���

��� ;0, ���

��� 0LE�GWG���

6.5.1 Improvements ...45

��� 6XPPDU\�DQG�5HFRPPHQGHG�6ROXWLRQV�����������������������������

� 6XPPDU\�DQG�)XWXUH�:RUN �� ��

��� /DUJH�,PSRUW�DQG�([SRUW�)LOHV ���

7.1.1 Conclusions ..46

��� 0LJUDWLQJ�'DWD�%HWZHHQ�'LIIHUHQW�0,0�YHUVLRQV ����������������

7.2.1 Conclusions ..47

��� '7'�6FKHPD�)RUPDW���

7.3.1 Conclusions ..47

���)XWXUH�:RUN ��

� $FURQ\PV�DQG�$EEUHYLDWLRQV �� ��

� 5HIHUHQFHV��� ��

Using XML for Import and Export of Data

Table of Contents

$SSHQGL[�$��3'20�� ��

$SSHQGL[�%��0,0'LII�[VO�6RXUFH�&RGH �� ��

$SSHQGL[�&��'7'�VFKHPD�)RUPDWV�� ��

Using XML for Import and Export of Data

Chapter 1: Introduction 11

�� ,QWURGXFWLRQ
This chapter contains information about the background, purpose and basic
concepts of the thesis.

���� %DFNJURXQG�DQG�3XUSRVH
Ericsson is developing a CORBA service for data storage of radio networks.
This component is called Configuration Service (CS). The service is
implemented on top of an object database. The database contains data that
describes a model of the physical network and its configuration. The service
includes methods for import and export of configuration data. Ericsson is today
using XML as the file-format for import and export.

The purpose of the thesis is to study how different sections of the import and
export function could be improved. One part is to study how large import and
export files should be handled to avoid memory and performance problems.
Furthermore, there is a need to make the migration between different network-
models fully- or semi-automatic. Different techniques for comparison and
conversion of XML-files should be evaluated. Finally, the format of the XML-
file should be studied to see if any changes could increase the performance.

���� 7DUJHW�*URXS
Since the problems mainly are referred to the import/export functionality in the
CS-component, this report is intended to be read by people with knowledge of
the CS in general and the import/export function in particular. However, people
with a general interest in XML-technology can also benefit from the
information in some of the sections.

It is assumed that the reader of the document has basic knowledge of object-
oriented programming and design.

���� 'HILQLWLRQV
&RPPRQ�2EMHFW�5HTXHVW�%URNHU�$UFKLWHFWXUH��&25%$�

CORBA is OMG’s open, vendor-independent architecture and infrastructure
that computer applications use to work together over networks. Using the
standard protocol IIOP, a CORBA-based program from any vendor, on almost
any computer, operating system, programming language, and network, can
interoperate with a CORBA-based program from the same or another vendor,
on almost any other computer, operating system, programming language, and
network. (OMG 2001)

'LUHFWRU\�6HUYLFH

A directory service is a specialised database that is read or searched far more
often than it is written to. It supports storing a wide variety of information and
provides a mechanism to extend the types of information that can be stored.
Directory services can be centralized or distributed. They are often distributed
in large scale, both in how and where information is distributed. Directory
services are usually replicated so that they are highly available to the clients
accessing them.

Using XML for Import and Export of Data

12 Chapter 1: Introduction

'LVWLQJXLVKHG�1DPH��'1�

A DN is used to uniquely identify a MO within a MIB (for information about
MO and MIB, see section 2.2 and 2.3). It is built from a series of “name
components” denoting a containment hierarchy.

([WHQVLEOH�6W\OHVKHHW�/DQJXDJH��;6/�

XSL is a specification intended to be used for transforming XML documents
into other formats, e.g. HTML or a different formatted XML document.

-DYD�9LUWXDO�0DFKLQH��-90�

The Java Virtual Machine is an abstract computing machine. Like a real
computing machine, it has an instruction set and uses various memory areas. It
is reasonably common to implement a programming language using a virtual
machine. (SUN 2001)

/LJKWZHLJKW�'LUHFWRU\�$FFHVV�3URWRFRO��/'$3�

LDAP is, like X.500, both an information model and a protocol for querying
and manipulating it. LDAP's overall data and namespace model is essentially
that of X.500. The major difference is that the LDAP protocol itself is designed
to run directly over the TCP/IP stack, and it lacks some of the more esoteric
DAP protocol functions. (KMS 2001)

1DPHVSDFHV

An XML namespace is a collection of names, identified by a URI reference
[RFC2396], which are used in XML documents as element types and attribute
names. XML namespaces differ from the "namespaces" conventionally used in
computing disciplines in that the XML version has internal structure and is not,
mathematically speaking, a set. (Sun 2001)

The namespace standard lets you write an XML document that uses two or
more sets of XML tags in modular fashion. Suppose for example that you
created an XML-based parts list that uses XML descriptions of parts supplied
by other manufacturers. The "price" data supplied by the sub-components
would be amounts you want to total up, while the "price" data for the structure,
as a whole, would be something you want to display. The namespace
specification defines mechanisms for qualifying the names so as to eliminate
ambiguity. That lets you write programs that use information from other sources
and do the right things with it. (Sun 2001)

:RUOG�:LGH�:HE�&RQVRUWLXP��:�&�

The World Wide Web Consortium was created in October 1994 to lead the
World Wide Web to its full potential by developing common protocols that
promote its evolution and ensure its interoperability. W3C has more than 500
Member organisations from around the world and has earned international
recognition for its contributions to the growth of the Web.

Using XML for Import and Export of Data

Chapter 1: Introduction 13

;����

X.500 is an overall model for Directory Services in the OSI world. The model
encompasses the overall namespace and the protocol for querying and updating
it. The protocol is known as "DAP" (Directory Access Protocol). DAP runs over
the OSI network protocol stack -- that, combined with its very rich data model
and operation set makes it quite "heavyweight". It is rather tough to implement
a full-blown DAP client and have it "fit" on smaller computer systems. Thus,
the folks at University of Michigan, with help from the ISODE Consortium,
designed and developed. (KMS 2001)

���� 5HDGHUV�*XLGHOLQHV
This section contains a short description of each chapter.

&KDSWHU����,QWURGXFWLRQ: contains information about the background, purpose
and definitions used in the thesis.

&KDSWHU����&RQILJXUDWLRQ�6HUYLFH�2YHUYLHZ: contains information about the
basic concepts of the Configuration Service component.

&KDSWHU����%DVLF�7KHRU\�$ERXW�;0/�DQG�3DUVHUV: contains information
about the basic concepts of XML and related topics.

&KDSWHU����/DUJH�,PSRUW�DQG�([SRUW�)LOHV: contains information about the
problems that occurs when large amount of data is being imported or exported
from the database.

&KDSWHU����0LJUDWLQJ�'DWD�%HWZHHQ�'LIIHUHQW�0,0�YHUVLRQV: contains
information about how to make the migration between two different MIM-
versions fully- or semi-automatic.

&KDSWHU����'7'�6FKHPD�)RUPDW: contains information about which
DTD/schema format that is most effective to use for the MIB XML-file.

&KDSWHU���6XPPDU\�DQG�)XWXUH�:RUN: contains a summary of the results
and conclusions in the thesis. Some suggestions about how the process should
continue are also included.

&KDSWHU����$FURQ\PV�DQG�$EEUHYLDWLRQV: specifies the acronyms and
abbreviations that are used in the thesis.

&KDSWHU����5HIHUHQFHV: specifies the references that are used in the thesis.

Using XML for Import and Export of Data

14 Chapter 2: Configuration Service Overview

�� &RQILJXUDWLRQ�6HUYLFH�2YHUYLHZ
This chapter contains information about the basic concepts of the Configuration
Service component.

���� ,QWURGXFWLRQ
The Configuration Service enables a user to configure a radio network such as
GSM or UMTS. A user may be some application in the GSM OSS or RANOS,
or an external Network Management System. The user-applications access the
CS functions through some supplied CORBA IDLs.

Most components are implemented in Java, which means that some of the
problems that are studied in the thesis are related to the Java language.

Some of the main concepts in the Configuration Service are: Managed
Information Model (MIM), Managed Information Base (MIB), Managed Object
(MO) and relations.

���� 0DQDJHG�,QIRUPDWLRQ�0RGHO
Managed Information Model (MIM) is the information model. It describes the
managed objects that can exist and the relationships between them. In database
connection it could be the database schema. In Object Oriented programming it
would be the collection of classes and the relations between them. (CS 2000)

Figure 1�gives an example of a MIM for a network in GSM.

PLMN

Subnet

Cell SS BSS

)LJXUH����0,0�IRU�D�VXEQHWZRUN

���� 0DQDJHG�,QIRUPDWLRQ�%DVH
Managed Information Base (MIB) is an instance of a MIM. The purpose of the
MIB is to define what MIM model the different MO’s shall follow. A MIB
instance of the MIM in Figure 1 shall contain a root MO of class type PLMN,
below it a MO of class type Subnet and so on. (CS 2000)

Using XML for Import and Export of Data

Chapter 2: Configuration Service Overview 15

���� 0DQDJHG�2EMHFW
Managed Object (MO) can be seen as an object whose class definition can be
found in the MIM. A MO contains zero or more attributes. (CS 2000)

���� 5HODWLRQV
Relations between MO’s can be of two kinds, containment relations and
association relations. (CS 2000)

An association relation between two MOs in different MIBs is called a hopper.
Figure 2 shows some examples of the different CS relation types.

MIB A

MIB B

Containment
relation

rootMO

Association

Hopper

Association
hopper

)LJXUH����&6�5HODWLRQV

������ &RQWDLQPHQW�5HODWLRQV
Containment relations within a MIB is always automatically created and
sustained when an object is created. It is a parent-child relation that is visible
through the distinguished name of a managed object. If the parent has the name
D�E�F then children G���GQ are named D�E�F�G� ...�D�E�F�GQ.

Containment relations also connects different MIBs. The rule is the same here;
the parent-child relation must also be visible in the name hierarchy.

������ $VVRFLDWLRQ�5HODWLRQV
Association relations are used to describe side relations between MO’s.
Associations can be between MOs within the same MIB, or between MOs in
different MIBs. They are created and deleted with different methods in the CS
interface.

Using XML for Import and Export of Data

16 Chapter 2: Configuration Service Overview

���� ([DPSOH
In Figure 3 we have a small network with four different MIBs based on three
different MIMs, The Subnetwork MIM, the MSC MIM and the BSC MIB.
There are containment relations from SS node to MSC node and from BSS
nodes to BSC nodes. The full distinguished name for the MSC will be the prefix
+ its own name that is 3/01 SOPQ�6XEQHW 6XEQHW�66 66��06& 06&�.
There are also associations between Cell to InnerCells. (CS 2000)

3/01 SOPQ�6XEQHW 6XEQHW�66 66�

PLMN=plmn

Subnet=Subnet

Cell=Cell1 SS=SS1
BSS=BSS1

MSC=MSC1

BSS=BSS2

BSC=BSC1
BSC=BSC2

InnerCell=IC1 InnerCell=IC2

RNS=Rns

TG=TG1

Association Containment relation between MIBs

Containment relation within a MIB

3/01 SOPQ�6XEQHW 6XEQHW�%66 %66�

3/01 SOPQ�6XEQHW

)LJXUH����([DPSOH�RI�D�VPDOO�QHWZRUN

The different MIBs can be in one CS or in different CS. A MIB can never be
split between different CS. (CS 2000)

Using XML for Import and Export of Data

Chapter 3: Basic Theory About XML and Parsers 17

�� %DVLF�7KHRU\�$ERXW�;0/�DQG�3DUVHUV
This chapter contains information about the basic concepts of XML and related
topics.

