Final Thesis

Using XML for Import and Export of Data

by

Martin Axlid

LiTH-IDA-Ex-01/61

2001-06-08

Linkdpings universitet
Department of Computer and Information Science

Final Thesis

Using XML for Import and Export of Data

by

Martin Axlid

LiTH-IDA-Ex-01/61

2001-06-08

Supervisor: Torbjorn Eriksson (Ericsson Radio Systems)
Examiner: Zebo Peng (Linkdping University)

Using XML for Import and Export of Data

Abstract

Ericsson is developing a Corba service for data storage of radio networks. This
serviceisimplemented on top of an object database. The database contains data that
describes amodel of the physical network and its configuration. One task is to import
and export the configuration data. Today XML is used asthe file-format for the
import and export. The current implementation of the import/export function has a
linear growth of heap-memory consumption when the XML -files are processed. This
causes the possibility of afatal error when large amount of data should be handled.
The purpose with the first part of the thesis has been to study and compare alternative
XML-parsing techniques with limited memory consumption. The study shows that
the best solution would be to use a combination of a SAX and DOM-parser in the
import, and a non-standard “hardcoded” solution in the export.

Another task is to migrate data from one network model format to another; this is
today performed outside the service. This can be very time-consuming, especially
when the network model contains many elements, and there is therefore a need to
make the process fully- or semi-automatic. The purpose of the thesis’s second part
has been to find a suitable technique to perform the conversion. The study shows that
an implementation of a new conversion tool in Java will be most effective and

flexible. The use of a standard XML-conversion technique like XSL or a third party
product would be less effective.

There is a need to make the format of the XML-file as effective as possible with
respect to the following factors: correct functionality, easy implementation, simple
readability and good runtime performance. In the third part of the thesis, the current
format has been compared to several other “standard” XML-formats. The conclusion
of this study is that the other formats do not have any significant advantage over the
current format. The best solution would be to apply some minor changes to the
current format and continue to use that.

Abstract

Using XML for Import and Export of Data

Table of Contents

1

INtroduction ... ———— 1
1.1 Background and PUurposecccccceememmmmmmmmmmmnnnnnnnnnnnnnnnnnnn. 11
1.2 Target Group......cccceeeeeemmemmmmnnenesesssesnnsesssssnsssns s 1
1.3 Definitions ..o ———— 1
1.4 Readers GUIdEliNEScccuueiiiiiiimmricccrrr e enaaas 13
Configuration Service Overview..........ccccoiniicnnneeennnennnnns 14
P28 N 11411 o o [V To7 o) o N 14
2.2 Managed Information Modelcooiiiiimmmmneinnnnees 14
2.3 Managed Information Base...........ccccovniiiiinmmmmnnnnninnnnnnnns 14
2.4 Managed Object......ccccccccieiiiiiiiicccrce e e 15
2 T £ 51 - 11 Lo T 15
2.5.1 Containment Relations...........cccccciiiiiiiiieee, 15
2.5.2 Association Relations...........cocvvveeiiviiiiie e, 15
2.6 EXample... e e 16
Basic Theory About XML and Parsers......cc..cccceeeniiirnnnnn. 17
3.1 XML OVEIrVIEWccciiis s 17
3.1.1 Tags and AttribUteSevvviiiiiiiiieiieieeeeeeeeeee 18
3.1.2 DTD/Schema Validation...............cccceevviiiiiiiinnnnnnnn. 19
3.1.3 Why Is XML Important?.........ccceevveeevveinieeeeeeeeeninnnnn. 20
314 SUMMAIY...ccuiiiiieeie et r e e 22
3.2 XL s 22
3.3 Parsers ... 23
3.3.1 SAXDetailS.....ccuoiiiiiiiiiii e 23
3.3.2 DOMDetailS........ccoeviiiiiiiiiiii 25
Large Import and Export Filesccciiimieciiiinnecciiineeann, 27
4.1 Problem Description........cccoeeecciiiiirrrrcccr e 27
4.2 Memory Configuration in Java........cccceeecciiiiiiiirccecceennnns 27
3TN |41 o Yo o Y 27
4.3.1 SAX Import Prototype Design........ccccceeeevvvevivnnnnnnnn. 28
4.3.2 DOM ARREINALIVESccvvvviiieeeieeeeee e 30
7 S =5 4 o T o S 30
4.5 Memory Consumption Comparisoncccccceeevererereennennnns 31
4.6 Runtime Performance Comparison.........ccccccevvreeeeeeennennnnes 32
4.7 Parser Techniques Pros and Cons Summary.................... 32
471 DOM (XEICES) ..evvvrrrurnunnnnrnninninnninnniniinnnnnnnnnnnnnnnnnnnnns 32

Table of Contents

Using XML for Import and Export of Data

A.7.2 SAX i 33
4.7.3 SAXand DOM Combinedcccceevvveiviviiiiinnnnnnnn. 33
4.7.4 PDOM ..ottt 33
4.8 Comparison Tables..........ccccevirrirrrrriisrssies e reeeeeen 34
4.8.1 Import COMPAariSON.......cccoeeeeeiieeiiiiiieeee e 34
4.8.2 EXPOrt COMPAriSONevvveeevrreeernrnrnrennnnnnnnnennnnnnnes 35
4.9 Summary and Recommended Solutions........................... 35
Migrating Data Between Different MIM-versions.............. 36
5.1 Problem Description.........ccooeemmciniiimmnnsccsns e 36
5.2 Conversion Action Analysiscccccccecceiiiiimmreceencssseeseeeeennns 36
5.3 Technique Analysisccocrrririiinniinnn s 37
B4 XSL eeeiiiiiiiiicccceeerrer s n e e nnnnnns 37
5.5 3PP Applicationcceeeciiiiiiiiicccccne s 38
ST F: V7 WY o o] [Te= Y Lo o 38
5.6.1 Prototype DeSign.........ccovviiiiiiieiiiieien e, 38
5.7 Migration Within CS.............cooirrrrr e 40
571 LDAP QUEIY ..iiiiiiiii it e e 41
5.7.2 MO-conversion Plug-iN........cccccccvvviiiiiiiiiiiiiiiiiiinene, 41
5.8 Summary and Recommended Solutions............ccccceennnneen 42
DTD/Schema Format...........ccoommeeemmiiinnniinnnnsesssssssnssennnsensnes 43
6.1 Problem Description..........ccooeemmiiniiimmnnrccsns e 43
L0 03 3 I | 4 43
L= T V| 43
L D 4 | PP 44
6.5 Mib.dtd......ccco e ——————— 44
6.5.1 IMProvemMENtSccoiiiiiiiiiiiiee e 45
6.6 Summary and Recommended Solutions............ccccceeunnneen 45
Summary and Future Work...........cccociiiiiiininnnnnnnnnnnnsnssnnnnns 46
7.1 Large Import and Export Filescccoccrrrnnennnnee, 46
7.1.1 CONCIUSIONS ..cooeiiiiiiiiieeieeeeeeeeeeeeeeeeeeeee e 46
7.2 Migrating Data Between Different MIM-versions 46
7.2.1 CONCIUSIONS ...oooiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 47
7.3 DTD/Schema Format..........ccccceiiiiriiiiiiiiniinicssssssssssssss s s 47
7.3.1 CONCIUSIONS ...cooiiiiiiiiiiiiieeeeeeeeeee e 47
7.4 FUuture WOrKcccocciiissssssssssssssssssss s 48
Acronyms and Abbreviationscccccceiiiiiicciiiinecnenns 49
(R0 =1 =1 Lo =Y 51

Table of Contents

Using XML for Import and Export of Data

Appendix A: PDOM........ociiisss s rrsssssssssss s s s s s s s snmsssssssssssennes 53
Appendix B: MIMDiff.xsl Source Codecccoerrrrrrrrrnnnsssssssssnnnns 59
Appendix C: DTD/schema Formats.......ccccccccceiiiiimmmmiecenccsiiiiennns 65

Table of Contents

Using XML for Import and Export of Data

1 Introduction

This chapter contains information about the background, purpose and basic
concepts of the thesis.

1.1 Background and Purpose

Ericsson is developing a CORBA service for data storage of radio networks.
This component is called Configuration Service (CS). The serviceis
implemented on top of an object database. The database contains data that
describes amodel of the physical network and its configuration. The service
includes methods for import and export of configuration data. Ericsson istoday
using XML asthe file-format for import and export.

The purpose of the thesisis to study how different sections of the import and
export function could be improved. One part isto study how large import and
export files should be handled to avoid memory and performance problems.
Furthermore, there is a need to make the migration between different network-
models fully- or semi-automatic. Different techniques for comparison and
conversion of XML-files should be evaluated. Finally, the format of the XML-
file should be studied to see if any changes could increase the performance.

1.2 Target Group

Since the problems mainly are referred to the import/export functionality in the
CS-component, this report is intended to be read by people with knowledge of
the CSin genera and the import/export function in particular. However, people
with a genera interest in XML-technology can also benefit from the
information in some of the sections.

It is assumed that the reader of the document has basic knowledge of object-
oriented programming and design.

1.3 Definitions
Common Object Request Broker Architecture (CORBA)

CORBA is OMG's open, vendor-independent architecture and infrastructure
that computer applications use to work together over networks. Using the
standard protocol 110P, a CORBA-based program from any vendor, on almost
any computer, operating system, programming language, and network, can
interoperate with a CORBA -based program from the same or another vendor,
on almost any other computer, operating system, programming language, and
network. (OMG 2001)

Directory Service

A directory service is aspecialised database that is read or searched far more
often than it iswritten to. It supports storing awide variety of information and
provides a mechanism to extend the types of information that can be stored.
Directory services can be centralized or distributed. They are often distributed
in large scale, both in how and where information is distributed. Directory
services are usualy replicated so that they are highly available to the clients
accessing them.

Chapter 1: Introduction 11

Using XML for Import and Export of Data

Distinguished Name (DN)

A DN is used to uniquely identify a MO within aMIB (for information about
MO and MIB, see section 2.2 and 2.3). It is built from a series of “name
components” denoting a containment hierarchy.

Extensible Stylesheet Language (XSL)

XSL is a specification intended to be used for transforming XML documents
into other formats, e.g. HTML or a different formatted XML document.

Java Virtual Machine (JVM)

The Java Virtual Machine is an abstract computing machine. Like a real
computing machine, it has an instruction set and uses various memory areas. It
is reasonably common to implement a programming language using a virtual
machine. (SUN 2001)

Lightweight Directory Access Protocol (LDAP)

LDAP is, like X.500, both an information model and a protocol for querying
and manipulating it. LDAP's overall data and namespace model is essentially
that of X.500. The major difference is that the LDAP protocol itself is designed
to run directly over the TCP/IP stack, and it lacks some of the more esoteric
DAP protocol functions. (KMS 2001)

Namespaces

An XML namespace is a collection of names, identified by a URI reference
[RFC2396], which are used in XML documents as element types and attribute
names. XML namespaces differ from the "namespaces” conventionally used in
computing disciplines in that the XML version has internal structure and is not,
mathematically speaking, a set. (Sun 2001)

The namespace standard lets you write an XML document that uses two or
more sets of XML tags in modular fashion. Suppose for example that you
created an XML-based parts list that uses XML descriptions of parts supplied
by other manufacturers. The "price" data supplied by the sub-components
would be amounts you want to total up, while the "price" data for the structure,
as a whole, would be something you want to display. The namespace
specification defines mechanisms for qualifying the names so as to eliminate
ambiguity. That lets you write programs that use information from other sources
and do the right things with it. (Sun 2001)

World Wide Web Consortium (W3C)

The World Wide Web Consortium was created in October 1994 to lead the
World Wide Web to its full potential by developing common protocols that
promote its evolution and ensure its interoperability. W3C has more than 500
Member organisations from around the world and has earned international
recognition for its contributions to the growth of the Web.

12

Chapter 1: Introduction

Using XML for Import and Export of Data

X.500

X.500 isan overal model for Directory Servicesin the OSl world. The model
encompasses the overall namespace and the protocol for querying and updating
it. The protocol is known as"DAP" (Directory Access Protocol). DAP runs over
the OSI network protocol stack -- that, combined with its very rich data model
and operation set makes it quite "heavyweight". It is rather tough to implement
afull-blown DAP client and have it "fit" on smaller computer systems. Thus,
thefolks at University of Michigan, with help from the ISODE Consortium,
designed and developed. (KM S 2001)

1.4 Readers Guidelines

This section contains a short description of each chapter.

Chapter 1, Introduction: contains information about the background, purpose
and definitions used in the thesis.

Chapter 2, Configuration Service Overview: contains information about the
basic concepts of the Configuration Service component.

Chapter 3, Basic Theory About XML and Parsers: contains information
about the basic concepts of XML and related topics.

Chapter 4, Large Import and Export Files: contains information about the
problems that occurs when large amount of data is being imported or exported
from the database.

Chapter 5, Migrating Data Between Different MIM-versions: contains
information about how to make the migration between two different MIM-
versions fully- or semi-automatic.

Chapter 6, DTD/Schema Format: contains information about which
DTD/schema format that is most effective to use for the MIB XML -file.

Chapter7, Summary and Future Work: contains a summary of the results
and conclusions in the thesis. Some suggestions about how the process should
continue are also included.

Chapter 8, Acronyms and Abbreviations: specifies the acronyms and
abbreviationsthat are used in the thesis.

Chapter 9, References: specifies the references that are used in the thesis.

Chapter 1: Introduction 13

Using XML for Import and Export of Data

2 Configuration Service Overview

This chapter contains information about the basic concepts of the Configuration
Service component.

2.1 Introduction

The Configuration Service enables a user to configure aradio network such as
GSM or UMTS. A user may be some application in the GSM OSS or RANOS,
or an external Network Management System. The user-applications access the
CS functions through some supplied CORBA IDLs.

Most components are implemented in Java, which means that some of the
problemsthat are studied in the thesis are related to the Java language.

Some of the main conceptsin the Configuration Service are: Managed
Information Modd (MIM), Managed Information Base (MIB), Managed Object
(MO) and relations.

2.2 Managed Information Model

Managed Information Model (MIM) isthe information model. It describes the
managed obj ects that can exist and the rel ationshi ps between them. In database
connection it could be the database schema. In Object Oriented programming it
would be the collection of classes and the relations between them. (CS 2000)

Figure 1 gives an example of aMIM for a network in GSM.

PLMN
|
Subnet
Cell SS BSS

Figure 1: MIM for a subnetwork

2.3 Managed Information Base

Managed Information Base (MIB) is an instance of aMIM. The purpose of the
MIB is to define what MIM model the different MO’s shall follow. A MIB
instance of the MIM in Figure 1 shall contain a root MO of class type PLMN,
below it a MO of class type Subnet and so on. (CS 2000)

14 Chapter 2: Configuration Service Overview

Using XML for Import and Export of Data

24 Managed Object

Managed Object (MO) can be seen as an object whose class definition can be
found in the MIM. A MO contains zero or more attributes. (CS 2000)

2.5 Relations

Relations between MO’s can be of two kinds, containment relations and
association relations. (CS 2000)

An association relation between two MOs in different MIBs is called a hopper.
Figure 2 shows some examples of the different CS relation types.

MIB A

Containment
relation

Association
hopper

Association

Figure 2: CS Relations

2.5.1 Containment Relations

Containment relations within a MIB is always automatically created and
sustained when an object is created. It is a parent-child relation that is visible

through the distinguished name of a managed object. If the parent has the name

a,b,c then childrend,..d, are named, b,¢,d; ...a,b,c,d,.

Containment relations also connects different MIBs. The rule is the same here;
the parent-child relation must also be visible in the name hierarchy.

2.5.2 Association Relations

Association relations are used to describe side relations between MO'’s.
Associations can be between MOs within the same MIB, or between MOs in
different MIBs. They are created and deleted with different methods in the CS
interface.

Chapter 2: Configuration Service Overview 15

Using XML for Import and Export of Data

2.6 Example

In Figure 3 we have a small network with four different MIBs based on three
different MIMs, The Subnetwork MIM, the MSC MIM and the BSC MIB.
There are containment relations from SS node to M SC node and from BSS
nodesto BSC nodes. The full distinguished name for the MSC will be the prefix
+ itsown name that is PLMN=plmn,Subnet=Subnet,SS=SS1, MSC=MSC1.
There are al so associations between Cell to InnerCells. (CS 2000)

PLMN=plmn

Subnet=Subnet

I NT—

Cell=Cell1 SS=ss1
BSS=BSS1
. sS BSS=BS2

- e o | PLMN=plmn,Subne|
PLMN=plmn,Subnet=Subnet, BSS=BSS1 .
iy BSC=BSC2
BSC=BSC1
AN
RNS=Rns

InnerCell=IC1 InnerCell=IC2 AN
TG=TG1

4> Associgtion Ceccctece Containment relation between MIBs

Containment relation withinaMIB

Figure 3: Example of a small network

The different MIBs can bein one CS or in different CS. A MIB can never be
split between different CS. (CS 2000)

16 Chapter 2: Configuration Service Overview

Using XML for Import and Export of Data

3 Basic Theory About XML and Parsers

This chapter contains information about the basic concepts of XML and related
topics.

3.1 XML Overview

XML isan abbreviation for eXtended Markup Language. It is a text-based
mark-up language that is fast becoming the standard for data interchange on the
Web. Aswith HTML, you identify data using tags (identifiers enclosed in angle
brackets likethis: <. . . >). Collectively, the tags are known as "markup".

(Sun 2001)

But unlike HTML, XML tagstell you what the data means, rather than how to
display it. Where an HTML tag says something like "display this datain bold
font" (. . . </ b>), an XML tag actslike afield name in your program. It
puts alabel on a piece of datathat identifiesit (for example:
<nessage>. .. </ nessage>). (Sun 2001)

In the same way that you define the field names for a data structure, you are free
to use any XML tags that make sense for a given application. Naturally, though,
for multiple applications to use the same XML data, they have to agree on the
tag names they intend to use. (Sun 2001)

Here is an example of some XML data you might use for amessaging
application:

<message>
<t o>you@our Addr ess. conx/ t o>
<f rompre@ry Addr ess. conx/ fromnmp
<subject>XM. |Is Real |y Useful </ subj ect>
<t ext>
How many ways is XM. useful ? Let nme count..
</text>
</ message>

Thetagsin this example identify the message as a whole, the destination and
sender addresses, the subject, and the text of the message. Asin HTML, the

<t 0> tag has amatching end tag: </ t o>. The data between the tag and its
matching end tag defines an el ement of the XML data. Note, too, that the
content of the <t o> tag is entirely contained within the scope of the
<nmessage>. .. </ nessage> tag. It isthis ability for one tag to contain others
that gives XML its ability to represent hierarchical data structures. (Sun 2001)

Whitespace is essentialy irrelevant, so you can format the data for readability
and yet till processit easily with aprogram. Unlike HTML, however, you
could easily search a data set for messages containing "useful” in the subject,
because the XML tags identify the content of the data, rather than specifying its
representation. (Sun 2001)

Chapter 3: Basic Theory About XML and Parsers 17

Using XML for Import and Export of Data

3.1.1

3.1.141

3.1.1.2

Tags and Attributes

Tags can aso contain attributes -- additional information included as part of the
tag itself, within the tag's angle brackets. The following example shows an
email message structure that uses attributes for the "to", "from", and " subject"
fields:
<nessage to="you@our Address. com' from="nme@wyAddress. cont
subject="XM. |Is Really Useful ">
<t ext>
How many ways is XM. useful ? Let nme count...

</text>
</ message>

Asin HTML, the attribute nameis followed by an equal sign and the attribute
value, and multiple attributes are separated by spaces. Unlike HTML, however,
commas between attributes are not ignored -- if present, they generate an error.
(Sun 2001)

Empty Tags

One redlly big difference between XML and HTML isthat an XML document
is always constrained to be well formed. There are severd rules that determine
when adocument is well formed, but one of the most important is that every tag
has a closing tag. So, in XML, the </ t o> tag isnot optional. The <t 0> element
is never terminated by any tag other than </ t o>. (Sun 2001)

Another important aspect of awell-formed document is that all tags are
completely nested. So you can have

<message>. . <to0>..</to>..</nessage>, but never

<nessage>. . <t 0>..</ message>. . </t o>. (Sun 2001)

Sometimes, though, it makes sense to have atag that stands by itself. For
example, you might want to add a"flag" tag that marks message as important. A
tag like that doesn't enclose any content, so it's known as an "empty tag". Y ou
can create an empty tag by ending it with / > instead of >. For example, the
following message contains such atag:

<nessage to="you@our Address.conm' from="nme@wyAddress. cont
subject="XM. I's Really Useful">
<fl ag/ >
<t ext >
How many ways is XM. useful ? Let ne count...
</text>
</ message>

(Sun 2001)

Comments in XML Files

XML commentslook just like HTML comments:

<nessage to="you@our Address.conm' from="nme@wyAddress. cont
subject="XM. |Is Really Useful">
<l-- This is a coment -->
<t ext>
How many ways is XM. useful ? Let nme count...
</text>
</ message>