���� ;0/�2YHUYLHZ
XML is an abbreviation for eXtended Markup Language. It is a text-based
mark-up language that is fast becoming the standard for data interchange on the
Web. As with HTML, you identify data using tags (identifiers enclosed in angle
brackets like this: <...>). Collectively, the tags are known as "markup".
(Sun 2001)

But unlike HTML, XML tags tell you what the data means, rather than how to
display it. Where an HTML tag says something like "display this data in bold
font" (...), an XML tag acts like a field name in your program. It
puts a label on a piece of data that identifies it (for example:
<message>...</message>). (Sun 2001)

In the same way that you define the field names for a data structure, you are free
to use any XML tags that make sense for a given application. Naturally, though,
for multiple applications to use the same XML data, they have to agree on the
tag names they intend to use. (Sun 2001)

Here is an example of some XML data you might use for a messaging
application:

<message>
 <to>you@yourAddress.com</to>
 <from>me@myAddress.com</from>
 <subject>XML Is Really Useful</subject>
 <text>
 How many ways is XML useful? Let me count...
 </text>
</message>

The tags in this example identify the message as a whole, the destination and
sender addresses, the subject, and the text of the message. As in HTML, the
<to> tag has a matching end tag: </to>. The data between the tag and its
matching end tag defines an element of the XML data. Note, too, that the
content of the <to> tag is entirely contained within the scope of the
<message>...</message> tag. It is this ability for one tag to contain others
that gives XML its ability to represent hierarchical data structures. (Sun 2001)

Whitespace is essentially irrelevant, so you can format the data for readability
and yet still process it easily with a program. Unlike HTML, however, you
could easily search a data set for messages containing "useful" in the subject,
because the XML tags identify the content of the data, rather than specifying its
representation. (Sun 2001)

Using XML for Import and Export of Data

18 Chapter 3: Basic Theory About XML and Parsers

������ 7DJV�DQG�$WWULEXWHV
Tags can also contain attributes -- additional information included as part of the
tag itself, within the tag’s angle brackets. The following example shows an
email message structure that uses attributes for the "to", "from", and "subject"
fields:

<message to="you@yourAddress.com" from="me@myAddress.com"
 subject="XML Is Really Useful">
 <text>
 How many ways is XML useful? Let me count...
 </text>
</message>

As in HTML, the attribute name is followed by an equal sign and the attribute
value, and multiple attributes are separated by spaces. Unlike HTML, however,
commas between attributes are not ignored -- if present, they generate an error.
(Sun 2001)

�������� (PSW\�7DJV

One really big difference between XML and HTML is that an XML document
is always constrained to be well formed. There are several rules that determine
when a document is well formed, but one of the most important is that every tag
has a closing tag. So, in XML, the </to> tag is not optional. The <to> element
is never terminated by any tag other than </to>. (Sun 2001)

Another important aspect of a well-formed document is that all tags are
completely nested. So you can have
<message>..<to>..</to>..</message>, but never
<message>..<to>..</message>..</to>. (Sun 2001)

Sometimes, though, it makes sense to have a tag that stands by itself. For
example, you might want to add a "flag" tag that marks message as important. A
tag like that doesn’t enclose any content, so it’s known as an "empty tag". You
can create an empty tag by ending it with /> instead of >. For example, the
following message contains such a tag:

<message to="you@yourAddress.com" from="me@myAddress.com"
 subject="XML Is Really Useful">
 <flag/>
 <text>
 How many ways is XML useful? Let me count...
 </text>
</message>

(Sun 2001)

�������� &RPPHQWV�LQ�;0/�)LOHV

XML comments look just like HTML comments:

<message to="you@yourAddress.com" from="me@myAddress.com"
 subject="XML Is Really Useful">
 <!-- This is a comment -->
 <text>
 How many ways is XML useful? Let me count...
 </text>
</message>

Using XML for Import and Export of Data

Chapter 3: Basic Theory About XML and Parsers 19

(Sun 2001)

�������� 7KH�;0/�3URORJXH

A XML file always starts with a prologue. The minimal prologue contains a
declaration that identifies the document as an XML document, like this:

<?xml version="1.0"?>

The declaration may also contain additional information, like this:

<?xml version="1.0" encoding="ISO-8859-1"
standalone="yes"?>

The XML declaration is essentially the same as the HTML header, <html>,
except that it uses <?..?> and it may contain the following attributes:

version Identifies the version of the XML markup language used in
the data. This attribute is not optional.

encoding Identifies the character set used to encode the data. "ISO-
8859-1" is "Latin-1" the Western European and English
language character set. (The default is compressed Unicode:
UTF-8.)

standalone Tells whether or not this document references an external
entity or an external data type specification. If there are no
external references, then "yes" is appropriate

The prologue can also contain definitions of entities (items that are inserted
when you reference them from within the document) and specifications that tell
which tags are valid in the document. Both are declared in a Document Type
Definition (DTD) that can be defined directly within the prologue, as well as
with pointers to external specification files. (Sun 2001)

The declaration is actually optional. But it’s a good idea to include it whenever
you create an XML file. The declaration should have the version number, at a
minimum, and ideally the encoding as well. That standard simplifies things if
the XML standard is extended in the future, and if the data ever needs to be
localised for different geographical regions. (Sun 2001)

������ '7'�6FKHPD�9DOLGDWLRQ
A DTD specifies the kinds of tags that can be included in your XML document,
and the valid arrangements of those tags. You can use the DTD to make sure
you don’t create an invalid XML structure. You can also use it to make sure that
the XML structure you are reading (or that got sent over the net) is indeed valid.
(Sun 2001)

Below is an example of a DTD-definition:

<!ELEMENT message (subject, flag?, text)>
 <!ATTLIST message to CDATA #REQUIRED from CDATA
#REQUIRED>
 <!ELEMENT subject (#PCDATA)>
 <!ELEMENT flag EMPTY>
 <!ELEMENT text (#PCDATA)>

Using XML for Import and Export of Data

20 Chapter 3: Basic Theory About XML and Parsers

There are two different levels of an XML-file format. "Well Formed" XML
documents are documents that conforms to the basic XML syntax rules, e.g. no
overlapping element-definitions etc. "Valid" XML documents are "Well
Formed" XML documents, which also conforms to the rules of a specified
DTD.

The DTD specification is actually part of the XML specification, rather than a
separate entity. On the other hand, it is optional - you can write an XML
document without it. And there are a number of schema proposals that offer
more flexible alternatives. So it is treated here as though it were a separate
specification. (Sun 2001)

It is difficult to specify a DTD for a complex document in such a way that it
prevents all invalid combinations and allows all the valid ones. So constructing
a DTD is something of an art. The DTD can exist at the front of the document,
as part of the prologue. It can also exist as a separate entity, or it can be split
between the document prologue and one or more additional entities. (Sun 2001)

While the DTD mechanism was the first method defined for specifying valid
document structure, it was not the last. Several newer schema specifications
have been devised. However, DTD is the only schema that will be studied
within this thesis.

������ :K\�,V�;0/�,PSRUWDQW"
There are a number of reasons for XML’s surging acceptance. This section lists
a few of the most prominent.

�������� 3ODLQ�7H[W

Since XML is not a binary format, you can create and edit files with anything
from a standard text editor to a visual development environment. That makes it
easy to debug your programs, and makes it useful for storing small amounts of
data. At the other end of the spectrum, an XML front end to a database makes it
possible to efficiently store large amounts of XML data as well. So XML
provides scalability for anything from small configuration files to a company-
wide data repository. (Sun 2001)

�������� 'DWD�,GHQWLILFDWLRQ

XML tells you what kind of data you have, not how to display it. Because the
markup tags identify the information and break up the data into parts, an email
program can process it, a search program can look for messages sent to
particular people, and an address book can extract the address information from
the rest of the message. In short, because the different parts of the information
have been identified, they can be used in different ways by different
applications. (Sun 2001)

�������� 6W\ODELOLW\

When display is important, the stylesheet standard, XSL, lets you dictate how to
portray the data. For example, the stylesheet for:

<to>you@yourAddress.com</to>

can say:

Using XML for Import and Export of Data

Chapter 3: Basic Theory About XML and Parsers 21

Start a new line.
Display "To:" in bold, followed by a space
Display the destination data.

Which produces:

7R: you@yourAddress

Of course, you could have done the same thing in HTML, but you wouldn’t be
able to process the data with search programs and address-extraction programs
and the like. More importantly, since XML is inherently style-free, you can use
a completely different stylesheet to produce output in postscript, TEX, PDF, or
some new format that hasn’t even been invented yet. That flexibility amounts to
what one author described as "future-proofing" your information. The XML
documents you author today can be used in future document-delivery systems
that haven’t even been imagined yet. (Sun 2001)

�������� ,QOLQH�5HXVDELOLW\

One of the nicer aspects of XML documents is that they can be composed from
separate entities. You can do that with HTML, but only by linking to other
documents. Unlike HTML, XML entities can be included "in line" in a
document. The included sections look like a normal part of the document -- you
can search the whole document at one time or download it in one piece. That
lets you modularize your documents without resorting to links. You can single-
source a section so that an edit to it is reflected everywhere the section is used,
and yet a document composed from such pieces looks for all the world like a
one-piece document. (Sun 2001)

�������� (DVLO\�3URFHVVHG

As mentioned earlier, regular and consistent notation makes it easier to build a
program to process XML data. For example, in HTML a <dt> tag can be
delimited by </dt>, another <dt>, <dd>, or </dl>. That makes for some
difficult programming. But in XML, the <dt> tag must always have a </dt>
terminator, or else it will be defined as a <dt/> tag. That restriction is a critical
part of the constraints that make an XML document well formed. (Otherwise,
the XML parser won’t be able to read the data.) Since XML is a vendor-neutral
standard, you can choose among several XML parsers, any one of which takes
the work out of processing XML data. (Sun 2001)

�������� +LHUDUFKLFDO

XML documents benefit from their hierarchical structure. Hierarchical
document structures are, in general, faster to access because you can drill down
to the part you need, like stepping through a table of contents. They are also
easier to rearrange, because each piece is delimited. In a document, for example,
you could move a heading to a new location and drag everything under it along
with the heading, instead of having to page down to make a selection, cut, and
then paste the selection into a new location. (Sun 2001)

Using XML for Import and Export of Data

22 Chapter 3: Basic Theory About XML and Parsers

�������� %LQGLQJ

Once you have defined the structure of XML data using either a DTD or the one
of the schema standards, a large part of the processing you need to do has
already been defined. For example, if the schema says that the text data in a
<date> element must follow one of the recognized date formats, then one
aspect of the validation criteria for the data has been defined -- it only remains
to write the code. Although a DTD specification cannot go the same level of
detail, a DTD (like a schema) provides a grammar that tells which data
structures can occur, in what sequences. That specification tells you how to
write the high-level code that processes the data elements. (Sun 2001)

But when the data structure (and possibly format) is fully specified, the code
you need to process it can just as easily be generated automatically. That
process is known as binding -- creating classes that recognize and process
different data elements by processing the specification that defines those
elements. As time goes on, you should find that you are using the data
specification to generate significant chunks of code, so you can focus on the
programming that is unique to your application. (Sun 2001)

������ 6XPPDU\
XML is pretty simple, and very flexible. It is providing a common language that
different computer systems can use to exchange data with one another.
(Sun 2001)

���� ;6/
The XML standard specifies how to identify data, not how to display it. HTML,
on the other hand, told how things should be displayed without identifying what
they were. The coalescing XSL standard is essentially a translation mechanism
that lets you specify what to convert an XML tag into so that it can be displayed
-- for example, in HTML. Different XSL formats can then be used to display the
same data in different ways, for different uses. (Sun 2001)

Two important parts of XSL are XSL Transformations (XSLT) and XML Path
language (XPath). XSLT is a language that defines how the transformation
should be done. XPath is a language that defines which elements that should be
included in the transformation. The following code shows an example of a XSL
“match”-definition:

<xsl:template match="book">
 <fo:block>
 <xsl:apply-templates select=".//heading"/>
 </fo:block>
</xsl:template>

The “.//heading”-parameter is a XPath-statement that selects the heading
elements in all the descending levels of the XML-file. The rest of the code are
XSLT-statements.

A special XSL-transformation tool is needed to perform the actual
transformation. There are several such tools available, e.g. Xalan. An overview
of the XSL transformation concept is shown in Figure 4.

Using XML for Import and Export of Data

Chapter 3: Basic Theory About XML and Parsers 23

;6/
WUDQVIRUPDWLRQ

HQJLQH
H�J��;DODQ

;0/
ILOH

;6/
ILOH

7UDQVIRUPHG
ILOH

)LJXUH����;6/�WUDQVIRUPDWLRQ�RYHUYLHZ

It is possible to read data from several different XML-documents during a
transformation, but usually only one document is used.

���� 3DUVHUV
The purpose of an XML-parser is to read, validate and access the elements in an
XML-file. The two most common techniques for parsing XML-files are
"Simple API" for XML (SAX) and Document Object Model (DOM).

SAX is an event-driven, serial-access mechanism that does element-by-element
processing. To use a SAX parser, some specified callback methods has to be
written. Those methods are then invoked from the parser whenever it encounters
a XML tag (or encounters an error, or wants to tell you anything else). This
design makes the SAX-parser fast with low memory-consumption, but will
usually require more code at the application side.

The DOM API is generally an easier API to use. It provides a relatively familiar
tree structure of objects. You can use the DOM API to manipulate the hierarchy
of application objects it encapsulates. The DOM API is ideal for interactive
applications because the entire object model is present in memory, where it can
be accessed and manipulated by the user.

On the other hand, constructing the DOM requires reading the entire XML
structure and holding the object tree in memory, so it is much more CPU and
memory intensive. For that reason, the SAX API will tend to be preferred for
server-side applications and data filters that do not require an in-memory
representation of the data.

������ 6$;�'HWDLOV
The SAX parser is a result from a discussion in the XML-DEV public mailing
list 1997-1998. The basic idea of the project was to find a solution to the
needless incompatibility of the different parsers available at that time.

Using XML for Import and Export of Data

24 Chapter 3: Basic Theory About XML and Parsers

A SAX-parser does not store any XML-data internally. The implementation of
the different user-specified callback methods decides if, and how, any data
should be saved. The parser has to be configured with the callback methods
before the parsing of the XML-file can begin. The different callback methods
are grouped into different handlers as seen in Figure 5.