18

Chapter 3: Basic Theory About XML and Parsers

Using XML for Import and Export of Data

(Sun 2001)

3.1.1.3 The XML Prologue

A XML file dways starts with a prologue. The minimal prologue contains a
declaration that identifies the document as an XML document, like this;

<?xm version="1.0"?>

The declaration may also contain additional information, like this:

<?xm version="1. 0" encodi ng="1S0O 8859-1"
st andal one="yes" ?>

The XML declaration is essentially the same asthe HTML header, <ht m >,
except that it uses <?. . ?> and it may contain the following attributes:

version Identifies the version of the XML markup language used in
the data. This attribute is not optional.
encoding Identifies the character set used to encode the data. "1SO-

8859-1" is"Latin-1" the Western European and English
language character set. (The default is compressed Unicode:
UTF-8.)

standalone Tellswhether or not this document references an external
entity or an external data type specification. If there are no
external references, then "yes' is appropriate

The prologue can also contain definitions of entities (items that are inserted
when you reference them from within the document) and specifications that tell
which tags are valid in the document. Both are declared in a Document Type
Definition (DTD) that can be defined directly within the prologue, as well as
with pointers to external specification files. (Sun 2001)

The declaration is actually optional. But it's a good ideato include it whenever
you create an XML file. The declaration should have the version number, at a
minimum, and ideally the encoding as well. That standard simplifies thingsif
the XML standard is extended in the future, and if the data ever needsto be
localised for different geographical regions. (Sun 2001)

3.1.2 DTD/Schema Validation

A DTD specifies the kinds of tags that can be included in your XML document,
and the valid arrangements of those tags. Y ou can use the DTD to make sure
you don't create aninvalid XML structure. Y ou can also use it to make sure that
the XML structure you are reading (or that got sent over the net) isindeed valid.
(Sun 2001)

Below is an example of a DTD-definition:

<! ELEMENT nessage (subject, flag?, text)>

<I ATTLI ST nessage to CDATA #REQUI RED fr om CDATA
#REQUI RED>

<! ELEMENT subj ect (#PCDATA) >

<!l ELEMENT flag EMPTY>

<! ELEMENT text (#PCDATA) >

Chapter 3: Basic Theory About XML and Parsers 19

Using XML for Import and Export of Data

3.1.3

3.1.3.1

3.1.3.2

3.1.3.3

There are two different levels of an XML-file format. "Well Formed" XML
documents are documents that conforms to the basic XML syntax rules, e.g. no
overlapping element-definitions etc. "Valid' XML documents are "Well
Formed" XML documents, which also conformsto the rules of a specified
DTD.

The DTD specification is actually part of the XML specification, rather than a
separate entity. On the other hand, it is optional - you can write an XML
document without it. And there are a number of schema proposals that offer
more flexible alternatives. So it is treated here as though it were a separate
specification. (Sun 2001)

It isdifficult to specify aDTD for acomplex document in such away that it
prevents al invalid combinations and allows dl the valid ones. So constructing
aDTD is something of an art. The DTD can exist at the front of the document,
as part of the prologue. It can also exist as a separate entity, or it can be split
between the document prologue and one or more additiona entities. (Sun 2001)

While the DTD mechanism was the first method defined for specifying valid
document structure, it was not the last. Several newer schema specifications
have been devised. However, DTD isthe only schemathat will be studied
within thisthesis.

Why Is XML Important?

There are a number of reasons for XML’s surging acceptance. This section lists
afew of the most prominent.

Plain Text

Since XML isnot abinary format, you can create and edit files with anything
from a standard text editor to avisual development environment. That makes it
easy to debug your programs, and makes it useful for storing small amounts of
data. At the other end of the spectrum, an XML front end to a database makes it
possible to efficiently store large amounts of XML dataaswell. So XML
provides scalability for anything from small configuration files to a company-
wide data repository. (Sun 2001)

Data Identification

Stylability

XML tellsyou what kind of data you have, not how to display it. Because the
markup tags identify the information and break up the datainto parts, an email
program can process it, a search program can look for messages sent to
particular people, and an address book can extract the address information from
therest of the message. In short, because the different parts of the information
have been identified, they can be used in different ways by different
applications. (Sun 2001)

When display isimportant, the stylesheet standard, XSL, lets you dictate how to
portray the data. For example, the stylesheet for:

<t o>you@our Addr ess. conx/ t o>

can say:

20

Chapter 3: Basic Theory About XML and Parsers

Using XML for Import and Export of Data

Start a new |line.
Display "To:" in bold, followed by a space
Di spl ay the destination data.

Which produces:
To: you@our Address

Of course, you could have done the same thing in HTML, but you wouldn't be
able to process the data with search programs and address-extraction programs
and the like. More importantly, since XML isinherently style-free, you can use
acompletely different stylesheet to produce output in postscript, TEX, PDF, or
some new format that hasn't even been invented yet. That flexibility amountsto
what one author described as "future-proofing” your information. The XML
documents you author today can be used in future document-delivery systems
that haven't even been imagined yet. (Sun 2001)

3.1.3.4 Inline Reusability

One of the nicer aspects of XML documentsis that they can be composed from
Separate entities. Y ou can do that with HTML, but only by linking to other
documents. Unlike HTML, XML entities can beincluded "inline" in a
document. Theincluded sectionslook like anormal part of the document -- you
can search the whole document at one time or download it in one piece. That
lets you modularize your documents without resorting to links. Y ou can single-
source a section so that an edit to it is reflected everywhere the section is used,
and yet a document composed from such pieceslooks for al the world like a
one-piece document. (Sun 2001)

3.1.3.5 Easily Processed

As mentioned earlier, regular and consistent notation makes it easier to build a
program to process XML data. For example, in HTML a <dt > tag can be
delimited by </ dt >, another <dt >, <dd>, or </ dl >. That makes for some
difficult programming. But in XML, the <dt > tag must always have a</ dt >
terminator, or elseit will be defined as a<dt / > tag. That restriction is acritical
part of the constraints that make an XML document well formed. (Otherwise,
the XML parser won't be able to read the data.) Since XML is a vendor-neutral
standard, you can choose among several XML parsers, any one of which takes
the work out of processing XML data. (Sun 2001)

3.1.3.6 Hierarchical

XML documents benefit from their hierarchical structure. Hierarchical
document structures are, in general, faster to access because you can drill down
to the part you need, like stepping through a table of contents. They are also
easier to rearrange, because each piece is delimited. In a document, for example,
you could move a heading to a new location and drag everything under it along
with the heading, instead of having to page down to make a selection, cut, and
then paste the selection into a new location. (Sun 2001)

Chapter 3: Basic Theory About XML and Parsers 21

Using XML for Import and Export of Data

3.1.3.7

3.1.4

3.2

Binding

Once you have defined the structure of XML datausing either aDTD or the one
of the schema standards, alarge part of the processing you need to do has
aready been defined. For example, if the schema says that the text datain a
<dat e> element must follow one of the recognized date formats, then one
aspect of the validation criteria for the data has been defined -- it only remains
to write the code. Although a DTD specification cannot go the same level of
detail, aDTD (like a schema) provides agrammar that tells which data
structures can occur, in what sequences. That specification tells you how to
write the high-level code that processes the data el ements. (Sun 2001)

But when the data structure (and possibly format) is fully specified, the code
you need to processit can just as easily be generated automatically. That
process is known as hinding -- creating classes that recognize and process
different data elements by processing the specification that defines those
elements. Astime goes on, you should find that you are using the data
specification to generate significant chunks of code, so you can focus on the
programming that is unique to your application. (Sun 2001)

Summary

XSL

XML is pretty simple, and very flexible. It is providing a common language that
different computer systems can use to exchange data with one another.
(Sun 2001)

The XML standard specifies how to identify data, not how to display it. HTML,
on the other hand, told how things should be displayed without identifying what
they were. The coalescing X SL standard is essentially a translation mechanism
that lets you specify what to convert an XML tag into so that it can be displayed
-- for example, in HTML. Different X SL formats can then be used to display the
same datain different ways, for different uses. (Sun 2001)

Two important parts of XSL are XSL Transformations (XSLT) and XML Path
language (XPath). XSLT is alanguage that defines how the transformation
should be done. XPath is alanguage that defines which elements that should be
included in the transformation. The following code shows an example of a XSL
“match”-definition:

<xsl:tenpl ate mat ch="book">
<f o: bl ock>
<xsl :apply-tenpl ates sel ect=".//headi ng"/>
</ fo: bl ock>
</ xsl :tenpl at e>

The “ // headi ng”-parameter is a XPath-statement that selects the heading
elements in all the descending levels of the XML-file. The rest of the code are
XSLT-statements.

A special XSL-transformation tool is needed to perform the actual
transformation. There are several such tools available, e.g. Xalan. An overview
of the XSL transformation concept is shown in Figure 4.

22

Chapter 3: Basic Theory About XML and Parsers

Using XML for Import and Export of Data

XSL
file
XSL
Transformed
XML transformation I file
file I engine
y e.g. Xalan
I 4

Figure 4: XSL transformation overview

It is possible to read data from several different XML-documents during a
transformation, but usually only one document is used.

3.3 Parsers

The purpose of an XML -parser isto read, validate and access the elementsin an
XML-file. The two most common techniques for parsing XML-files are
"Simple API" for XML (SAX) and Document Object Model (DOM).

SAX isan event-driven, serial-access mechanism that does el ement-by-element
processing. To use a SAX parser, some specified callback methods has to be
written. Those methods are then invoked from the parser whenever it encounters
a XML tag (or encounters an error, or wantsto tell you anything else). This
design makes the SAX-parser fast with low memory-consumption, but will
usually require more code at the application side.

The DOM AP isgenerally an easier API to use. It provides arelatively familiar
tree structure of objects. Y ou can use the DOM API to manipulate the hierarchy
of application objectsit encapsulates. The DOM API isidea for interactive
applications because the entire object model is present in memory, where it can
be accessed and manipulated by the user.

On the other hand, constructing the DOM requires reading the entire XML
structure and holding the object tree in memory, so it is much more CPU and
memory intensive. For that reason, the SAX API will tend to be preferred for
server-side applications and datafilters that do not require an in-memory
representation of the data.

3.31 SAX Details

The SAX parser isaresult from adiscussion in the XML-DEV public mailing
list 1997-1998. The basic idea of the project wasto find a solution to the
needless incompatibility of the different parsers available at that time.

Chapter 3: Basic Theory About XML and Parsers 23

Using XML for Import and Export of Data

A SAX-parser does not store any XML-data internally. The implementation of
the different user-specified callback methods decides if, and how, any data
should be saved. The parser has to be configured with the callback methods
before the parsing of the XML-file can begin. The different callback methods
are grouped into different handlers as seen in Figure 5.