(UURU
KDQGOHU

/H[LFDO
KDQGOHU

'RFXPHQW
KDQGOHU

6$;
3DUVHU

;0/
ILOH

)LJXUH����6$;�&RQFHSW�RYHUYLHZ

Parser The org.xml.sax.Parser interface defines methods like
setDocumentHandler, to set up event handlers, and
parse, to actually do the parsing.

DocumentHandler Methods like startDocument, endDocument,
startElement, and endElement are invoked when an
XML tag is recognized. This interface also defines the
methods processingInstruction and characters,
which are invoked when the parser encounters an inline
processing instruction or the text of an XML element,
respectively.

ErrorHandler Methods error, fatalError, and warning are invoked in
response to various parsing errors. The default error handler
throws an exception for fatal errors and ignores other errors
(including validation errors). That’s one reason you need to
know something about the SAX parser, even if you are using
the DOM. Sometimes, the application may be able to
recover from a validation error. Other times, it may need to
generate an exception. To ensure the correct handling, you’ll
need to supply your own error handler to the parser.

LexicalHandler This handler include methods for startDTD, endDTD and
other miscellaneous parts of the XML-file.

When a SAX-parser should be used within an application, the following steps
has to be performed by the application:

• Create an instance of a class that implements the SAX-Parser interface
• Create a document-handler with the desired methods for handling the

callbacks
• Configure the parser-instance with the document handler
• Start the parsing process by calling the parse()-method in the Parser-

instance.

Using XML for Import and Export of Data

Chapter 3: Basic Theory About XML and Parsers 25

Figure 6 shows an interaction-diagram of the different steps. If any of the other
types of SAX- handlers are needed, the procedure is the same as for the
document-handler.

$SSOLFDWLRQ

6$;�
3DUVHU

'RFXPHQW
+DQGOHU

new DocumentHandler()

new Parser()

setDocumentHandler

parse
startDocument

startElement

characters

endElement

endDocument

)LJXUH����6$;�SDUVHU�GHWDLOV��%LUEHFN��0DUN�HW�DO�������

������ '20�'HWDLOV
The DOM specification defines the Document Object Model, a platform- and
language-neutral interface that will allow programs and scripts to dynamically
access and update the content, structure and style of documents. The Document
Object Model provides a standard set of objects for representing HTML and
XML documents, a standard model of how these objects can be combined, and
a standard interface for accessing and manipulating them. Vendors can support
the DOM as an interface to their proprietary data structures and APIs, and
content authors can write to the standard DOM interfaces rather than product-
specific APIs, thus increasing interoperability on the Web. (W3C 2001)

DOM is being designed at several levels:

• Level 1. This concentrates on the actual core, HTML, and XML document
models. It contains functionality for document navigation and manipulation.

• Level 2. Includes a style sheet object model, and defines functionality for
manipulating the style information attached to a document. It also enables
traversals on the document, defines an event model and provides support for
XML namespaces.

• Level 3. Will address document loading and saving, as well as content
models (such as DTDs and schemas) with document validation support. In
addition, it will also address document views and formatting, key events and
event groups. First public working drafts are available.

• Further Levels. These may specify some interface with the possibly
underlying window system, including some ways to prompt the user. They
may also contain a query language interface, and address multithreading and
synchronisation, security, and repository. (W3C 2001)

A DOM data-tree document is built by means of a parser/builder function.
When the DOM document has been produced, methods included in the DOM-
specification can be used to find, add, alter and delete data or nodes in the tree.

Using XML for Import and Export of Data

26 Chapter 3: Basic Theory About XML and Parsers

'20

'20
3DUVHU�
%XLOGHU

;0/
ILOH

Root
element

Object Object

Object Object Object Object

'RFXPHQW

Object

Object

)LJXUH����'20�FRQFHSW�RYHUYLHZ

Most implementations store the data-tree in primary memory, but other storage-
techniques are possible to use, e.g. databases or binary files.

Using XML for Import and Export of Data

Chapter 4: Large Import and Export Files 27

�� /DUJH�,PSRUW�DQG�([SRUW�)LOHV
This chapter contains information about the problems associated with the
handling of large import and export configuration data files. Some of the
subjects addressed are memory handling in JVM, evaluation of alternate
methods, prototype design, test results and proposed solutions.

���� 3UREOHP�'HVFULSWLRQ
The Configuration Service component contains functions for import and export
of configuration data to/from the database. Today XML is used as the file-
format for the import and export. The current implementation of the
import/export function has a heap-memory consumption that is linear to the size
of the XML-file. This will cause a primary memory shortage problem when a
network with a large number of elements should be configured/simulated. To
solve this problem, the current methods must be based on a different technique.

���� 0HPRU\�&RQILJXUDWLRQ�LQ�-DYD
The memory available for a Java-program is not only dependent on the physical
and virtual memory in the computer-environment; it is also dependent on the
configuration of the JVM.

The Sun JVMs have a minimum and maximum heap size, that is configurable
through command line parameters. Those parameters exists in order to give the
system administrator control over how much memory resources the JVM will
consume. This is important in production environments. The JVM will attempt
to get a heap up to the maximum you have set from the operating system. In an
OS that supports swapping, you can set the max larger than the physical
memory available and the system will swap underneath you to make it
available. In Java2 the default maximum heap size is usually 64 MB. The
current absolute maximum Java heap size is about 2 GB (due to internals having
to do with addressing.)

���� ,PSRUW
The current import method is based on an in-memory DOM-parser. The other of
the two common parsing standards, SAX, has a “serial” mechanism that makes
the memory requirements for its data-structure negligible. If only this
characteristic was considered, this technique should then have been a good
choice. However, there are some drawbacks of using the SAX-parser. Since the
SAX-parser itself does not store any data, algorithms have to be written that
continuously store the data that is needed later on. The current level and state in
the parsing has also to be continuously tracked.

The current methods for handling the radio network elements and their
datatypes are based on the possibility to query the data from the created DOM-
tree. To rewrite all those methods will be very time-consuming. To find a good
relation between implementation time and the requirements of low memory
consumption, a combination of the SAX and DOM techniques seems to be a
good choice. The SAX should then be used as the main parser and smaller
DOM-elements should be created to be able to call the most complex methods
implemented in the current system, e.g. the attribute datatypes handling.

Using XML for Import and Export of Data

28 Chapter 4: Large Import and Export Files

������ 6$;�,PSRUW�3URWRW\SH�'HVLJQ
A prototype program has been written to prove the concept of using SAX as the
main parser in the import method. The prototype simulates the database access
by outputting the parameters needed in the database-transactions as text.

�������� &ODVV�'LDJUDP

The design of the program is made in such a way that all significant
functionality is included in the same class; the CSSAXTest-class includes the
main-function together with the necessary callback functions. This means that
the DefaultHandler is created by instantiating the same class.

DefaultHandler
(f rom h elp ers)

Stack
(from uti l)

CSSA XTest

characters()
endElement()
error()
ignorableWhitespace()
processingInstruction()
saveMOs()
startDocument()
startElement()
warning()

1..n

XMLReader

1
1..n

1

)LJXUH����,PSRUW�ZLWK�6$;��FODVV�GLDJUDP�

The prototype should work with any SAX2-compliant parser implementation.
In this test the Xerces parser was used. A data-stack was chosen for the storage
of the MO-parent hierarchy.

Using XML for Import and Export of Data

Chapter 4: Large Import and Export Files 29

�������� 6WDWH�GLDJUDP

Due to the “Serial” mechanism of the SAX-parser, the application has to track
the current position within the different types of elements in the MIB XML-file.

Start

6WDUW�HQG�
02

<model>

</instance>

3URFHVV��
02

<instance>

3URFHVV�
DWWULEXWH

<attribute>

6HOHFW�
QH[W

End

</model>

&KHFN�
GDWDW\SH

<datatype>

</attribute>

</instance>

<instance>

<attribute>

)LJXUH����6WDWH�GLDJUDP�IRU�6$;�LPSRUW

Start/end MO This State is entered from the start-state when a model tag is
received in the startElement-method. When a model-end tag
is received the MO-parsing is finished and the State is
changed to End. The State is also entered when an instance-
end tag is received in either state “Select next” or in its own
state.

Process MO This State is entered when an instance tag is received in
either State “Start/end MO” or “Select next”.

Process attribute This State is entered when a MO-attribute tag is received in
either State “Process MO” or “Select next”.

Check datatype This State is entered when a datatype tag is received in state
“Process attribute”.

Select next This State is entered when a MO-attribute end-tag is
received in State “Check datatype”.

Using XML for Import and Export of Data

30 Chapter 4: Large Import and Export Files

�������� 7HVW�5HVXOW

The prototype tests show that there are no significant problems when the SAX-
technique is used as the main parser. However, there are some things that
should be considered, e.g. that the application is accessing the XML-elements
before the whole file has been read. To ensure that no fatal validating errors
occurs when only part of the model has been stored, the import must then start
with a “dummy” parsing of the whole XML-file.

������ '20�$OWHUQDWLYHV
As mentioned in section 3.3.2, there is nothing in the DOM-specification that
states that the DOM data-tree has to be stored in the primary memory. The
simplest solution is however to store the whole tree in primary memory and
therefore most DOM-implementations have selected this alternative. To
construct a parser with an alternative storage solution from scratch will be very
time consuming and is objectionable in the perspective of the CS-development.
There are, however, a few third party alternative implementations available,
which have chosen to use either a database or a binary file as part of the tree-
storage. The primary memory consumption in those implementations will be
significantly lower, but at the cost of a slower runtime performance. The
runtime performance loss is more significant in the solutions based on database-
access. The database engine itself will also consume some primary memory,
which is another drawback. The solution based on binary files has the
qualification to produce the best memory/runtime ratio performance. To this
date there is only one such parser available: the PDOM component included in
the Infonyte XQL Suite which is based on the GMD-IPSI XQL Engine project
(see Appendix A: PDOM). The PDOM-implementation has support for using a
SAX-parser when building the PDOM-tree and it uses an advanced cache
technique when queering the tree-elements.

���� ([SRUW
The current export method is also using an in-memory DOM. The main reason
for this is that it is easier to format an XML-file when the data is read from a
DOM-tree instead of the database. When a network-model in the database
should be exported, the configuration data is transferred to a DOM-tree.
Querying the nodes in the DOM in the correct sequence then creates the XML-
file. However, this implementation creates the same memory problem as in the
import function.

'20

MI B

MO-el MO-el

MO-el MO-el MO-el MO-el

'RFXPHQW

MO-el

MO-el

0,%

'%

0,%

'%
&6

JHW02

FUHDWH(OHPHQW

VHW$WWULEXWH

DSSHQG&KLOG

0,%�
;0/�ILOH

'203ULQWHU

$OWHUQDWLYH

)LJXUH�����([SRUW�RYHUYLHZ

Using XML for Import and Export of Data

Chapter 4: Large Import and Export Files 31

If a solution to this should be found, the SAX-technique is no alternative
because it is only designed to read XML-files. There are, as mentioned in
section 3.3.1, no support for any internal data-structure or XML-file output
formatting.

A solution that does not require the creation of a DOM-tree is to directly output
the configuration data to an XML-file when it is read from the database. This
will make the memory consumption negligible. To get a correctly formatted
XML-file, code must then be added to keep track of the current level and state
within the data-model. The elements also have to be read in a correct sequence
from the database since the output is “serial”.

Another soulution could be to replace the current DOM with the PDOM-
technique. It will have the same advantages as in the import-method, i.e. this
would be the soulution that is easiest and fastest to implement in the current
system.

���� 0HPRU\�&RQVXPSWLRQ�&RPSDULVRQ
Below is a compilation of several tests that were made to determine the memory
consumption of different parser types.

The Xerces DOM parser is a conventional parser that stores the data-tree in
primary memory. The tests were performed without node expansion and with
validation.

The tests of the PDOM-parser were performed an evaluation version. According
to the responsible company, their commercial version has a lot of
improvements. The PDOM parser is, as earlier mentioned, based on a technique
that stores the data-tree in a binary file. When the PDOM-document tree is built
the callback-functions of a third party SAX-parser is used. In this test the
PDOM-parser was configured to use the IBM xml4j2 SAX-parser.

The third parser tested was Xerces SAX-parser. The tests were performed with
validation.

)LOHVL]H��0%� 15�RI�02V ;HUFHV�'20 3'20 ;HUFHV�6$;1

3.32 1006 17.03 4.95 0.78
6.67 2030 33.73 4.96 0.78

13.19 4038 63.90 5.04 0.78
180.86 48456 926.472 12.09 0.78

7DEOH����3DUVHU�PHPRU\�FRPSDULVRQ

The table shows how much of the heap-memory that is needed during the
parsing. The values are in MB.

1 The Heap-memory needed by the SAX-parser is in this case negligible and has therefore been estimated to a low
value.
2 Due to lack of enough primary memory in the test-environment, the last test-value is an estimate based on the
previous measurements.