XML
file P

Error
handler

Document
handler

Lexical
handler

SAX
Parser

Figure 5: SAX Concept overview

Parser

DocumentHandl er

ErrorHandler

LexicaHandler

The org.xml.sax.Parser interface defines methods like
set Docunent Handl er , to set up event handlers, and
par se, to actually do the parsing.

Methods like st ar t Docunent , endDocunent ,

start El enent , and endEl ement are invoked when an
XML tag isrecognized. Thisinterface also defines the
methods pr ocessi ngl nstructi on andcharacters,
which areinvoked when the parser encounters an inline
processing instruction or the text of an XML eement,
respectively.

Methods error, fatal Error, and warning are invoked in
response to various parsing errors. The default error handler
throws an exception for fatal errors and ignores other errors
(including validation errors). That’s one reason you need to
know something about the SAX parser, even if you are using
the DOM. Sometimes, the application may be able to
recover from avalidation error. Other times, it may need to
generate an exception. To ensure the correct handling, you'll
need to supply your own error handler to the parser.

This handler include methods for st ar t DTD, endDTD and
other miscellaneous parts of the XML-file.

When a SAX-parser should be used within an application, the following steps
has to be performed by the application:

Create an instance of aclass that implements the SAX-Parser interface
Create a document-handler with the desired methods for handling the

callbacks

Configure the parser-instance with the document handler
Start the parsing process by calling the par se() -method in the Parser-

instance.

24

Chapter 3: Basic Theory About XML and Parsers

Using XML for Import and Export of Data

Figure 6 shows an interaction-diagram of the different steps. If any of the other
types of SAX- handlers are needed, the procedure is the same as for the
document-handler.

new DocumentHandler()

< >
Application Document
| newPaser() Handler
CE———
setDocumentHandler SAX-
'47' Parser
parse
‘ > startDocument
«—>
startElement
«———>
characters
«———>
endElement >
endDocument
P ——
<«
<+

Figure 6: SAX-parser details (Birbeck, Mark et.al. 2000)

3.3.2 DOM Details

The DOM specification defines the Document Object Model, a platform- and
language-neutral interface that will allow programs and scripts to dynamically
access and update the content, structure and style of documents. The Document
Object Model provides a standard set of objects for representing HTML and
XML documents, a standard model of how these objects can be combined, and
a standard interface for accessing and manipulating them. Vendors can support
the DOM as an interface to their proprietary data structures and APIs, and
content authors can write to the ssandard DOM interfaces rather than product-
specific APIs, thus increasing interoperability on the Web. (W3C 2001)

DOM isbeing designed at several levels:

e Leve 1. This concentrates on the actual core, HTML, and XML document
models. It contains functionality for document navigation and manipulation.

e Level 2. Includes a style sheet object model, and defines functionality for
mani pulating the style information attached to a document. It also enables
traversals on the document, defines an event model and provides support for
XML namespaces.

e Level 3. Will address document |oading and saving, as well as content
models (such as DTDs and schemas) with document validation support. In
addition, it will also address document views and formatting, key events and
event groups. First public working drafts are available.

e Further Levels. These may specify some interface with the possibly
underlying window system, including some ways to prompt the user. They
may also contain a query language interface, and address multithreading and
synchronisation, security, and repository. (W3C 2001)

A DOM data-tree document is built by means of a parser/builder function.
When the DOM document has been produced, methods included in the DOM-
specification can be used to find, add, alter and delete data or nodes in the tree.

Chapter 3: Basic Theory About XML and Parsers 25

Using XML for Import and Export of Data

Document DOM
Root
element
L Obj |Ob’ |
ect ect
file [—» DOM |—p J :
Parser/ [object] [Oject] [Object | [Object]
Builder

Figure 7: DOM concept overview

Most implementations store the data-tree in primary memory, but other storage-
techniques are possible to use, e.g. databases or binary files.

26

Chapter 3: Basic Theory About XML and Parsers

Using XML for Import and Export of Data

4 Large Import and Export Files

This chapter contains information about the problems associated with the
handling of large import and export configuration data files. Some of the
subjects addressed are memory handling in VM, evaluation of aternate

methods, prototype design, test results and proposed solutions.

4.1 Problem Description

The Configuration Service component contains functions for import and export
of configuration data to/from the database. Today XML is used asthefile-
format for the import and export. The current implementation of the
import/export function has a heap-memory consumption that is linear to the size
of the XML-file. Thiswill cause a primary memory shortage problem when a
network with alarge number of elements should be configured/simulated. To
solve this problem, the current methods must be based on a different technique.

4.2 Memory Configuration in Java

The memory available for a Java-program is not only dependent on the physical
and virtual memory in the computer-environment; it is also dependent on the
configuration of the VM.

The Sun JVMs have a minimum and maximum heap size, that is configurable
through command line parameters. Those parameters exists in order to give the
system administrator control over how much memory resources the VM will
consume. Thisisimportant in production environments. The VM will attempt
to get a heap up to the maximum you have set from the operating system. In an
OS that supports swapping, you can set the max larger than the physical
memory available and the system will swap underneath you to make it
available. In Java2 the default maximum heap sizeis usually 64 MB. The
current absolute maximum Java heap size is about 2 GB (due to internals having
to do with addressing.)

4.3 Import

The current import method is based on an in-memory DOM-parser. The other of

the two common parsing standards, SAX, has a “serial” mechanism that makes
the memory requirements for its data-structure negligible. If only this
characteristic was considered, this technique should then have been a good
choice. However, there are some drawbacks of using the SAX-parser. Since the
SAX-parser itself does not store any data, algorithms have to be written that
continuously store the data that is needed later on. The current level and state in
the parsing has also to be continuously tracked.

The current methods for handling the radio network elements and their
datatypes are based on the possibility to query the data from the created DOM-
tree. To rewrite all those methods will be very time-consuming. To find a good
relation between implementation time and the requirements of low memory
consumption, a combination of the SAX and DOM techniques seems to be a
good choice. The SAX should then be used as the main parser and smaller
DOM-elements should be created to be able to call the most complex methods
implemented in the current system, e.g. the attribute datatypes handling.

Chapter 4: Large Import and Export Files 27

Using XML for Import and Export of Data

4.3.1 SAX Import Prototype Design

A prototype program has been written to prove the concept of using SAX asthe
main parser in the import method. The prototype simul ates the database access
by outputting the parameters needed in the database-transactions as text.

4311 Class-Diagram

The design of the program is made in such away that all significant
functionality isincluded in the same class, the CSSAX Test-class includes the
main-function together with the necessary callback functions. This means that
the DefaultHandler is created by instantiating the same class.

CSSAXTest

Rcharacters()
®endElement()

error()

SignorableW hitespace()
®processinginstruction()

¥saveMOs()
¥startDocument()
SstartElement()
Swarning()
1.n
1
DefaultHandler Stack
XMLReader (from util)

from helpers)

Figure 8: Import with SAX; class-diagram.

The prototype should work with any SAX2-compliant parser implementation.
In this test the Xerces parser was used. A data-stack was chosen for the storage
of the MO-parent hierarchy.

28 Chapter 4: Large Import and Export Files

Using XML for Import and Export of Data

4.3.1.2 State-diagram

Due to the “Serial” mechanism of the SAX-parser, the application has to track
the current position within the different types of elements in the MIB XML-file.

. Start
@ End

<model> </model>
i Start/end
</instancig> MO

<instance>

PR
‘ Proc

<attripute> </instance>

Process
‘ attribute
.

e Check
datatype

</attribute>

<instange>

<attribute>

Figure 9: State diagram for SAX-import

Start/end MO This State is entered from the start-state when a model tag is
received in the startElement-method. When a model-end tag
is received the MO-parsing is finished and the State is
changed to End. The State is also entered when an instance-
end tag is received in either state “Select next” or in its own
state.

Process MO This State is entered when an instance tag is received in
either State “Start/end MO” or “Select next”.

Process attribute This State is entered when a MO-attribute tag is received in
either State “Process MO” or “Select next”.

Check datatype This State is entered when a datatype tag is received in state
“Process attribute”.

Select next This State is entered when a MO-attribute end-tag is
received in State “Check datatype”.

Chapter 4: Large Import and Export Files 29

Using XML for Import and Export of Data

4.3.1.3 Test Result

The prototype tests show that there are no significant problems when the SAX-
technique is used as the main parser. However, there are some things that
should be considered, e.g. that the application is accessing the XML -elements
before the whole file has been read. To ensure that no fatal validating errors
occurs when only part of the model has been stored, the import must then start
with a “dummy” parsing of the whole XML-file.

4.3.2 DOM Alternatives

As mentioned in section 3.3.2, there is nothing in the DOM-specification that
states that the DOM data-tree has to be stored in the primary memory. The
simplest solution is however to store the whole tree in primary memory and
therefore most DOM-implementations have selected this alternative. To
construct a parser with an alternative storage solution from scratch will be very
time consuming and is objectionable in the perspective of the CS-development.
There are, however, a few third party alternative implementations available,
which have chosen to use either a database or a binary file as part of the tree-
storage. The primary memory consumption in those implementations will be
significantly lower, but at the cost of a slower runtime performance. The
runtime performance loss is more significant in the solutions based on database-
access. The database engine itself will also consume some primary memory,
which is another drawback. The solution based on binary files has the
qualification to produce the best memory/runtime ratio performance. To this
date there is only one such parser available: the PDOM component included in
the Infonyte XQL Suite which is based on the GMD-IPSI XQL Engine project
(see Appendix A: PDOM). The PDOM-implementation has support for using a
SAX-parser when building the PDOM-tree and it uses an advanced cache
technique when queering the tree-elements.

4.4 Export

The current export method is also using an in-memory DOM. The main reason
for this is that it is easier to format an XML-file when the data is read from a
DOM-tree instead of the database. When a network-model in the database
should be exported, the configuration data is transferred to a DOM-tree.
Querying the nodes in the DOM in the correct sequence then creates the XML-
file. However, this implementation creates the same memory problem as in the
import function.

Document DOM

. createElem ent

getMO setAttribute
l\]’;i? d Ccs P EEEEEEE—
appendChild

T — — — —— — — — — — — — — — — — —

DOMPrinter
————» MIB
XML-file

Figure 10: Export overview

30 Chapter 4: Large Import and Export Files

Using XML for Import and Export of Data

If a solution to this should be found, the SAX-technique is no aternative
becauseit is only designed to read XML-files. There are, as mentioned in
section 3.3.1, no support for any internal data-structure or XML-file output
formatting.