Using XML for Import and Export of Data

32 Chapter 4: Large Import and Export Files

;0/�SDUVHUV�PHPRU\�FRQVXPSWLRQ

0

100

200

300

400

500

600

700

800

900

1000

0 100 200

)LOHVL]H��0%�

+
H
D
S
V
L]
H
��
0
%
�

Xerces DOM

PDOM

Xerces SAX

)LJXUH�����3DUVHU�PHPRU\�FRQVXPSWLRQ�GLDJUDP

The diagram indicates that about 1000MB primary heap memory should be
required to handle configuration files containing 50 000 MO’s. This proves that
the current implementation is insufficient when run on a system with a standard
configuration.

���� 5XQWLPH�3HUIRUPDQFH�&RPSDULVRQ
The runtime-ratio between the three parsers varies a little depending on the size
on the XML-file, which parser-specific option that are set, the speed of the
hard-disk and a few other things. An average ratio is presented in Table 2.

3DUVHU�W\SH 5XQWLPH�LQGH[
Xerces SAX-parser 1
Xerces DOM-parser 2
PDOM-parser 6

7DEOH����3DUVHU�UXQWLPH�FRPSDULVRQ

This means e.g. that the SAX-parser is about six times faster than the PDOM-
parser.

���� 3DUVHU�7HFKQLTXHV�3URV�DQG�&RQV�6XPPDU\
This section contains a summary of the pros and cons of the different parsing
techniques.

������ '20��;HUFHV�
This is the currently used parser.

+ No alteration of current code necessary
+ Fast
+ “Random access” of the XML nodes
+ Easy to use and thus easy maintenance
+ Freeware

Using XML for Import and Export of Data

Chapter 4: Large Import and Export Files 33

+ Source-code available.

− Linearly growth of memory consumption
− No configurable error handling
− No commercial support available.

������ 6$;
The SAX “serial” parser technique.

+ Fast
+ Low memory consumption
+ Configurable error handling
+ Freeware
+ Source-code available.

− Lots of code must be developed to handle parser callbacks and to store data-
elements that are needed later on

− No commercial support available
− Only useful for the import functionality.

������ 6$;�DQG�'20�&RPELQHG
The technique where SAX is used as the main parser and DOM used for
building smaller data-trees.

+ Low memory consumption
+ Faster than the current implementation
+ Some of the code in the import function can be reused
+ Configurable error handling
+ Freeware
+ Source-code available.

− Some code must be developed to handle parser callbacks and storage of
data-elements

− No commercial support available
− Only useful for the import functionality.

������ 3'20
The technique where the DOM data-tree is stored in a binary file.

+ Moderate memory consumption
+ Acceptable runtime performance3

+ “Random access” of the XML nodes
+ Can easily be integrated in the current implementation code
+ Commercial support available

− Only one implemented product available
− Cost for company license
− Dependence on one single third party company for future support and

maintenance

3 The runtime performance is presumed to be acceptable if the parser is faster than the direct use of the create_MO
and set_MO CORBA operations. However, since no runtime tests has been made to measure the CORBA operations
performance a qualified assumption were made about the relative performance.

Using XML for Import and Export of Data

34 Chapter 4: Large Import and Export Files

− No Swedish distributor/support.

���� &RPSDULVRQ�7DEOHV
When comparing different methods, the following factors are considered to be
important (most important factor first):

• Correct functionality (including acceptable memory consumption)
• Runtime performance
• Simple (not time-consuming) implementation and maintenance
• Fault handling and robustness

The cost of a commercial third party license is not included in the list but is
implicitly considered to be important.

As previously mentioned, the current implementation is insufficient to cope
with the requirements when executed on a standard system. The alternatives
have their pros and cons. In the tables below the different alternatives are
compared by applying probability estimates values (Prob) on the different
factors and weight them with an importance value (Imp). It is considered that
code of the current implementation is available when the values are estimated,
i.e. the implementation of the alternatives could be faster if some code can be
reused. The factor is graded from 0-10 where 10 are the best. The Prod value is
calculated by multiplying Imp- and Prob-factors.

The currently used DOM-technique is not included in the tables because this
evaluation presumes that is has to be replaced with another technique.

������ ,PSRUW�&RPSDULVRQ

6$; 6$;�'20
FRPELQHG

3'20

'HVFULSWLRQ ,PS 3URE 3URG 3URE 3URG 3URE 3URG
Correct functionality 4 7 28 8 32 9 36
Runtime performance 3 10 30 9 27 4 12
Simple implementation 2 2 4 6 12 8 16
Fault handling and
robustness

1 5 5 5 5 5 5

Low license cost 1 10 10 10 10 5 5
Summary �� �� ��

7DEOH����,PSRUW�WHFKQLTXH�HYDOXDWLRQ�FDOFXODWLRQ

Using XML for Import and Export of Data

Chapter 4: Large Import and Export Files 35

������ ([SRUW�&RPSDULVRQ

&6
�KDUGFRGHG�

3'20

'HVFULSWLRQ ,PS 3URE 3URG 3URE 3URG
Correct functionality 4 8 32 8 32
Runtime performance 3 10 30 4 12
Simple implementation 2 2 4 8 16
Fault handling and
robustness

1 5 5 5 5

Low license cost 1 10 10 5 5
6XPPDU\ �� ��

7DEOH����([SRUW�WHFKQLTXH�HYDOXDWLRQ�FDOFXODWLRQ

���� 6XPPDU\�DQG�5HFRPPHQGHG�6ROXWLRQV
As seen in Table 3 and Table 4 a combined SAX/DOM technique is
recommended as the best choice for import and a CS “hardcoded”
implementation the best for export. However, the differences are not significant
and if some of the project conditions are changed, one of the other solutions
could become the overall best.

Using XML for Import and Export of Data

36 Chapter 5: Migrating Data Between Different MIM-versions

�� 0LJUDWLQJ�'DWD�%HWZHHQ�'LIIHUHQW�0,0�YHUVLRQV
This chapter contains information about the second part of the thesis: how to
make the migration between two different MIM-versions fully- or semi-
automatic.

���� 3UREOHP�'HVFULSWLRQ
The different MO-types that are possible to store in the database are defined in a
separate XML-file. This is a definition of the MIM. The MO-types in the XML-
structure are converted to the different database object classes by means of a
Model Parser component. When any change in the MIM is needed, e.g. a new
MO-type or alteration of an existing MO-type or attribute, there is a high
probability that the MIB that was formed according to the old MIM will be
inconsistent. Today there is no standardised way to make the MIB consistent.
This process could therefore be very time-consuming, especially when the MIB
contains many MO-objects, and there is a need to make the process fully- or
semi-automatic.

0,0
YHU�����
;0/

0,0
YHU�����
;0/

0,%
����
;0/

&RQYHUVLRQ
XWLO

0,%
����
;0/

&6
LPSRUWB0,%

)LJXUH�����0,0�0,%�PLJUDWLRQ�RYHUYLHZ

The conversion could either be done with an external tool or within the CS
import method. Figure 12 shows the basic concept for an external conversion
utility.

���� &RQYHUVLRQ�$FWLRQ�$QDO\VLV
This section lists all the possible conversion-actions that will be performed. For
each type of action there is a definition of when it will occur.

Using XML for Import and Export of Data

Chapter 5: Migrating Data Between Different MIM-versions 37

$FWLRQ :KHQ
Fatal error The MIB-def and the old MIM-def do not have the

same version.
Delete MO MO-type removed.

The parent MO removed.
New mandatory attribute has been added to the MO-
type, or an attribute has been changed to mandatory.

Delete MO-attribute The MO-attribute definition has been removed from
MO-type.
The data-type of the MO-attribute definition has been
changed to an incompatible type.

The MO-attribute definition contains an enum-type
that has been removed or changed.
The MO-attribute definition contains a struct or
sequence that has been removed or changed.

Change attribute data-type The data-type of the attribute has been changed to a
compatible type, i.e. short -> long -> longlong -> float
-> double.

Output an “Illegal value”
log, but still transfer the
MO-attribute

The range of the data-type in the MO-attribute
definition has been changed and the MO-attribute
value is “out of range”.

Delete relation Relation-type has been removed.
Relation includes a MO that has been deleted.

7DEOH����&RQYHUVLRQ�DFWLRQV�DQDO\VLV

With the current structure of the MO-type definitions in the MIM-file there are
some type of changes that is impossible to distinguish. An example of this is if a
MO-type has been renamed or divided into several different MO’s. Then there
is no way to determine if a new MO-type has been added or the MO-type has
been renamed. To be able to make this distinction, the format of the MO-type
definitions must be changed so it is possible to include a reference to the old
MO-type name.

���� 7HFKQLTXH�$QDO\VLV
There are several different techniques and tools that could be used to compare
and convert XML-files. One of the tasks of the thesis was to find out if XSL
could be a suitable technique. Other techniques that were considered interesting
enough to evaluate were specialised 3PPs and the development of a new Java-
application.

���� ;6/
XSL is mainly a technique intended to convert one XML-document at a time,
not to compare several documents. The significant pros and cons of XSL are
listed below.

+ Advanced element filter/lookup functionality
− Large memory consumption
− Poor handling of multiple documents
− Poor debugging facilities
− Non intuitive syntax
− Limited variable handling

Using XML for Import and Export of Data

38 Chapter 5: Migrating Data Between Different MIM-versions

− No data-tree compare function

The large memory consumption is mainly due to the design of the XSL
processor application. They are usually implemented in such way that they build
at least three DOM-trees during the transformation: one for each source
document, one for the target document and one for the XSL conversion
definition. This characteristic makes XSL unsuitable to handle large MIB XML-
files and should not be considered as the main tool in this context. However,
XSL could be useful to compare the MIM-versions documents since they have
moderate size.

���� �33�$SSOLFDWLRQ
One of the central parts of the problem is to track the changes between two
different XML-files. This problem should be rather common in different XML-
related applications, and therefore some time was spent to search for a 3PP
product that implemented this function. However, the result of this search was
modest. Only two applications were found and none of them were found to be
of any significant use within this concept.

The two applications found were:

;0/7UHH'LII��,%0�

According to the documentation, this application should be able to mark which
nodes that have been changed. It requires an old version (1.1) of the xml4j-
parser that was not possible to obtain. A test was made with version 1.1.4, but
with erroneous result (method missing in Child-class).

;POGLII��,%0�

Generates either graphical presentation of the differences or an XML file
“tagged” with the differences. The tags are included as comments, which makes
it hard to parse.

���� -DYD�$SSOLFDWLRQ
A special Java-application can provide the most flexible solution to the
migration problem. However, then all algorithms have to be implemented from
scratch, which requires time-recourses.

The migration tool must be designed to handle large MIB XML-files. Therefore
the main parser of the migration tool must be based on the SAX-technique. In
the part that handles the comparison of the different MIM-versions, the DOM-
technique could be used since the MIM-documents are smaller.

A prototype application was developed to prove the basic concepts of the
migration.

������ 3URWRW\SH�'HVLJQ
To have a flexible and open design the abstract Java-interface MIMChanges has
been defined with methods that returns information about the changes of the
different MIM-objects.

Using XML for Import and Export of Data

Chapter 5: Migrating Data Between Different MIM-versions 39

ConvertMIB is the main class that uses a SAX-parser to read the MIB XML-
file. It queries the MIMChanges to find out which elements in the MIB-file that
should be included in the new MIB-file.

MIMChangesDOM
(from convmib)

Document
(from dom)

1..n1..n

DefaultHandler
(from helpers)

LexicalHandler

(from ext)

MIMChanges

getOldMimVersion() : String
getNewMimVersion() : String
moTypeRemoved(moTypeName : String) : boolean
mandatoryMOAttributeAdded(moTypeName : String) : boolean
moAttributeRemoved(moTypeName : String, moAttributeName : String) : boolean
getAttributeDataType(moTypeName : String, moAttributeName : String) : String
attrValueWithinRange(moTypeName : String, moAttributeName : String, attrValue : double) : boolean
relationshipRemoved(relationshipTypeName : String) : boolean

(from convmib)

<<Interface>>

ConvertMIB

ConvertMIB()
convert()
processingInstruction()
startDocument()
startDTD()
endDTD()
startEntity()
endEntity()
startCDATA()
endCDATA()
comment()
startElement()
characters()
ignorableWhitespace()
endElement()
warning()
error()
fatalError()
getLocationString()
normalize()
main()

(from convmib)

1

1

1

1

XMLReader

11

MIMChangesXSL
(from convmib)

11

)LJXUH�����&RQYHUW0,%�GHVLJQ

Two different implementation of the interface has been done:
MIMChangesXSL and MIMChangesDOM.

�������� 0,0&KDQJHV;6/

In the MIMChangesXSL implementation, XSL is used to extract the changes
between the two MIM-definition versions. A special XSL-program, MIMDiff,
has been implemented (see Appendix B:MIMDiff.xsl Source Code). MIMDiff
stores the changes in a new XML-file with a special defined format. This file is
then parsed by MIMChangesXSL, which builds an internal table of the changes.

Using XML for Import and Export of Data

40 Chapter 5: Migrating Data Between Different MIM-versions

0,0'LII

[VO

;6/�HQJLQH
0,0&KDQJHV;6/

0,0BQHZ

[PO

0,0BROG

[PO

0,0

&KDQJHV

[PO

)LJXUH�����0,0&KDQJHV;6/�FRQFHSW

This solution requires an XSL processing engine to be installed in the system.