A solution that does not require the creation of a DOM-tree is to directly output
the configuration datato an XML-file when it is read from the database. This
will make the memory consumption negligible. To get a correctly formatted
XML-file, code must then be added to keep track of the current level and state
within the data-model. The elements also have to be read in a correct sequence
from the database since the output is “serial”.

Another soulution could be to replace the current DOM with the PDOM-
technique. It will have the same advantages as in the import-method, i.e. this
would be the soulution that is easiest and fastest to implement in the current
system.

4.5 Memory Consumption Comparison

Below is a compilation of several tests that were made to determine the memory
consumption of different parser types.

The Xerces DOM parser is a conventional parser that stores the data-tree in
primary memory. The tests were performed without node expansion and with
validation.

The tests of the PDOM-parser were performed an evaluation version. According
to the responsible company, their commercial version has a lot of

improvements. The PDOM parser is, as earlier mentioned, based on a technique
that stores the data-tree in a binary file. When the PDOM-document tree is built
the callback-functions of a third party SAX-parser is used. In this test the
PDOM-parser was configured to use the IBM xml4j2 SAX-parser.

The third parser tested was Xerces SAX-parser. The tests were performed with

validation.
Filesize (MB) NR of MOs Xerces DOM PDOM Xerces SAX"
3.32 1006 17.03 4,95 0.78
6.67 2030 33.73 4.96 0.78
13.19 4038 63.90 5.04 0.78
180.86 48456 926.47° 12.09 0.78

Table 1: Parser memory comparison

The table shows how much of the heap-memory that is needed during the
parsing. The values are in MB.

! The Heap-memory needed by the SAX-parser isin this case negligible and has therefore been estimated to alow
value.

2 Due to lack of enough primary memory in the test-environment, the last test-value is an estimate based on the
previous measurements.

Chapter 4: Large Import and Export Files 31

Using XML for Import and Export of Data

4.6

4.7

4.71

XML parsers memory consumption

1000

900 =

800
= 700
% 600 —&— Xerces DOM
g 500 —i— PDOM
§ 400 Xerces SAX
I

300
200

100
0 4‘(:: .

0 100 200
Filesize (MB)

Figure 11: Parser memory consumption diagram

The diagram indicates that about 1000M B primary heap memory should be

required to handle configuration files containing 50 000 MO'’s. This proves that
the current implementation is insufficient when run on a system with a standard
configuration.

Runtime Performance Comparison

The runtime-ratio between the three parsers varies a little depending on the size
on the XML-file, which parser-specific option that are set, the speed of the
hard-disk and a few other things. An average ratio is presented in Table 2.

Parser type Runtime index

Xerces SAX-parser 1

Xerces DOM-parser 2
PDOM-parser 6

Table 2: Parser runtime comparison

This means e.g. that the SAX-parser is about six times faster than the PDOM-
parser.

Parser Techniques Pros and Cons Summary

This section contains a summary of the pros and cons of the different parsing
techniques.

DOM (Xerces)

This is the currently used parser.

+ No alteration of current code necessary
+ Fast

+ “Random access” of the XML nodes

+ Easy to use and thus easy maintenance
+ Freeware

32

Chapter 4: Large Import and Export Files

Using XML for Import and Export of Data

+

Source-code available.

Linearly growth of memory consumption
No configurable error handling
No commercial support available.

4.7.2 SAX

The SAX “serial” parser technique.

+ Fast

Low memory consumption
Configurable error handling
Freeware

Source-code available.

+ + + +

— Lots of code must be developed to handle parser callbacks and to store data-
elements that are needed later on

— No commercial support available

— Only useful for the import functionality.

4.7.3 SAX and DOM Combined

The technique where SAX is used as the main parser and DOM used for
building smaller data-trees.

+ Low memory consumption

Faster than the current implementation

Some of the code in the import function can be reused
Configurable error handling

Freeware

Source-code available.

+ + + + +

— Some code must be developed to handle parser callbacks and storage of
data-elements

— No commercial support available

— Only useful for the import functionality.

474 PDOM

The technique where the DOM data-tree is stored in a binary file.

+

Moderate memory consumption

Acceptable runtime performarice

“Random access” of the XML nodes

Can easily be integrated in the current implementation code
Commercial support available

+ + + +

— Only one implemented product available

— Cost for company license

— Dependence on one single third party company for future support and
maintenance

% The runtime performance is presumed to be acceptable if the parser is faster than the direct use of the create MO
and set MO CORBA operations. However, since no runtime tests has been made to measure the CORBA operations
performance a qualified assumption were made about the relative performance.

Chapter 4: Large Import and Export Files 33

Using XML for Import and Export of Data

4.8

4.8.1

— No Swedish distributor/support.

Comparison Tables

When comparing different methods, the following factors are considered to be
important (most important factor first):

e Correct functionality (including acceptable memory consumption)
e Runtime performance
e Simple (not time-consuming) implementation and maintenance
e Fault handling and robustness

The cost of acommercial third party licenseis not included in thelist but is
implicitly considered to be important.

As previously mentioned, the current implementation is insufficient to cope
with the requirements when executed on a standard system. The alternatives
have their pros and cons. In the tables below the different alternatives are
compared by applying probability estimates values (Prob) on the different
factors and weight them with an importance value (Imp). It is considered that
code of the current implementation is available when the val ues are estimated,
i.e. the implementation of the aternatives could be faster if some code can be
reused. The factor is graded from 0-10 where 10 are the best. The Prod value is

calculated by multiplying Imp- and Prob-factors.

The currently used DOM-technique is not included in the tables because this
evaluation presumes that is has to be replaced with another technique.

Import Comparison

Description

Imp

SAX

Prob | Prod

SAX/DOM
combined

Prob Prod

PDOM

Prob Prod

Correct functionality

7 28

32

36

Runtime performance
Simple implementation

10 30
2 4

27
12

12
16

Fault handling and
robustness

P NWS

5 5

g1o O

5

g1~ ©

5

Low license cost

10 10

10

10

5 5

Summary

77

86

Table 3: Import technique evaluation calculation

Chapter 4: Large Import and Export Files

Using XML for Import and Export of Data

4.8.2 Export Comparison

CSs PDOM
"hardcoded"

Description Imp | Prob | Prod | Prob Prod
Correct functionality 4 8 32 8 32
Runtime performance 3 10 30 4 12
Simple implementation 2 2 4 8 16
Fault handling and 1 5 5 5 5
robustness
Low license cost 1 10 10 5 5
Summary 81 70

Table 4. Export technique evaluation calculation

4.9 Summary and Recommended Solutions

Asseenin Table 3 and Table 4 acombined SAX/DOM techniqueis

recommended as the best choice for import and a CS “hardcoded”
implementation the best for export. However, the differences are not significant
and if some of the project conditions are changed, one of the other solutions
could become the overall best.

Chapter 4: Large Import and Export Files 35

Using XML for Import and Export of Data

5

5.1

5.2

Migrating Data Between Different MIM-versions

This chapter contains information about the second part of the thesis: how to
make the migration between two different MIM-versions fully- or semi-

automatic.

Problem Description

The different MO-types that are possible to store in the database are defined in a
separate XML -file. Thisis adefinition of the MIM. The MO-typesin the XML-
structure are converted to the different database object classes by means of a
Modd Parser component. When any change in the MIM is needed, e.g. a new
MO-type or ateration of an existing MO-type or attribute, thereisahigh
probability that the MIB that was formed according to the old MIM will be
inconsistent. Today there is no standardised way to make the MIB consistent.
This process could therefore be very time-consuming, especially when the MIB
contains many MO-objects, and there is a need to make the process fully- or
semi-autometic.

MIB
1.12
XML

| 4

MIM MIM
ver 1.12 ver 1.13
XML XML

A

MIB

| Conversion | 3l 113 |—p] CsS

util XML import_MIB

Figure 12: MIM/MIB migration overview

The conversion could either be done with an external tool or within the CS
import method. Figure 12 shows the basic concept for an external conversion

utility.

Conversion Action Analysis

This section lists al the possible conversion-actions that will be performed. For
each type of action there is a definition of when it will occur.

36

Chapter 5: Migrating Data Between Different MIM-versions

Using XML for Import and Export of Data

Action When
Fatal error The MIB-def and the old MIM-def do not have the
same version.
Delete MO MO-type removed.

The parent MO removed.

New mandatory attribute has been added to the MO-
type, or an attribute has been changed to mandatory.
Delete MO-attribute The MO-attribute definition has been removed from
MO-type.

The data-type of the MO-attribute definition has been
changed to an incompatible type.

The MO-attribute definition contains an enum-type
that has been removed or changed.

The MO-attribute definition contains a struct or
sequence that has been removed or changed.
Change attribute data-type|The data-type of the attribute has been changed to a
compatible type, i.e. short -> long -> longlong -> float
-> double.

Output an “lllegal value” |The range of the data-type in the MO-attribute
log, but still transfer the definition has been changed and the MO-attribute
MO-attribute value is “out of range”.

Delete relation Relation-type has been removed.

Relation includes a MO that has been deleted.

Table 5: Conversion actions analysis

With the current structure of the MO-type definitionsin the MIM-file there are

some type of changes that isimpossible to distinguish. An example of thisisif a
MO-type has been renamed or divided into several different MO’s. Then there
is no way to determine if a new MO-type has been added or the MO-type has
been renamed. To be able to make this distinction, the format of the MO-type
definitions must be changed so it is possible to include a reference to the old
MO-type name.

5.3 Technique Analysis

There are several different techniques and tools that could be used to compare
and convert XML-files. One of the tasks of the thesis was to find out if XSL

could be a suitable technique. Other techniques that were considered interesting
enough to evaluate were specialised 3PPs and the development of a new Java-
application.

5.4 XSL

XSL is mainly a technique intended to convert one XML-document at a time,
not to compare several documents. The significant pros and cons of XSL are
listed below.

+ Advanced element filter/lookup functionality
- Large memory consumption

- Poor handling of multiple documents

— Poor debugging facilities

— Non intuitive syntax

- Limited variable handling

Chapter 5. Migrating Data Between Different MIM-versions 37

Using XML for Import and Export of Data

— No data-tree compare function

The large memory consumption is mainly due to the design of the XSL
processor application. They are usually implemented in such way that they build
at least three DOM-trees during the transformation: one for each source
document, one for the target document and one for the X SL conversion
definition. This characteristic makes X SL unsuitable to handle large MIB XML-
files and should not be considered as the main tool in this context. However,
XSL could be useful to compare the MIM-versions documents since they have
moderate size.

5.5 3PP Application

One of the central parts of the problem isto track the changes between two
different XML-files. This problem should be rather common in different XML-
related applications, and therefore some time was spent to search for a 3PP
product that implemented this function. However, the result of this search was
modest. Only two applications were found and none of them were found to be
of any significant use within this concept.