�������� 0,0&KDQJHV'20

In the MIMChangesDOM implementation, the data from the two MIM-
definition versions are received by means of the DOM-technique. The XML-
files are parsed into two DOM-trees and then MIMChangesDOM queries the
data-trees to extract the changes.

0,0&KDQJHV'20

'20

MI M

RelDefMO-class

MOattr MOattr MOattr

0,0BROG

datatype

'20

MI M

RelDefMO-class

MOattr MOattr MOattr

0,0BQHZ

datatype

�����

�����

0,0BQHZ

[PO

0,0BROG

[PO

)LJXUH�����0,0&KDQJHV'20�FRQFHSW

This implementation is more flexible and makes it possible to find differences
at a more detailed level compared to the MIMChangesXSL.

���� 0LJUDWLRQ�:LWKLQ�&6
Another way to handle the migration between different versions would be to
make the conversion directly in the CS import_MIB component. This section
discusses two such concepts.

Using XML for Import and Export of Data

Chapter 5: Migrating Data Between Different MIM-versions 41

������ /'$3�4XHU\
All versions of the MIM-definitions are stored in a directory service that is
accessible from the import_MIB component. This makes it possible to do an
implementation of the MIMChanges-interface where the MIM-data is read from
the directory service (LDAP).

0,%BYHU<

[PO

&6

LPSRUWB0,%

0,0&KDQJHV/'$3

,PSOHPHQWV
0,0&KDQJHV

&RPSDUHV

YHUVLRQ�<�DQG�=

0,%

'%

0,%

'%

/'$3
0,0�YHU�;

0,0�YHU�<

0,0�YHU�=

(DFK�02�REMHFW�FKHFNHG
EHIRUH�LW�LV�VWRUHG�LQ�WKH

0,%�'%

)LJXUH�����0,0&KDQJHV/'$3�FRQFHSW

When an older MIB-version is imported, a new MIMChangesLDAP object is
created that reports the differences between the current MIM-version and the
MIM-version the MIB-file is based on.

The import_MIB check each MIB-element before it is stored in the database.

The main pros and cons of this design are:

+ The user does not have to run an external conversion utility where the
different MIM XML-files must be supplied.

− The user has less control over the conversion process
− An export from the database has to be done to produce a MIB XML-file that

comply to the current MIM-format
− Any problem in this function will affect the stability and robustness of the

whole CS-component.

������ 02�FRQYHUVLRQ�3OXJ�LQ
Another conversion concept would be to make a “hard-coded” conversion code-
module for each new MIM-version. There must then be a conversion-handler
defined for each MO-type in each previous MIM-version. The conversion plug-
in modules could with advantage be defined by the person who makes the
MIM-definition changes.

Using XML for Import and Export of Data

42 Chapter 5: Migrating Data Between Different MIM-versions

02�W\SH

FRQYHUVLRQ

7HVW02

YHU�<��!=

02�W\SH
FRQYHUVLRQ

&KDQQHO*URXS

YHU�<��!=

0,%BYHU<

[PO

&6

LPSRUWB0,%

02�W\SH

FRQYHUVLRQ

,QWHUQDO&HOO

YHU�<��!=

0,%
'%

0,%

'%

(DFK�02�REMHFW�LV
FRQYHUWHG�E\�WKH�SOXJ�LQ
EHIRUH�LW�LV�VWRUHG�LQ�WKH

GDWDEDVH

)LJXUH�����3OXJ�LQ�0,%�FRQYHUVLRQ�FRQFHSW

The main pros and cons of this design are:

+ Possible to have special conversion-rules for each MO-type. This could, for
example, make it possible to handle renaming of MO-types.

− A lot of code has to be implemented each time a new MIM-version is
installed

− The user has less control over the conversion process
− An export from the database has to be done to produce a MIB XML-file that

comply to the current MIM-format.

���� 6XPPDU\�DQG�5HFRPPHQGHG�6ROXWLRQV
A migration tool will with high probability be cost effective to implement.

The XSL-technique is not so useful within this area and an implementation in
Java will be more effective.

It is difficult to suggest just one of the designs as the best. If the migration
should be done frequently then an implementation within the import_MIB
module would probably be most effective, otherwise an external tool should be
considered.

Using XML for Import and Export of Data

Chapter 6: DTD/Schema Format 43

�� '7'�6FKHPD�)RUPDW
This chapter contains information about the third part of the thesis: an
evaluation of which DTD/schema format that is most effective to use for the
MIB XML-file.

���� 3UREOHP�'HVFULSWLRQ
The current format of the MIB XML-file is specified by the DTD-definition in
the mib.dtd file (see Appendix C: DTD/schema Formats). There is a need to
make the MIB XML-format as effective as possible with respect to the
following factors: correct functionality, easy implementation, simple readability
and good runtime performance.

There are several “standard” XML-formats available that are intended to be
used to define/exchange different kinds of object oriented data. The main task
of this part of the thesis is to analyse and compare those formats in respect to
the current mib.dtd format. The formats that were suggested to be analysed are
XMI, CCM IRP and VXML. There should also be investigated if the mib.dtd
format could be improved in any way.

���� &&0�,53
Common Configuration Management Integration Reference Points (CCM IRP)
is a format defined by the 3GPP-organisation. It is intended to facilitate the
exchange of object configuration data between different parts in the third
generation mobile network, regardless of the vendor.

The main pros and cons of CCM IRP are:

+ “Standard” format -- the MIB-files can be reused in other applications
without modification

+ Each MO contains Distinguished Name -- simplifies the import parsing.

− MOs are needed to be stored in the correct order in the file
− Uses one XML-element type for all primitive data-types -- extra type-

handling code necessary
− Not possible to define associations or hoppers.

The most significant disadvantage is the lack of association- and hopper-
definition. Since Ericsson is a member of the 3GPP-organisation it should be
possible get rid of this limitation by suggesting an extension of the format.

���� 9;0/
Versant XML (VXML) is used to define data that should be imported directly in
a Versant Object Oriented database by means of their import utility.

Using XML for Import and Export of Data

44 Chapter 6: DTD/Schema Format

0,%
9;0/

9HUVDQW
9;0/

LPSRUW�XWLO

0,%
'%

)LJXUH�����9;0/�FRQFHSW

The main pros and cons of VXML are:

+ Simple format -- easy to understand
+ Fast import -- the database is queried directly.

− The structure of the XML-import file must follow the class-structure in the
database -- any changes in the database-structure affects the format of the
MIB XML-file

− Versant’s import tool has limited constraint checks -- no warnings will be
generated if MO-attributes etc are missing or out of range.

The absence of constraint checks in the VXML import utility makes this import
technique insufficient in respect of the CS-requirements.

If the import would be done through the import_MIB, or some other external
application with a constraint check included, the VXML DTD-format could
theoretically be used. However, then there will be no advantage over using the
current mib.dtd format and there will be similar drawbacks as for the CCM IRP
format.

���� ;0,
XML Metadata Interchange Format (XMI) is a format defined by the Object
Management Group.

The main purpose of XMI is to enable easy interchange of metadata between
modelling tools (based on the OMG UML) and between tools and metadata
repositories (OMG MOF based) in distributed heterogeneous environments.
(OMG 2000)

XMI is a complex standard. The specification document (OMG 2000) covers
400 pages. The specification does not specify a fixed DTD-format; it only
specifies the basic guidelines for constructing a valid XMI DTD.

The conclusion of the analyse is that the XMI-technique is not so useful within
the import_MIB/CS-context.

���� 0LE�GWG
The DTD-definition in the mib.dtd file defines the current format of the MIB
XML-file.

The main pros and cons of mib.dtd are:

+ Currently used format -- import_MIB component and the specialised MIB
generation tools do not have to be changed

+ Special XML-tags for each available primitive type of the MO-attributes --
simplifies the consistency check.

Using XML for Import and Export of Data

Chapter 6: DTD/Schema Format 45

− The defined MO-instances do not have distinguished name. The hierarchy in
the XML-file defines the MO-hierarchy. The current element-level within
the XML-file has to be tracked

− Includes XML-elements with no significant functionality -- increases
memory consumption and parsing time.

The change of a format that is already in use in delivered systems has to have a
strong motivation; i.e. the system performance must be significantly increased.
When mib.dtd are compared to the other formats, no really significant fact can
be found that motivates a switch to a new format.

������ ,PSURYHPHQWV
Another question was if the mib.dtd format itself could be changed in such a
way that performance increases, but with little impact on the import_MIB
component and the specialised MIB XML-file generation tools?

The easiest way to improve parsing performance would be to reduce the number
of XML-elements.

Each MO-attribute definition has a datatype and value-element. Those elements
have no significant function when the MIB XML-files are imported.

If the mib.dtd file is changed according to the suggestion in Appendix C:
DTD/schema Formats, the DOM memory consumption and parsing time could
be reduced by 20-40%. Only minor changes in the import_MIB component
should be needed to handle the changed format. Other changes could improve
the memory and XML-parsing performance even more, but the performance-
loss in other parts of the import_MIB will then level out those improvements.
The suggested changes are estimated to be the best compromise when all parts
of the import procedure are considered

���� 6XPPDU\�DQG�5HFRPPHQGHG�6ROXWLRQV
CCM IRP could be useful with some changes implemented.

VXML and XMI are of less interest. VXML will make the constraint check
more difficult and is also too associated to the database-structure. XMI is very
complex and has no fixed dtd-definition and will therefore not be efficient.

Mib.dtd is recommended to be used within the foreseeable future, but some
improvements should be considered.

Using XML for Import and Export of Data

46 Chapter 7: Summary and Future Work

�� 6XPPDU\�DQG�)XWXUH�:RUN
This chapter contains a summary of the thesis. It also contains suggestions
about how the results should be used and recommendations for future work.

���� /DUJH�,PSRUW�DQG�([SRUW�)LOHV
The current implementation of the import/export function is based on an in-
memory DOM-parser, which has a heap-memory consumption that is linear to
the size of the XML-file. This will cause a primary memory shortage problem
when a network with a large number of elements should be
configured/simulated. To solve this problem, the current methods must be based
on a different technique.

The techniques evaluated were the SAX-parser, DOM-parser with alternative
storage technique and a “hard-coded” solution.

The SAX-parser is fast with low memory consumption, but is usually complex
to use and requires more code at the application side. The DOM-parser
technique is easy to use and integrate in the current system, but it consumes a
lot of memory for the storage of the data-tree that is built. A “hard-coded”
solution makes it possible to have full control of the memory consumption and
other parts of the process, but it will require a lot of coding.

When comparing the different techniques the following factors were
considered: correct functionality, runtime performance, simple (not time-
consuming) implementation and maintenance, fault handling/robustness and
cost for software license.

������ &RQFOXVLRQV
A combined SAX/DOM technique is recommended as the best choice for
import and a CS “hardcoded” implementation the best for export. However, the
differences are not significant and if some of the project conditions are changed,
one of the other solutions could become the overall best.

���� 0LJUDWLQJ�'DWD�%HWZHHQ�'LIIHUHQW�0,0�YHUVLRQV
There is a need to make the migration between different network-models fully-
or semi-automatic. In this part of the thesis different techniques for comparison
and conversion of XML-files were evaluated to find a solution to the problem.

The techniques evaluated were XSL, 3PP and a Java-based solution.

XSL has advanced element filter/lookup functionality, but the XSL-engine
consumes a lot of memory and its ability to compare several XML-documents is
limited. Two 3PP were evaluated, but none of them was found suitable within
this area. The Java-based solution can facilitate the most flexible conversion
utility, but it will require a lot of code-implementation. The conversion can be
implemented as a separate external tool, or as part of the import function in the
CS.

Using XML for Import and Export of Data

Chapter 7: Summary and Future Work 47

������ &RQFOXVLRQV
A migration tool will with high probability be cost effective to implement.

The XSL-technique is not so useful within this area and an implementation in
Java will be more effective.

It is difficult to suggest just one of the designs as the best. If the migration
should be done frequently then an implementation within the import_MIB
module would probably be most effective, otherwise an external tool should be
considered.

���� '7'�6FKHPD�)RUPDW
In the third part of the thesis the format of the XML-file was studied to see if
any changes could increase the performance.

The following formats were analysed: XMI, CCM IRP and VXML. The current
mib.dtd format was also analysed to find out if it could be improved in any way.

The main purpose of XMI is to enable easy interchange of metadata between
modelling tools. The specification does not specify a fixed DTD-format; it only
specifies the basic guidelines for constructing a valid XMI DTD.

CCM IRP is intended to facilitate the exchange of object configuration data
between different parts in the third generation mobile network, regardless of the
vendor. It is a “standard” format, which makes it possible to reuse the MIB-files
in other applications without modification. Each MO contains Distinguished
Name, which simplifies the import parsing. However, it uses only one XML-
element type for all primitive data-types, which requires extra type-handling
code. Furthermore, it does not support definition of associations or hoppers,
which is another drawback.