The two applications found were:

XMLTreeDiff (IBM)

According to the documentation, this application should be able to mark which
nodes that have been changed. It requires an old version (1.1) of the xml4j-
parser that was not possible to obtain. A test was made with version 1.1.4, but
with erroneous result (method missing in Child-class).

Xmldiff (IBM)

Generates either graphical presentation of the differences or an XML file
“tagged” with the differences. The tags are included as comments, which makes
it hard to parse.

5.6 Java Application

A special Java-application can provide the most flexible solution to the
migration problem. However, then all algorithms have to be implemented from
scratch, which requires time-recourses.

The migration tool must be designed to handle large MIB XML-files. Therefore
the main parser of the migration tool must be based on the SAX-technigue. In
the part that handles the comparison of the different MIM-versions, the DOM-

technique could be used since the MIM-documents are smaller.

A prototype application was developed to prove the basic concepts of the
migration.

5.6.1 Prototype Design

To have a flexible and open design the abstract Java-interface MIMChanges has
been defined with methods that returns information about the changes of the
different MIM-objects.

38 Chapter 5: Migrating Data Between Different MIM-versions

Using XML for Import and Export of Data

5.6.1.1

ConvertMIB isthe main class that uses a SAX-parser to read the MIB XML-
file. It queries the MIMChangesto find out which elementsin the MIB-file that
should beincluded in the new MIB-file.

<<Interface>>
MIMChanges
(from convmib)

E¥getoldMimVersion() : String

E¥getNewMimVersion() : String

E¥moTypeRemoved(moTypeName : String) : boolean

E¥mandatoryMOAttributeAdded(moTypeName : String) : boolean
E¥moAttributeRemoved(moTypeName : String, moAttributeName : String) : boolean
E¥getAttributeDataType(moTypeName : String, moAttributeName : String) : String
E¥attrvaluewithinRange(moTypeName : String, moAttributeName : String, attrValue : double) : boolean
E¥relationshipRemoved(relationshipTypeName : String) : boolean

1

ConvertMIB \

(from convmib)

$cConvertMIB() MIMChangesXSL MIMChangesDOM

9convertQ i 1 (from convmib) (from convmib)
®processinglnstruction()

®startDocument()
®startDTD() ! ‘
®endDTD() |
WstartEntity() XMLRead |
®endEntity() —

SstartCDATA() — | 1.n
®endCDATA() 1 1

®comment
. Y Document
startElement() A~ DefaultHandler e Gt

Scharacters() (from helpers)
®ignorableW hitespace()
®endElement()
®warning()

®error()

®fatalError()
EPgetLocationString()

@normalize() O

main() LexicalHandler

(from ext)

Figure 13: ConvertMIB design

Two different implementation of the interface has been done:
MIMChangesX SL and MIM ChangesDOM.

MIMChangesXSL

In the MIM ChangesX SL implementation, X SL is used to extract the changes

between the two MIM-definition versions. A specia X SL-program, MIMDiff,
has been implemented (see Appendix B:MIMDiff.xd Source Code). MIMDiff
stores the changesin anew XML-file with a special defined format. Thisfileis
then parsed by MIM ChangesX SL, which builds an internal table of the changes.

Chapter 5. Migrating Data Between Different MIM-versions

39

Using XML for Import and Export of Data

MIM old
xml

I

MIM_new MIM

xml XSL engine Ll
xml

I |

MIMChangesXSL

A 4

A 4

MIMDiff
xsl

SR

Figure 14: MIMChangesXSL concept
This solution requires an XSL processing engine to beinstaled in the system.

5.6.1.2 MIMChangesDOM

In the MIM ChangesDOM implementation, the data from the two MIM-
definition versions are received by means of the DOM-technique. The XML-
files are parsed into two DOM-trees and then MIM ChangesDOM queries the
data-trees to extract the changes.

MIM_old
xml

MIM_new /

xml

I

MIMChangesDOM

Figure 15: MIMChangesDOM concept

Thisimplementation is more flexible and makes it possible to find differences
at amore detailed level compared to the MIM ChangesXSL.

5.7 Migration Within CS

Another way to handle the migration between different versions would be to
make the conversion directly in the CS import_MIB component. This section
discusses two such concepts.

40 Chapter 5: Migrating Data Between Different MIM-versions

Using XML for Import and Export of Data

5.71 LDAP Query

All versions of the MIM-definitions are stored in adirectory servicethat is
accessible from the import_MIB component. This makes it possible to do an
implementation of the MIM Changes-interface where the MIM-data is read from
the directory service (LDAP).

LDAP

MIB verY MIM ver X
- MIM ver Y
MIM ver Z

T

xml

A 4

Each MO-object checked MIMChangesLDAP
cs before HNIIISBSf;))l;d in the Implements
import_MIB > MIMChanges
Compares

version Y and Z

MIB
DB

Figure 16: MIMChangesLDAP concept

When an older MIB-version isimported, anew MIMChangesL DAP object is
created that reports the differences between the current MIM-version and the
MIM-version the MIB-file is based on.

Theimport_MIB check each MIB-element before it is stored in the database.

Themain pros and cons of thisdesign are:

+ The user does not have to run an external conversion utility where the
different MIM XML-files must be supplied.

— The user has less control over the conversion process

— An export from the database has to be done to produce aMIB XML-file that
comply to the current MIM-format

- Any problem in this function will affect the stability and robustness of the
whole CS-component.

5.7.2 MO-conversion Plug-in

Another conversion concept would be to make a “hard-coded” conversion code-
module for each new MIM-version. There must then be a conversion-handler
defined for each MO-type in each previous MIM-version. The conversion plug-
in modules could with advantage be defined by the person who makes the
MIM-definition changes.

Chapter 5. Migrating Data Between Different MIM-versions 41

Using XML for Import and Export of Data

MIB_verY
xml
I 4
Each MO-object is 1
v converted by the plug-in
before it is stored in the MO_type
database .
CS conversion
” |-
import_MIB ‘ » InternalCell

ver Y<->Z

)
MIB

Figure 17: Plug-in MIB-conversion concept

Themain pros and cons of thisdesign are:

+ Possibleto have specia conversion-rules for each MO-type. This could, for
example, make it possible to handle renaming of MO-types.

— A lot of code has to be implemented each time anew MIM-version is
installed

— Theuser has less control over the conversion process

- An export from the database has to be done to produce aMIB XML -file that
comply to the current MIM-format.

5.8 Summary and Recommended Solutions
A migration tool will with high probability be cost effective to implement.

The XSL-technique is not so useful within this area and an implementation in
Javawill be more effective.

It isdifficult to suggest just one of the designs as the best. If the migration
should be done frequently then an implementation within the import_MIB
module would probably be most effective, otherwise an external tool should be
considered.

42 Chapter 5: Migrating Data Between Different MIM-versions

Using XML for Import and Export of Data

6

6.1

6.2

6.3

DTD/Schema Format

This chapter contains information about the third part of the thesis; an
evaluation of which DTD/schema format that is most effective to use for the
MIB XML-file.

Problem Description

The current format of the MIB XML-fileis specified by the DTD-definition in
the mib.dtd file (see Appendix C: DTD/schema Formats). There is a need to
make the MIB XML -format as effective as possible with respect to the
following factors: correct functionality, easy implementation, simple readability
and good runtime performance.

There are several “standard” XML-formats available that are intended to be
used to define/exchange different kinds of object oriented data. The main task
of this part of the thesis is to analyse and compare those formats in respect to
the current mib.dtd format. The formats that were suggested to be analysed are
XMI, CCM IRP and VXML. There should also be investigated if the mib.dtd
format could be improved in any way.

CCMIRP

VXML

Common Configuration Management Integration Reference Points (CCM IRP)
is a format defined by the 3GPP-organisation. It is intended to facilitate the
exchange of object configuration data between different parts in the third
generation mobile network, regardless of the vendor.

The main pros and cons of CCM IRP are:

+ “Standard” format -- the MIB-files can be reused in other applications
without modification
+ Each MO contains Distinguished Name -- simplifies the import parsing.

- MOs are needed to be stored in the correct order in the file

— Uses one XML-element type for all primitive data-types -- extra type-
handling code necessary

— Not possible to define associations or hoppers.

The most significant disadvantage is the lack of association- and hopper-
definition. Since Ericsson is a member of the 3GPP-organisation it should be
possible get rid of this limitation by suggesting an extension of the format.

Versant XML (VXML) is used to define data that should be imported directly in
a Versant Object Oriented database by means of their import utility.

Chapter 6: DTD/Schema Format 43

Using XML for Import and Export of Data

6.4

6.5

XMi

Mib.dtd

',
MIB Versant
vxmML 1 VXML MIB
import util DB
I

Figure 18: VXML concept

The main pros and cons of VXML are:

+ Simple format -- easy to understand
+ Fast import -- the database is queried directly.

— The structure of the XML-import file must follow the class-structure in the
database -- any changes in the database-structure affects the format of the
MIB XML-file

— Versant’s import tool has limited constraint checks -- no warnings will be
generated if MO-attributes etc are missing or out of range.

The absence of constraint checks in the VXML import utility makes this import
technique insufficient in respect of the CS-requirements.

If the import would be done through the import_MIB, or some other external
application with a constraint check included, the VXML DTD-format could
theoretically be used. However, then there will be no advantage over using the
current mib.dtd format and there will be similar drawbacks as for the CCM IRP
format.

XML Metadata Interchange Format (XMI) is a format defined by the Object
Management Group.

The main purpose of XMl is to enable easy interchange of metadata between
modelling tools (based on the OMG UML) and between tools and metadata
repositories (OMG MOF based) in distributed heterogeneous environments.
(OMG 2000)

XMl is a complex standard. The specification document (OMG 2000) covers
400 pages. The specification does not specify a fixed DTD-format; it only
specifies the basic guidelines for constructing a valid XMI DTD.

The conclusion of the analyse is that the XMI-technique is not so useful within
the import_MIB/CS-context.

The DTD-definition in the mib.dtd file defines the current format of the MIB
XML-file.

The main pros and cons of mib.dtd are:

+ Currently used format -- import_MIB component and the specialised MIB
generation tools do not have to be changed

+ Special XML-tags for each available primitive type of the MO-attributes --
simplifies the consistency check.

Chapter 6: DTD/Schema Format

Using XML for Import and Export of Data

— The defined MO-instances do not have distinguished name. The hierarchy in
the XML -file defines the MO-hierarchy. The current element-level within
the XML-file has to be tracked

— Includes XML-elements with no significant functionality -- increases
memory consumption and parsing time.