Versant XML (VXML) is used to define data that should be imported directly in
a Versant Object Oriented database by means of their import utility. The import
is very fast if Versants VXML-tool is used because the database is queried
directly. However, any changes in the database-structure will affects the format
of the MIB XML-file and the constraint checks are very limited.

The DTD-definition in the mib.dtd file defines the current format of the MIB
XML-file. The format could be improved by removing elements with no
significant functionality. This will reduce the memory consumption and parsing
time.

������ &RQFOXVLRQV
CCM IRP could be useful with some changes implemented.

VXML and XMI are of less interest. VXML will make the constraint check
more difficult and is also too associated to the database-structure. XMI’s
drawbacks of a complex characteristic and no fixed dtd-definition makes it
unsuitable.

Mib.dtd is recommended to be used within the foreseeable future, but some
improvements should be considered.

Using XML for Import and Export of Data

48 Chapter 7: Summary and Future Work

����)XWXUH�:RUN
This thesis has proven the basic concepts by means of prototype programs. The
next step would be to implement the suggested solutions in the current CS-
system.

The performance issues could be further investigated by analyzing the use of the
CORBA methods create_mo and set_mo methods compared to the import
method. The transaction handling to the database could probably be improved
by means of some optimisation algorithm. Other areas that could be further
investigated are the fault handling and robustness.

The XML is a new technique that is rapidly spreading. New tools are constantly
produced and there is a high probability that some of them will be useful within
the areas covered in the thesis. There are, for example, new validating
techniques like XML Schema that makes it possible to let the XML-parser do
some of the constraint checks that is performed within CS today. It is therefore
a good idea to continuously follow the development in the XML-area.

Using XML for Import and Export of Data

Chapter 8: Acronyms and Abbreviations 49

�� $FURQ\PV�DQG�$EEUHYLDWLRQV

3GPP Third Generation Partnership Project

3PP Third Party Product

API Application Programming Interface

BSC Base Station Controller

BSS Base Station System

CCM IRP Common Configuration Management IRP

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

CS Configuration Service

DN Distinguished Name

DOM Document Object Model

DTD Document Type Definition

GSM Global System for Mobile communication

HTML HyperText Markup Language

IIOP Internet Inter-ORB Protocol

IRP Integration Reference Point

ISO International Organisation for Standardisation

JVM Java Virtual Machine

LDAP Lightweight Directory Access Protocol

MIB Managed Information Base

MIM Managed Information Model

MO Managed Object

MOF Meta Object Facility

MSC Mobile Services switching Center

OMG Object Management Group

OS Operating System

OSS Operation and Support System

PDF Portable Document Format

PDOM Persistent DOM

PLMN Public Land Mobile Network

RANOS Radio Access Network Operation System

SAX Simple API for XML

SS Supplementary Services

UML Unified Modeling Language

UMTS Universal Mobile Telecommunications System

URI Uniform Resource Identifier

UTF Unicode Transformation Format

VXML Versant XML

Using XML for Import and Export of Data

50 Chapter 8: Acronyms and Abbreviations

XMI XML Metadata Interchange

XML eXtended Markup Language

XPath XML Path language

XQL XML Query Language

XSL Extensible Stylesheet Language

XSLT XSL Transformations

W3C World Wide Web Consortium

Using XML for Import and Export of Data

Chapter 9: References 51

�� 5HIHUHQFHV
Birbeck, Mark et.al. (2000), 3URIHVVLRQDO�;0/, Birmingham, Wrox, 1st edition,
1-86100-311-0

CS (2000), 3URJUDPPHU¶V�*XLGH�±�&RQILJXUDWLRQ�6HUYLFH (198 17-APR 90 161
Uen Rev PF4 2000-10-04), Ericsson Radio Systems

GMD (2001), GMD-IPSI XQL Engine, http://xml.darmstadt.gmd.de/xql/

KMS (2001), Kings Mountain Systems,
http://www.kingsmountain.com/ldapRoadmap.shtml

Morrison, Michael (2000), ;0/�XQOHDVKHG, Indianapolis (Ind.), Sams,
0672315149

OMG (2000), OMG XML 0HWDGDWD�,QWHUFKDQJH��;0,��6SHFLILFDWLRQ����,
OMG, ftp://ftp.omg.org/pub/docs/formal/00-11-02.pdf

OMG (2001), Object Management Group, http://www.omg.org/

Sun (2001), Sun’s source for Java technology, http://java.sun.com/

W3C (2001), World Wide Web Consortium, http://www.w3.org/

Using XML for Import and Export of Data

Appendix A:PDOM 53

$SSHQGL[�$��3'20
This appendix contains information about the GMD-IPSI XQL Engine. Most of
the information has been fetched from their web-site located at:
http://xml.darmstadt.gmd.de/xql/.

*0'�3HUVLVWHQW�'20
The PDOM class allows generating binary, indexed files containing a persistent
W3C-DOM. A PDOM file immediately offers all DOM operations without the
cost of parsing XML or building an in-memory DOM representation first.
Combined with servlets and XQL, PDOM files offer an efficient method to
serve XML fragments from large documents. A PDOM file may be created
from any XML file or programmatically using W3C-DOM methods.

When creating PDOM files from XML files, SAX events are used to
communicate with the XML parser. Using the event based SAX API there never
has to be a full representation of your XML file in main memory. Because of
this the size of a PDOM file is only limited by disk space, not by main memory.

The de.gmd.ipsi.pdom.PDocument class implements org.w3c.dom.Document,
so the PDOM may be used anywhere a W3C compliant DOM implementation
is needed. As the PDOM API supports all methods of the W3C-DOM,
including updates and inserts, programmatic creation and modification of
PDOM files is possible.

2YHUYLHZ�RI�WKH�3'20�)HDWXUHV
This section describes the different special characteristic of the PDOM

Caching: A PDOM file is organized in pages, each containing 128 DOM nodes
of variable length. When a PDOM Node is accessed by a W3C-DOM method,
the containing page is loaded into a main memory cache. Starting with a default
cache size of 100 pages (12.800 DOM Nodes), the main memory cache can be
resized any time. It will, however, never shrink below 20 pages (2.560 DOM
Nodes). It is recommended to use the largest cache size your machine’s main
memory can hold without swapping, as a larger cache improves overall PDOM
performance. The same cache is shared by all PDOM documents opened with
the same instance of the PDOM engine. The caching strategy used is "least
recently used" (LRU).

Defragmentation: When a node is programmatically inserted, updated or delete
by W3C-DOM methods, the page containing the node is invalidated ("dirty
page"). If a dirty page is displaced from the cache, the modified page is
appended at the end of the PDOM file. So a PDOM file will grow during write
operations, as the file space occupied by invalidated pages will not be removed
or reused automatically. Note that just reading and or querying a PDOM file,
however, will never change the file size.

Using XML for Import and Export of Data

54 Appendix A: PDOM

The PDOM file can be defragmented at any time by removing unused pages.
During this operation a temporary file containing only valid pages is created and
finally the fragmented PDOM file is replaced with the unfragmented copy. It is
possible to define the directory where the temporary file is created. The slack
ratio, that is the percentage of wasted file space divided by physical file size can
be accessed by user applications. The number is normalized to a double
between 0.0 and 1.0. It is up to the user application to start a defragmentation,
probably if the slack ratio grows beyond a tolerable mark.

Full garbage collection: Defragmentation does work on a per-page basis and
does not free space occupied by DOM nodes that have been deleted within
pages. To also free this space, a full garbage collection is required. To avoid
dangling object references, a garbage collection is only safe if the PDOM file is
not opened by another PDOM engine and no PDocument object is currently
bound to the PDOM file. This also includes any child nodes of PDocument,
which may still be in main memory left from previous operations. It is the duty
of the user application to enforce these conditions; else you are in danger to
garble the PDOM file. Full garbage collection includes defragmentation.

Commit points: At any time a user application doing update, delete or insert
operations on a PDOM can decide to commit the current status quo of the
PDOM. In the commit operation the main file index, normally maintained in
main memory, is written back to disk. If the user application crashes, e.g.
because of a "disk full" error, the PDOM will be in the state it was immediately
before the last successful commit operation when re-opened. Great care was
taken to ensure file consistency even after crashes. There is, however, a minimal
chance of corrupting a file if the user application dies during a commit
operation. Keep in mind that the PDOM does not try to be a fully-fledged
database.

Compression with gzip: Optionally a PDOM file can be compressed on the fly
using the gzip algorithm. This will result in smaller files, usually half the size of
an uncompressed PDOM file. The trade-off here is speed: a compressed PDOM
file usually increases the execution for reading and writing pages by 20%.
Compression is a one-time decision take at creating time of the PDOM file. A
file can not be compressed later. All operations opening PDOM files will
automatically recognize compression and handle this fact transparently. User
applications never have to care or know about compression when dealing with
existing PDOM files.

Multithreaded access: The same PDOM file can be read by multiple threads in
parallel without problem. Update operations block read and write operations for
other threads. Given this, all atomic operations on a PDOM file are thread safe.
However, composed update operations (e.g. reading a node, modifying it and
write back to the PDOM) suffer from the well-known transaction difficulties.
To ensure atomicity of complex updates, the application has to synchronize the
critical block of code with the PDocument object.

,QVWDOODWLRQ
To integrate the GMD-IPSI XQL with your Java based XML environment
simply download the distribution after agreeing to the license terms,

• add the JAR file contained in the distribution to your Java CLASSPATH,
• add a SAX parser to your CLASSPATH (if not already there)

Using XML for Import and Export of Data

Appendix A:PDOM 55

• add a W3C-DOM implementation to your CLASSPATH (if not already
there)

The GMD-IPSI PDOM engine requires a third party SAX parser to read XML
documents. The SAX API does not provide full information on XML
documents, e.g. comments or CDATA sections are missing. As a result, such
nodes are missing from the PDOM when built using SAX events. Glue code for
IBM’s xml4j2 parser is included, using its proprietary extensions to SAX, to
create DOM nodes of types not supported by standard SAX. So xml4j2 is not
required, but recommended to be used as SAX parser. To automatically use this
feature, simply add xml4j2 to your CLASSPATH.

Any other SAX compliant parser may be specified in the command line tools. If
no parser is specified and xml4j2 is missing, XP, Microstar Ælfred, Sun Project
X and Oracle XML parser are auto-detected and used if present in your
CLASSPATH.

If you want to query only PDOM files, no third party W3C-DOM
implementation is needed. When the XQL command line tool is used to query
arbitrary XML documents, a temporary in-memory DOM is built. Again you
may explicitly specify the W3C-DOM implementation you want to use. If no
preferred DOM implementation is given, Open XML DOM, Sun Project X,
xml4j, xml4j2, Docuverse DOM SDK and Oracle XML DOM are auto-detected
and used if present in your CLASSPATH.

A new package with DOM utility functions has been added. To use the included
methods to instantiate a W3C-DOM from HTML or Microsoft RTF, the Sun
JFC library (aka Swing 1.1) has to be in your CLASSPATH.

Development is done using Sun JDK 1.2.1, the jikes Java compiler 0.47 and
xml4j 2.0.9. The engine is also tested with the Sun JDK 1.1.8, Microsoft SDK
3.2 and the parsers and DOM implementations listed above on an irregular
basis.

&UHDWLQJ�D�3'20�)LOH
There are two ways to create a PDOM file, either by writing an in-memory
DOM to disk or by creating it from an XML InputStream.

Variant 1 demonstrates the creation of a PDOM file from an in-memory
instance of another DOM. Any W3C-DOM implementation can be used. The
example does use the gzip compression option to create a compressed PDOM
file.

Variant 2 demonstrates the creation of a PDOM file from a vanilla plain XML
file. The built-in validating SAX parser, extending xml4j2's
com.ibm.xml.parsers.SAXParser, is used. As we decide to use validation, it is
feasible to suppress ignorable whitespace. This way a lot of unnecessary Text
nodes holding only whitespace are suppressed, resulting in a smaller, faster
PDOM file.

import de.gmd.ipsi.pdom.*;
import de.gmd.ipsi.domutil.*;
import org.w3c.dom.Document;

Using XML for Import and Export of Data

56 Appendix A: PDOM

//
// Variant 1: Writing an in-memory DOM Document to disk
//

// A Document created by your favorite DOM implementation
Document in_memory_doc = DOMUtil.createDocument();
PDOM.writeDOMFile(

"mydoc.pdom",
in_memory_doc,
true // false = no gzip compression, true = create

gziped PDOM
);

//
// Variant 2: Create a PDOM by parsing an XML input stream
//

Document pdoc = new PDocument("mydoc.pdom");
DOMUtil.parseXML(

new FileInputStream("valid_with_dtd.xml"),
pdoc, // The Document’s factory is used to create

PDOM Nodes
true, // Parse mode: true = validating, false = non-

validating
DOMUtil.SKIP_IGNORABLE_WHITESPACE // Whitespace

treatment, see API docs
);
((PDocument)pdoc).commit(); // be sure to flush to
disk

/LFHQFH
A commercial version is available with the possibility to buy a company-
license.

Licensing and pricing for commercial use:

The Base Package of the Infonyte XQL Suite contains the XQL query engine,
the PDOM storage component, command line front-ends, and user
documentation. The following license types are available:

Single User Runtime License
Includes: Infonyte XQL Suite Base Package
EURO 100

Single Developer License
Includes: Infonyte XQL Suite Base Package, API docs
EURO 1000

Server Runtime License (per CPU)
Includes: Infonyte XQL Suite Base Package, API docs, Servlet
EURO 1500

Company License
Proposals available on request
OEM Runtime Licenses

Using XML for Import and Export of Data

Appendix A:PDOM 57

Proposals available on request

More information can be found at: http://www.globit.com/infonyte.htm and
http://xml.darmstadt.gmd.de/xql/.

Using XML for Import and Export of Data

Appendix B: MIMDiff.xsl Source Code 59

$SSHQGL[�%��0,0'LII�[VO�6RXUFH�&RGH
The MIMDiff prototype program were implemented in Java and XSL. This appendix contains the source
code of the XSL part. The purpose of this appendix is to present a practical example of an XSL-
implementation in general and the use of XSL for comparison of two XML-files in particular.

;6/�VRXUFH�FRGH

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version = "1.0">

<xsl:output method = "xml" omit-xml-declaration = "no" indent="yes" />

<xsl:variable name="old" select="document(’bsc_mim_old.xml’)" />
<xsl:variable name="new" select="/" />

<xsl:template match="/">
<xsl:element name="mimdiff">
 <xsl:attribute name="oldver">
 <xsl:value-of select="$old/models/mim/@version" />
 </xsl:attribute>
 <xsl:attribute name="oldrelease">
 <xsl:value-of select="$old/models/mim/@release" />
 </xsl:attribute>
 <xsl:attribute name="newver">
 <xsl:value-of select="$new/models/mim/@version" />
 </xsl:attribute>
 <xsl:attribute name="newrelease">
 <xsl:value-of select="$new/models/mim/@release" />
 </xsl:attribute>

<xsl:call-template name="list-additional">
 <xsl:with-param name="element-name">struct_added</xsl:with-param>
 <xsl:with-param name="more" select="$new/models/mim/struct" />
 <xsl:with-param name="less" select="$old/models/mim/struct" />
</xsl:call-template>

<xsl:call-template name="list-additional">
 <xsl:with-param name="element-name">struct_removed</xsl:with-param>
 <xsl:with-param name="more" select="$old/models/mim/struct" />
 <xsl:with-param name="less" select="$new/models/mim/struct" />
</xsl:call-template>

<xsl:call-template name="list-altered">
 <xsl:with-param name="more" select="$new/models/mim/struct" />
 <xsl:with-param name="less" select="$old/models/mim/struct" />
</xsl:call-template>

<xsl:call-template name="list-additional">
 <xsl:with-param name="element-name">enum_added</xsl:with-param>
 <xsl:with-param name="more" select="$new/models/mim/enum" />
 <xsl:with-param name="less" select="$old/models/mim/enum" />
</xsl:call-template>

<xsl:call-template name="list-additional">
 <xsl:with-param name="element-name">enum_removed</xsl:with-param>
 <xsl:with-param name="more" select="$old/models/mim/enum" />
 <xsl:with-param name="less" select="$new/models/mim/enum" />
</xsl:call-template>

<xsl:call-template name="list-altered">
 <xsl:with-param name="more" select="$new/models/mim/enum" />
 <xsl:with-param name="less" select="$old/models/mim/enum" />

Using XML for Import and Export of Data

60 Appendix B: MIMDiff.xsl Source Code

</xsl:call-template>

<xsl:call-template name="list-additional">
 <xsl:with-param name="element-name">class_added</xsl:with-param>
 <xsl:with-param name="more" select="$new/models/mim/class" />
 <xsl:with-param name="less" select="$old/models/mim/class" />
</xsl:call-template>

<xsl:call-template name="list-additional">
 <xsl:with-param name="element-name">class_removed</xsl:with-param>
 <xsl:with-param name="more" select="$old/models/mim/class" />
 <xsl:with-param name="less" select="$new/models/mim/class" />
</xsl:call-template>

<xsl:call-template name="list-altered">
 <xsl:with-param name="element-name">class_altered</xsl:with-param>
 <xsl:with-param name="more" select="$new/models/mim/class" />
 <xsl:with-param name="less" select="$old/models/mim/class" />
</xsl:call-template>

<xsl:call-template name="list-additional">
 <xsl:with-param name="element-name">relationship_added</xsl:with-param>
 <xsl:with-param name="more" select="$new/models/mim/relationship" />
 <xsl:with-param name="less" select="$old/models/mim/relationship" />
</xsl:call-template>

<xsl:call-template name="list-additional">
 <xsl:with-param name="element-name">relationship_removed</xsl:with-param>
 <xsl:with-param name="more" select="$old/models/mim/relationship" />
 <xsl:with-param name="less" select="$new/models/mim/relationship" />
</xsl:call-template>

<xsl:call-template name="list-altered">
 <xsl:with-param name="more" select="$new/models/mim/relationship" />
 <xsl:with-param name="less" select="$old/models/mim/relationship" />
</xsl:call-template>

</xsl:element>
</xsl:template>

<xsl:template name="list-additional">
 <xsl:param name="element-name" />
 <xsl:param name="more" />
 <xsl:param name="less" />
 <!-- cycle through each item in the ’more’ document -->
 <xsl:for-each select="$more">
 <xsl:variable name="item" select="." />
 <xsl:variable name="comp" select="$less[@name=$item/@name]"/>
 <xsl:if test="count($comp) = 0">
 <xsl:element name ="{$element-name}">
 <xsl:attribute name = "name" >
 <xsl:value-of select="$item/@name" />
 </xsl:attribute>
 </xsl:element>
 </xsl:if>
 </xsl:for-each>
</xsl:template>

<xsl:template name="list-additional-attributes">
 <xsl:param name="more" />
 <xsl:param name="less" />
 <!-- cycle through each item in the ’more’ document -->
 <xsl:for-each select="$more">
 <xsl:variable name="item" select="." />
 <xsl:variable name="comp" select="$less[@name=$item/@name]"/>

Using XML for Import and Export of Data

Appendix B: MIMDiff.xsl Source Code 61

 <xsl:if test="count($comp) = 0">
 <xsl:element name ="attribute_added">
 <xsl:attribute name = "name" >
 <xsl:value-of select="$item/@name" />
 </xsl:attribute>
 <xsl:attribute name = "mandatory" >
 <xsl:if test="count(./mandatory) > 0">
 <xsl:value-of select="’true’" />
 </xsl:if>
 <xsl:if test="count(./mandatory) = 0">
 <xsl:value-of select="’false’" />
 </xsl:if>
 </xsl:attribute>
 </xsl:element>
 </xsl:if>
 </xsl:for-each>
</xsl:template>

<xsl:template name="list-altered2">
 <xsl:param name="element-name" />
 <xsl:param name="more" />
 <xsl:param name="less" />
 <!-- cycle through each item in the ’more’ document -->
 <xsl:for-each select="$more">
 <xsl:variable name="item" select="." />
 <xsl:for-each select="$less">
 <xsl:if test="$item/@name = ./@name">
 <xsl:call-template name="list-additional">
 <xsl:with-param name="element-name">attribute_removed</xsl:with-param>
 <xsl:with-param name="more" select="." />
 <xsl:with-param name="less" select="$item" />
 </xsl:call-template>
 </xsl:if>
 </xsl:for-each>
 </xsl:for-each>
</xsl:template>

<xsl:template name="list-altered">
 <xsl:param name="more" />
 <xsl:param name="less" />
 <!-- cycle through each item in the ’more’ document -->
 <xsl:for-each select="$more">
 <xsl:variable name="item" select="." />
 <xsl:variable name="diffmore" select="." />
 <!-- select the ’less’ document so that elements can be selected from that
 document -->
 <xsl:for-each select="$less">
 <xsl:variable name="olditem" select="." />
 <xsl:variable name="diffless" select="." />
 <xsl:if test="$item/@name = $olditem/@name">
 <xsl:element name ="{concat(name($item),’_changes’)}">
 <xsl:attribute name = "name" >
 <xsl:value-of select="$item/@name" />
 </xsl:attribute>
 <xsl:choose >
 <xsl:when test="name($item) = ’struct’">
 <xsl:call-template name="list-additional">
 <xsl:with-param name="element-name">structMember_added</xsl:with-
param>
 <xsl:with-param name="more" select="$item/structMember" />
 <xsl:with-param name="less" select="$olditem/structMember" />
 </xsl:call-template>
 <xsl:call-template name="list-additional">
 <xsl:with-param name="element-
name">structMember_removed</xsl:with-param>
 <xsl:with-param name="more" select="$olditem/structMember" />

Using XML for Import and Export of Data

62 Appendix B: MIMDiff.xsl Source Code

 <xsl:with-param name="less" select="$item/structMember" />
 </xsl:call-template>
 <xsl:call-template name="list-altered">
 <xsl:with-param name="more" select="$item/structMember" />
 <xsl:with-param name="less" select="$olditem/structMember" />
 </xsl:call-template>
 </xsl:when>
 <xsl:when test="name($item) = ’enum’">
 <xsl:call-template name="list-additional">
 <xsl:with-param name="element-name">enumMember_added</xsl:with-
param>
 <xsl:with-param name="more" select="$item/enumMember" />
 <xsl:with-param name="less" select="$olditem/enumMember" />
 </xsl:call-template>
 <xsl:call-template name="list-additional">
 <xsl:with-param name="element-name">enumMember_removed</xsl:with-
param>
 <xsl:with-param name="more" select="$olditem/enumMember" />
 <xsl:with-param name="less" select="$item/enumMember" />
 </xsl:call-template>
 </xsl:when>
 <xsl:when test="name($item) = ’class’">
 <xsl:call-template name="list-additional-attributes">
 <xsl:with-param name="more" select="$item/attribute" />
 <xsl:with-param name="less" select="$olditem/attribute" />
 </xsl:call-template>
 <xsl:call-template name="list-additional">
 <xsl:with-param name="element-name">attribute_removed</xsl:with-
param>
 <xsl:with-param name="more" select="$olditem/attribute" />
 <xsl:with-param name="less" select="$item/attribute" />
 </xsl:call-template>
 <xsl:call-template name="list-altered">
 <xsl:with-param name="more" select="$item/attribute" />
 <xsl:with-param name="less" select="$olditem/attribute" />
 </xsl:call-template>
 </xsl:when>
 <xsl:when test="name($item) = ’attribute’">
 <xsl:call-template name="analyse-attribute-changes">
 <xsl:with-param name="new" select="$item/." />
 <xsl:with-param name="old" select="$olditem/." />
 </xsl:call-template>
 </xsl:when>
 <xsl:when test="name($item) = ’structMember’">
 <xsl:call-template name="analyse-dataTree-changes">
 <xsl:with-param name="new" select="$item/." />
 <xsl:with-param name="old" select="$olditem/." />
 </xsl:call-template>
 </xsl:when>
 </xsl:choose>

 </xsl:element>
 </xsl:if>
 </xsl:for-each>
 </xsl:for-each>
</xsl:template>

<xsl:template name="analyse-dataTree-changes">
 <xsl:param name="new" />
 <xsl:param name="old" />
 <xsl:variable name="newNodeNamesStr" >
 <xsl:for-each select="$new//*">
 <xsl:value-of select="name(.)" />
 </xsl:for-each>
 </xsl:variable>
 <xsl:variable name="oldNodeNamesStr" >
 <xsl:for-each select="$old//*">

Using XML for Import and Export of Data

Appendix B: MIMDiff.xsl Source Code 63

 <xsl:value-of select="name(.)" />
 </xsl:for-each>
 </xsl:variable>
 <xsl:variable name="newNodeValuesStr" >
 <xsl:for-each select="$new//*">
 <xsl:value-of select="." />
 </xsl:for-each>
 </xsl:variable>
 <xsl:variable name="oldNodeValuesStr" >
 <xsl:for-each select="$old//*">
 <xsl:value-of select="." />
 </xsl:for-each>
 </xsl:variable>
 <xsl:if test="$newNodeNamesStr != $oldNodeNamesStr">
 <xsl:element name="dataElementNamesChanged" />
 </xsl:if>
 <xsl:if test="$newNodeValuesStr != $oldNodeValuesStr">
 <xsl:element name="dataValuesChanged" />
 </xsl:if>
</xsl:template>