The change of aformat that is already in use in delivered systems hasto have a
strong motivation; i.e. the system performance must be significantly increased.
When mib.dtd are compared to the other formats, no redly significant fact can
be found that motivates a switch to a new format.

6.5.1 Improvements

Another question was if the mib.dtd format itself could be changed in such a
way that performance increases, but with little impact on theimport_MIB
component and the specialised MIB XML -file generation tools?

The easiest way to improve parsing performance would be to reduce the number
of XML-elements.

Each MO-attribute definition has a datatype and value-element. Those elements
have no significant function when the MIB XML-files are imported.

If the mib.dtd file is changed according to the suggestion in Appendix C:
DTD/schema Formats, the DOM memory consumption and parsing time could
be reduced by 20-40%. Only minor changes in the import_ MIB component
should be needed to handle the changed format. Other changes could improve
the memory and XML -parsing performance even more, but the performance-
lossin other parts of theimport_MIB will then level out those improvements.
The suggested changes are estimated to be the best compromise when al parts
of the import procedure are considered

6.6 Summary and Recommended Solutions
CCM IRP could be useful with some changesimplemented.
VXML and XMI are of lessinterest. VXML will make the constraint check

more difficult and is also too associated to the database-structure. XMI isvery
complex and has no fixed dtd-definition and will therefore not be efficient.

Mib.dtd is recommended to be used within the foreseeable future, but some
improvements should be considered.

Chapter 6: DTD/Schema Format 45

Using XML for Import and Export of Data

7

7.1

711

7.2

Summary and Future Work

This chapter contains a summary of the thesis. It also contains suggestions
about how the results should be used and recommendations for future work.

Large Import and Export Files

The current implementation of the import/export function is based on anin-
memory DOM -parser, which has a heap-memory consumption that is linear to
the size of the XML-file. Thiswill cause a primary memory shortage problem
when a network with alarge number of elements should be
configured/simulated. To solve this problem, the current methods must be based
on adifferent technique.

The techniques evaluated were the SAX-parser, DOM-parser with aternative
storage technique and a “hard-coded” solution.

The SAX-parser is fast with low memory consumption, but is usually complex
to use and requires more code at the application side. The DOM-parser
technique is easy to use and integrate in the current system, but it consumes a
lot of memory for the storage of the data-tree that is built. A “hard-coded”
solution makes it possible to have full control of the memory consumption and
other parts of the process, but it will require a lot of coding.

When comparing the different techniques the following factors were
considered: correct functionality, runtime performance, simple (not time-
consuming) implementation and maintenance, fault handling/robustness and
cost for software license.

Conclusions

A combined SAX/DOM technique is recommended as the best choice for
import and a CS “hardcoded” implementation the best for export. However, the
differences are not significant and if some of the project conditions are changed,
one of the other solutions could become the overall best.

Migrating Data Between Different MIM-versions

There is a need to make the migration between different network-models fully-
or semi-automatic. In this part of the thesis different techniques for comparison
and conversion of XML-files were evaluated to find a solution to the problem.

The techniques evaluated were XSL, 3PP and a Java-based solution.

XSL has advanced element filter/lookup functionality, but the XSL-engine
consumes a lot of memory and its ability to compare several XML-documents is
limited. Two 3PP were evaluated, but none of them was found suitable within
this area. The Java-based solution can facilitate the most flexible conversion
utility, but it will require a lot of code-implementation. The conversion can be
implemented as a separate external tool, or as part of the import function in the
Cs.

46

Chapter 7: Summary and Future Work

Using XML for Import and Export of Data

7.21 Conclusions
A migration tool will with high probability be cost effective to implement.

The XSL-technique is not so useful within this area and an implementation in
Javawill be more effective.

It isdifficult to suggest just one of the designs asthe best. If the migration
should be done frequently then an implementation within the import_MIB
module would probably be most effective, otherwise an external tool should be
considered.

7.3 DTD/Schema Format

In the third part of the thesis the format of the XML -file was studied to see if
any changes could increase the performance.

The following formats were analysed: XMI, CCM IRP and VXML. The current
mib.dtd format was also analysed to find out if it could be improved in any way.

The main purpose of XMI isto enable easy interchange of metadata between
modelling tools. The specification does not specify afixed DTD-format; it only
specifies the basic guidelines for constructing avalid XMI DTD.

CCM IRPisintended to facilitate the exchange of object configuration data

between different partsin the third generation maobile network, regardless of the
vendor. It is a “standard” format, which makes it possible to reuse the MIB-files
in other applications without modification. Each MO contains Distinguished
Name, which simplifies the import parsing. However, it uses only one XML-
element type for all primitive data-types, which requires extra type-handling
code. Furthermore, it does not support definition of associations or hoppers,
which is another drawback.

Versant XML (VXML) is used to define data that should be imported directly in
a Versant Object Oriented database by means of their import utility. The import
is very fast if Versants VXML-tool is used because the database is queried
directly. However, any changes in the database-structure will affects the format
of the MIB XML-file and the constraint checks are very limited.

The DTD-definition in the mib.dtd file defines the current format of the MIB
XML-file. The format could be improved by removing elements with no
significant functionality. This will reduce the memory consumption and parsing
time.

7.3.1 Conclusions

CCM IRP could be useful with some changes implemented.

VXML and XMI are of less interest. VXML will make the constraint check
more difficult and is also too associated to the database-structure. XMl's
drawbacks of a complex characteristic and no fixed dtd-definition makes it
unsuitable.

Mib.dtd is recommended to be used within the foreseeable future, but some
improvements should be considered.

Chapter 7: Summary and Future Work 47

Using XML for Import and Export of Data

7.4 Future Work

Thisthesis has proven the basic concepts by means of prototype programs. The
next step would be to implement the suggested solutionsin the current CS-
system.

The performance issues could be further investigated by analyzing the use of the
CORBA methods create_mo and set_mo methods compared to the import
method. The transaction handling to the database could probably be improved
by means of some optimisation algorithm. Other areas that could be further
investigated are the fault handling and robustness.

The XML isanew technique that is rapidly spreading. New tools are constantly
produced and there is a high probability that some of them will be useful within
the areas covered in the thesis. There are, for example, new validating
techniques like XML Schema that makes it possible to let the XML -parser do
some of the constraint checks that is performed within CStoday. It is therefore
agood ideato continuoudy follow the development in the XML -area.

48 Chapter 7: Summary and Future Work

Using XML for Import and Export of Data

8 Acronyms and Abbreviations
3GPP Third Generation Partnership Project
3PP Third Party Product
API Application Programming Interface
BSC Base Station Controller
BSS Base Station System
CCM IRP Common Configuration Management |IRP
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
Cs Configuration Service
DN Distinguished Name
DOM Document Object Model
DTD Document Type Definition
GSM Global System for Mobile communication
HTML HyperText Markup Language
[1OP Internet Inter-ORB Protocol
IRP Integration Reference Point
ISO International Organisation for Standardisation
VM Java Virtual Machine
LDAP Lightweight Directory Access Protocol
MIB Managed Information Base
MIM Managed Information Model
MO Managed Object
MOF Meta Object Facility
MSC Mobile Services switching Center
OMG Object Management Group
oS Operating System
0Sss Operation and Support System
PDF Portable Document Format
PDOM Persistent DOM
PLMN Public Land Mobile Network
RANOS Radio Access Network Operation System
SAX Simple APl for XML
SS Supplementary Services
UML Unified Modeling Language
UMTS Universal Mobile Telecommunications System
URI Uniform Resource Identifier
UTF Unicode Transformation Format
VXML Versant XML

Chapter 8: Acronyms and Abbreviations

49

Using XML for Import and Export of Data

XMI
XML
XPath
XQL
XSL
XSLT
W3C

XML Metadata Interchange
eXtended Markup Language
XML Path language

XML Query Language
Extensible Stylesheet Language
XSL Transformations

World Wide Web Consortium

50

Chapter 8: Acronyms and Abbreviations

Using XML for Import and Export of Data

9 References

Birbeck, Mark et.al. (2000), Professional XML, Birmingham, Wrox, 1st edition,
1-86100-311-0

CS (2000), Programmer’s Guide — Configuration Service (198 17-APR 90 161
Uen Rev PF4 2000-10-04), Ericsson Radio Systems

GMD (2001), GMD-IPSI XQL Engine, http://xml.darmstadt.gmd.de/xql/

KMS (2001), Kings Mountain Systems,
http://www.kingsmountain.com/ldapRoadmap.shtml

Morrison, Michael (2000), XML unleashed, Indianapolis (Ind.), Sams,
0672315149

OMG (2000), OMG XML Metadata Interchange (XMI) Specification 1.1,
OMG, ftp://ftp.omg.org/pub/docs/formal/00-11-02. pdf

OMG (2001), Object Management Group, http://www.omg.org/
Sun (2001), Sun'’s source for Java technology, http://java.sun.com/

W3C (2001), World Wide Web Consortium, http://www.w3.org/

Chapter 9: References

51

Using XML for Import and Export of Data

Appendix A: PDOM

This appendix contains information about the GMD-IPSI XQL Engine. Most of
the information has been fetched from their web-site located at:
http://xml.darmstadt.gmd.de/xql/.

GMD Persistent DOM

The PDOM class alows generating binary, indexed files containing a persistent
W3C-DOM. A PDOM file immediately offersall DOM operations without the
cost of parsing XML or building an in-memory DOM representation first.
Combined with servlets and XQL, PDOM files offer an efficient method to
serve XML fragments from large documents. A PDOM file may be created
from any XML file or programmatically using W3C-DOM methods.

When creating PDOM filesfrom XML files, SAX events are used to
communicate with the XML parser. Using the event based SAX API there never
hasto be afull representation of your XML filein main memory. Because of
thisthe size of aPDOM fileisonly limited by disk space, not by main memory.

The de.gmd.ipsi.pdom.PDocument class implements org.w3c.dom.Document,
so the PDOM may be used anywhere a W3C compliant DOM implementation
is needed. Asthe PDOM API supports al methods of the W3C-DOM,
including updates and inserts, programmatic creation and modification of
PDOM filesispossible.

Overview of the PDOM Features

This section describes the different special characteristic of the PDOM

Caching: A PDOM fileis organized in pages, each containing 128 DOM nodes
of variable length. When a PDOM Node is accessed by a W3C-DOM method,
the containing page isloaded into a main memory cache. Starting with a default
cache size of 100 pages (12.800 DOM Nodes), the main memory cache can be
resized any time. It will, however, never shrink below 20 pages (2.560 DOM
Nodes). It isrecommended to use the largest cache size your machine’'s main
memory can hold without swapping, as alarger cache improves overall PDOM
performance. The same cacheis shared by all PDOM documents opened with
the same instance of the PDOM engine. The caching strategy used is "least
recently used" (LRU).