<xsl:template name="analyse-attribute-changes">
 <xsl:param name="new" />
 <xsl:param name="old" />
 <xsl:variable name="newDataType" select="$new/dataType/*[position()=1]" />
 <xsl:variable name="oldDataType" select="$old/dataType/*[position()=1]" />
 <xsl:variable name="newDataTypeNodeStr" >
 <xsl:for-each select="$new/dataType//*">
 <xsl:value-of select="name(.)" />
 <xsl:value-of select="." />
 </xsl:for-each>
 </xsl:variable>
 <xsl:variable name="oldDataTypeNodeStr" >
 <xsl:for-each select="$old/dataType//*">
 <xsl:value-of select="name(.)" />
 <xsl:value-of select="." />
 </xsl:for-each>
 </xsl:variable>
 <xsl:if test="count($new/mandatory) > count($old/mandatory)">
 <xsl:element name="mandatory" />
 </xsl:if>
 <xsl:element name ="newDataType">
 <xsl:attribute name = "type" >
 <xsl:value-of select="name($newDataType)" />
 </xsl:attribute>
 <xsl:if test="name($newDataType) = ’structRef’ or name($newDataType) = ’enumRef’">
 <xsl:attribute name = "name" >
 <xsl:value-of select="$newDataType/@name" />
 </xsl:attribute>
 </xsl:if>
 </xsl:element>
 <xsl:element name ="oldDataType">
 <xsl:attribute name = "type" >
 <xsl:value-of select="name($oldDataType)" />
 </xsl:attribute>
 <xsl:if test="name($oldDataType) = ’structRef’ or name($oldDataType) = ’enumRef’">
 <xsl:attribute name = "name" >
 <xsl:value-of select="$oldDataType/@name" />
 </xsl:attribute>
 </xsl:if>
 </xsl:element>
 <xsl:if test="count($new//range) > 0">
 <xsl:element name ="newRange">
 <xsl:attribute name = "min" >
 <xsl:value-of select="$new//range/min/." />
 </xsl:attribute>

Using XML for Import and Export of Data

64 Appendix B: MIMDiff.xsl Source Code

 <xsl:attribute name = "max" >
 <xsl:value-of select="$new//range/max/." />
 </xsl:attribute>
 </xsl:element>
 </xsl:if>
 <xsl:if test="count($old//range) > 0">
 <xsl:element name ="oldRange">
 <xsl:attribute name = "min" >
 <xsl:value-of select="$old//range/min/." />
 </xsl:attribute>
 <xsl:attribute name = "max" >
 <xsl:value-of select="$old//range/max/." />
 </xsl:attribute>
 </xsl:element>
 </xsl:if>
 <xsl:if test="$oldDataTypeNodeStr != $newDataTypeNodeStr">
 <xsl:element name="dataTypeTreeChanged" />
 </xsl:if>
</xsl:template>

</xsl:stylesheet>

Using XML for Import and Export of Data

Appendix C: DTD/schema Formats 65

$SSHQGL[�&��'7'�VFKHPD�)RUPDWV
This appendix contains the DTD-definitions of the different MIB XML-file formats that were evaluated.

&&0�,53
This version of the CCM IRP DTD is defined in the specification document: Common Configuration
Management N-Interface (N-IF), Specification: CORBA/XML Solution Set, ERA/RT-00:506, version 1,
2000-09-18, A.

<!--
Import/export file DTD.

-->

<!ELEMENT configDataCollection (fileHeader?,
 configData,
 fileFooter?)>

<!-- fileHeader -->

<!ELEMENT fileHeader EMPTY>
<!ATTLIST fileHeader fileFormatVersion CDATA #REQUIRED
 senderName CDATA #REQUIRED
 vendorName CDATA #REQUIRED>

<!-- configData -->

<!ELEMENT configData (managedObject*)>
<!ATTLIST configData mimName CDATA #REQUIRED
 mimVersion CDATA #REQUIRED>

<!ELEMENT vendorSpecific EMPTY>

<!ELEMENT managedObject (modifier?, attribute*, vendorSpecific?)>
<!ATTLIST managedObject distinguishedName CDATA #REQUIRED>

<!-- modifier
The modifier is used only when downloading configuration
towards the managed sub-network.
-->
<!ELEMENT modifier (create | delete | update)>
<!ELEMENT create EMPTY>
<!ELEMENT delete EMPTY>
<!ELEMENT update EMPTY>

<!-- attribute -->

<!ELEMENT attribute ((structValue |
 sequenceValue |
 simpleValue |
 referredMO |
 undefinedValue), vendorSpecific?)>

Using XML for Import and Export of Data

66 Appendix C: DTD/schema Formats

<!ATTLIST attribute name CDATA #REQUIRED>

<!--
A simpleValue is a plain attribute value that is expressed
as a string. This is relevant for the following datatypes :
 * boolean can have the values "true" or "false"
 * long max and minimum values as defined in CORBA/IDL
 * float where Sign, FloatingPointLiteral are as
 defined in paragraph 3.10.2
 of the Java Language Specification. I
 * string as defined in CORBA/IDL
 * longlong max and minimum values as defined in
 CORBA/IDL
 * enum is represented as the long (as defined in
 CORBA/IDL) value of the attribute.
 The symbolical values of each enumerated values is
 defined in respective attribute definition in the NRM.

-->
<!ELEMENT simpleValue (#PCDATA)>

<!ELEMENT undefinedValue EMPTY>

<!-- structValue -->
<!ELEMENT structValue (structMember+ | undefinedValue)>
<!ATTLIST structValue name CDATA #REQUIRED>

<!ELEMENT structMember (simpleValue+ |
 referredMO+ |
 sequenceValue+ |
 structValue+ |
 undefinedValue)>
<!ATTLIST structMember name CDATA #REQUIRED>

<!-- sequenceValue -->
<!ELEMENT sequenceValue (simpleValue* |
 referredMO* |
 structValue* |
 undefinedValue)>

<!-- referredMO -->
<!ELEMENT referredMO (null | distinguishedName)>
<!ELEMENT null EMPTY>

<!ELEMENT distinguishedName EMPTY>
<!ATTLIST distinguishedName distinguishedName CDATA #REQUIRED>

<!-- fileFooter -->

<!ELEMENT fileFooter (DateTime)>

<!ELEMENT DateTime (Date, Time)>

<!ELEMENT Time EMPTY>
<!ATTLIST Time
 Hour CDATA #REQUIRED
 Minute CDATA #REQUIRED
 Second CDATA #REQUIRED>

Using XML for Import and Export of Data

Appendix C: DTD/schema Formats 67

<!ELEMENT Date EMPTY>
<!ATTLIST Date
 Year CDATA #REQUIRED
 Month CDATA #REQUIRED
 Day CDATA #REQUIRED>

&&0�,53�([DPSOH

<?xml version="1.0" encoding="UTF-8"?>

<configDataCollection>
 <fileHeader vendorName="Ericsson" fileFormatVersion="1"
senderName="172.31.24.5"/>
 <configData mimVersion="1" mimName="CCM_NRM">
 <managedObject distinguishedName="Network=21000005">
 <attribute name="UserLabel">
 <simpleValue>Ericsson subnetwork</simpleValue>
 </attribute>
 <attribute name="NetworkType">
 <simpleValue>NEM domain</simpleValue>
 </attribute>
 </managedObject>
 <managedObject
distinguishedName="Network=21000005,ManagementNode=21000005">
 <attribute name="ManagementNodeType">
 <simpleValue>UTRAN-GSM-NEM</simpleValue>
 </attribute>
 <attribute name="UserLabel">
 <simpleValue>EricssonNEM</simpleValue>
 </attribute>
 <attribute name="LocationName">
 <simpleValue>Koeln_Office</simpleValue>
 </attribute>
 <attribute name="ManagementNodeVendor">
 <simpleValue>Ericsson</simpleValue>
 </attribute>
 </managedObject>
</configData>
 <fileFooter>
 <DateTime>
 <Date Day="1" Year="2000" Month="1"/>
 <Time Second="33" Minute="33" Hour="19"/>
 </DateTime>
 </fileFooter>
</configDataCollection>

9;0/
VXML has two different DTD-definitions: Fundamental DTD (vxml) and Language DTD (vxmllang)

Vxml and vxmllang are effectively the same relative to the definition of XML elements and attributes.
The key difference is in their usage. The vxmllang DTD makes extensive use of the composite element to
show language structure. Aside from providing a more natural view (from the language’s point of view)
of the object structure, it permits attributes to be named by their language names rather than their database
names. The vxml DTD "flattens" a database object, reflecting its database representation.

Using XML for Import and Export of Data

68 Appendix C: DTD/schema Formats

)XQGDPHQWDO�'7'

<?xml version="1.0" encoding="UTF-8" ?>
<!ELEMENT vxml (inst)* >
<!ELEMENT inst (composite|attr)* >
 <!ATTLIST inst
 class CDATA #REQUIRED
 id CDATA #IMPLIED >
<!ELEMENT composite (composite|attr)* >
 <!ATTLIST composite
 name CDATA #REQUIRED >
<!ELEMENT attr (#PCDATA) >
 <!ATTLIST attr
 name CDATA #REQUIRED >

/DQJXDJH�'7'

<?xml version="1.0" encoding="UTF-8" ?>
<!ELEMENT vxmllang (inst)* >
 <!ELEMENT composite (composite|attr)* >
<!ELEMENT inst (composite|attr)* >
 <!ATTLIST inst
 class CDATA #REQUIRED
 id CDATA #IMPLIED
 hash CDATA #IMPLIED >
<!ATTLIST composite
 name CDATA #REQUIRED
 serialization CDATA #IMPLIED >
<!ELEMENT attr (#PCDATA) >
 <!ATTLIST attr
 name CDATA #REQUIRED
 serialization CDATA #IMPLIED >

([DPSOHV
The examples below are based on the following class-structures:

Java

class human {
 String name;
 int age;
}

class employee extends human {
 int salary;
 int daysOff[2];
}

)XQGDPHQWDO�'7'

<?xml version="1.0"?>
<!DOCTYPE vxml SYSTEM
"http://www.versant.com/developer/vxml/dtds/v1.0/vxml.dtd">
<vxml>
 <inst class="employee" id="3.1.12345">
 <attr name="name">Fred</attr>
 <attr name="age">32</attr>
 <attr name="salary">50000</attr>

Using XML for Import and Export of Data

Appendix C: DTD/schema Formats 69

 <composite name="daysOff">
 <attr name="[0]">6</attr>
 <attr name="[1]">7</attr></composite></inst></vxml>

/DQJXDJH�'7'

<?xml version="1.0"?>
<!DOCTYPE vxmllang SYSTEM
"http://www.versant.com/developer/vxml/dtds/v1.0/vxmllang.dtd">
<vxmllang>
 <inst class="employee" id="3.1.12345">
 <composite name="human">
 <attr name="name">Fred</attr>
 <attr name="age">32</attr></composite>
 <attr name="salary">50000</attr>
 <composite name="daysOff">
 <attr name="[0]">6</attr>
 <attr name="[1]">7</attr></composite></inst></vxmllang>

;0,
The XMI-specification is too complex to be included in this appendix. The latest specification can be
found at http://www.omg.org/.

0LE�GWG
Due to demands from Ericsson the mib.dtd format has not been included in the public version of the
thesis. The information has been moved to a company internal appendix, which only the examiner and
Ericsson employees are allowed to access.

�

/,1.g3,1*6�81,9(56,7(7

5DSSRUWW\S
Report category

Licentiatavhandling

Examensarbete

C-uppsats

D-uppsats

Övrig rapport

6SUnN
Language

Svenska/Swedish

Engelska/English

7LWHO
Title

)|UIDWWDUH
Author

6DPPDQIDWWQLQJ
Abstract

,6%1

,651

6HULHWLWHO�RFK�VHULHQXPPHU ,661
Title of series, numbering

LiTH-IDA-Ex-

1\FNHORUG
Keywords

'DWXP
Date

85/�I|U�HOHNWURQLVN�YHUVLRQ

; ;

2001-06-08

$YGHOQLQJ��LQVWLWXWLRQ
Division, department

Institutionen för datavetenskap

Department of Computer
and Information Science

Using XML for Import and Export of Data

Martin Axlid

Ericsson is developing a Corba service for data storage of radio networks. This service is implemented on top of an
object database. The database contains data that describes a model of the physical network and its configuration.
One task is to import and export the configuration data. Today XML is used as the file-format for the import and
export. The current implementation of the import/export function has a linear growth of heap-memory consumption
when the XML-files are processed. This causes the possibility of a fatal error when large amount of data should be
handled. The purpose with the first part of the thesis has been to study and compare alternative XML-parsing
techniques with limited memory consumption. The study shows that the best solution would be to use a combination
of a SAX and DOM-parser in the import, and a non-standard “hardcoded” solution in the export.
Another task is to migrate data from one network model format to another; this is today performed outside the
service. This can be very time-consuming, especially when the network model contains many elements, and there is
therefore a need to make the process fully- or semi-automatic. The purpose of the thesis’s second part has been to
find a suitable technique to perform the conversion. The study shows that an implementation of a new conversion
tool in Java will be most effective and flexible. The use of a standard XML-conversion technique like XSL or a third
party product would be less effective.
There is a need to make the format of the XML-file as effective as possible with respect to the following factors:
correct functionality, easy implementation, simple readability and good runtime performance. In the third part of the
thesis, the current format has been compared to several other “standard” XML-formats. The conclusion of this study
is that the other formats do not have any significant advantage over the current format. The best solution would be to
apply some minor changes to the current format and continue to use that.

XML, SAX, DOM, Parser, XSL, Java, Radio network, Object oriented database.

01/61