Defragmentation: When a node is programmatically inserted, updated or delete
by W3C-DOM methods, the page containing the node isinvalidated ("dirty
page"). If adirty page is displaced from the cache, the modified pageis
appended at the end of the PDOM file. So a PDOM file will grow during write
operations, as the file space occupied by invalidated pages will not be removed
or reused automatically. Note that just reading and or querying a PDOM file,
however, will never change thefile size.

Appendix A:PDOM

53

Using XML for Import and Export of Data

The PDOM file can be defragmented at any time by removing unused pages.
During this operation atemporary file containing only valid pagesis created and
finally the fragmented PDOM file is replaced with the unfragmented copy. It is
possible to define the directory where the temporary file is created. The slack
ratio, that is the percentage of wasted file space divided by physical file size can
be accessed by user applications. The number is normalized to adouble
between 0.0 and 1.0. It is up to the user application to start a defragmentation,
probably if the slack ratio grows beyond a tolerable mark.

Full garbage collection: Defragmentation does work on a per-page basis and
does not free space occupied by DOM nodes that have been deleted within
pages. To aso free this space, afull garbage collection isrequired. To avoid
dangling object references, a garbage collection isonly safe if the PDOM fileis
not opened by another PDOM engine and no PDocument object is currently
bound to the PDOM file. This aso includes any child nodes of PDocument,
which may still bein main memory left from previous operations. It is the duty
of the user application to enforce these conditions; else you are in danger to
garble the PDOM file. Full garbage collection includes defragmentation.

Commit points: At any time a user application doing update, delete or insert
operations on a PDOM can decide to commit the current status quo of the
PDOM. In the commit operation the main file index, normally maintained in
main memory, is written back to disk. If the user application crashes, e.g.
because of a"disk full" error, the PDOM will bein the sate it was immediately
before the last successful commit operation when re-opened. Great care was
taken to ensure file consistency even after crashes. Thereis, however, aminimal
chance of corrupting afileif the user application dies during a commit
operation. Keep in mind that the PDOM does not try to be a fully-fledged
database.

Compression with gzip: Optionaly a PDOM file can be compressed on the fly
using the gzip algorithm. Thiswill result in smaller files, usually half the size of
an uncompressed PDOM file. The trade-off here is speed: a compressed PDOM
file usually increases the execution for reading and writing pages by 20%.
Compression is a one-time decision take at creating time of the PDOM file. A
file can not be compressed later. All operations opening PDOM files will
automatically recognize compression and handle this fact transparently. User
applications never have to care or know about compression when dealing with
existing PDOM files.

Multithreaded access: The same PDOM file can be read by multiple threadsin
parallel without problem. Update operations block read and write operations for
other threads. Given this, all atomic operations on aPDOM file are thread safe.
However, composed update operations (e.g. reading a node, modifying it and
write back to the PDOM) suffer from the well-known transaction difficulties.
To ensure atomicity of complex updates, the application has to synchronize the
critical block of code with the PDocument object.

Installation

To integrate the GMD-IPSI X QL with your Java based XML environment
simply download the distribution after agreeing to the license terms,

e addthe JAR file contained in the distribution to your Java CLASSPATH,
e addaSAX parser to your CLASSPATH (if not already there)

Appendix A: PDOM

Using XML for Import and Export of Data

e add aW3C-DOM implementation to your CLASSPATH (if not already
there)

The GMD-IPSI PDOM engine requires athird party SAX parser to read XML
documents. The SAX API does not provide full information on XML
documents, e.g. comments or CDATA sections are missing. As aresult, such
nodes are missing from the PDOM when built using SAX events. Glue code for
IBM’s xml4j2 parser isincluded, using its proprietary extensionsto SAX, to
create DOM nodes of types not supported by standard SAX. So xml4j2 is not
required, but recommended to be used as SAX parser. To automatically use this
feature, smply add xml4j2 to your CLASSPATH.

Any other SAX compliant parser may be specified in the command line tools. If

no parser is specified and xml4j2 is missing, XP, Microstar Zlfred, Sun Project
X and Oracle XML parser are auto-detected and used if present in your
CLASSPATH.

If you want to query only PDOM files, no third party W3C-DOM
implementation is needed. When the XQL command line tool is used to query
arbitrary XML documents, a temporary in-memory DOM is built. Again you
may explicitly specify the W3C-DOM implementation you want to use. If no
preferred DOM implementation is given, Open XML DOM, Sun Project X,
xml4j, xml4j2, Docuverse DOM SDK and Oracle XML DOM are auto-detected
and used if present in your CLASSPATH.

A new package with DOM utility functions has been added. To use the included
methods to instantiate a W3C-DOM from HTML or Microsoft RTF, the Sun
JFC library (aka Swing 1.1) has to be in your CLASSPATH.

Development is done using Sun JDK 1.2.1, the jikes Java compiler 0.47 and
xml4j 2.0.9. The engine is also tested with the Sun JDK 1.1.8, Microsoft SDK
3.2 and the parsers and DOM implementations listed above on an irregular
basis.

Creating a PDOM File

There are two ways to create a PDOM file, either by writing an in-memory
DOM to disk or by creating it from an XML InputStream.

Variant 1 demonstrates the creation of a PDOM file from an in-memory
instance of another DOM. Any W3C-DOM implementation can be used. The
example does use the gzip compression option to create a compressed PDOM
file.

Variant 2 demonstrates the creation of a PDOM file from a vanilla plain XML
file. The built-in validating SAX parser, extending xml4j2's
com.ibm.xml.parsers.SAXParser, is used. As we decide to use validation, it is
feasible to suppress ignorable whitespace. This way a lot of unnecessary Text
nodes holding only whitespace are suppressed, resulting in a smaller, faster
PDOM file.

i mport de.gnd.ipsi.pdom *;
i nport de.gnd.ipsi.donutil.*;
i nport org.w3c. dom Docunent ;

Appendix A:PDOM

55

Using XML for Import and Export of Data

11
// Variant 1: Witing an in-nmenory DOM Document to disk
11

/1 A Docunent created by your favorite DOM i npl enentation
Docurnent in_nmenory_doc = DOMUYi | . creat eDocunent ();
PDOM wr i t eDOVFi | e(

"mydoc. pdont',

i n_nmenory_doc,

true // false = no gzip conpression, true = create
gzi ped PDOM
)

/1
/'l Variant 2. Create a PDOM by parsing an XM input stream
11

Docunent pdoc = new PDocunent (" nmydoc. pdon');
DOMUt i | . par seXM_(

new FilelnputStream("valid with _dtd. xm"),

pdoc, // The Docunent’s factory is used to create
PDOM Nodes

true, // Parse node: true = validating, false = non-
val i dati ng

DOMUt i | . SKI P_I GNORABLE_VHI TESPACE // Wit espace
treatnent, see APl docs

)
((PDocunent) pdoc).conmmit(); /1 be sure to flush to
di sk

Licence
A commercial version is available with the possibility to buy a company-
license.

Licensing and pricing for commercial use:

The Base Package of the Infonyte XQL Suite contains the XQL query engine,
the PDOM storage component, command line front-ends, and user
documentation. The following license types are available:

Single User Runtime License
Includes: Infonyte XQL Suite Base Package
EURO 100

Single Developer License
Includes: Infonyte XQL Suite Base Package, API docs
EURO 1000

Server Runtime License (per CPU)
Includes: Infonyte XQL Suite Base Package, API docs, Servlet
EURO 1500

Company License
Proposals available on request
OEM Runtime Licenses

Appendix A: PDOM

Using XML for Import and Export of Data

Proposals available on request

More information can be found at: http://www.globit.com/infonyte.htm and
http://xml.darmstadt.gmd.de/xql/.

Appendix A:PDOM

57

Using XML for Import and Export of Data

Appendix B: MIMDiff.xsl Source Code

The MIMDiff prototype program were implemented in Java and XSL. This appendix contains the source
code of the XSL part. The purpose of this appendix isto present a practical example of an XSL-
implementation in general and the use of XSL for comparison of two XML-filesin particular.

XSL source code

<xsl : styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Transform' version = "1.0">
<xsl :output nethod = "xm" omt-xmnl-declaration = "no" indent="yes" />

<xsl :variabl e nane="ol d" sel ect="docunment (' bsc_nmimold.xm")" />
<xsl :variabl e name="new' select="/" />

<xsl:tenplate match="/">
<xsl : el ement name="m ndi ff">
<xsl:attribute name="ol dver">
<xsl : val ue- of sel ect ="%$ol d/ nodel s/ mi ml @ersion" />
</xsl:attribute>
<xsl:attribute name="ol drel ease">
<xsl : val ue- of sel ect ="%ol d/ nodel s/ mi M @ el ease" />
</xsl:attribute>
<xsl:attribute name="newer">
<xsl : val ue- of sel ect ="$new nodel s/ mi m @ersion" />
</xsl:attribute>
<xsl :attribute nane="new el ease">
<xsl : val ue- of sel ect ="$new nodel s/ mi m @ el ease" />
</xsl:attribute>

<xsl:call-tenplate name="1ist-additional ">
<xsl : wi t h- par am nane="el enent - nane" >st r uct _added</ xsl : wi t h- par an»
<xsl : wi t h- param nane="nore" sel ect ="$new nodel s/ m m struct" />
<xsl :wi t h- param nane="1 ess" sel ect =" $ol d/ nodel s/ m m struct" />

</ xsl:call-tenpl ate>

<xsl:call-tenplate name="1ist-additional ">
<xsl : wi t h- par am nane="el enent - nane" >st r uct _r enoved</ xsl : wi t h- par an»
<xsl : wi t h- param name="nore" sel ect ="$ol d/ nodel s/ m nf struct" />
<xsl :wi t h- param nane="1 ess" sel ect ="$new nodel s/ m m struct" />

</ xsl:call-tenpl ate>

<xsl:call-tenplate name="list-altered">
<xsl : wi t h- param nane="nore" sel ect ="$new nodel s/ m m struct" />
<xsl :wi t h- param nane="1 ess" sel ect =" $ol d/ nodel s/ mi m struct" />
</ xsl :call-tenpl at e>

<xsl:call-tenplate name="1ist-additional ">
<xsl : wi t h- par am nanme="el enent - nane" >enum added</ xsl : wi t h- par anm»
<xsl : wi t h- param name="nore" sel ect =" $new nodel s/ m m enunt />
<xsl :wi t h- param nane="1 ess" sel ect =" $ol d/ nodel s/ m m enunt />

</ xsl :call-tenpl at e>

<xsl:call-tenplate nane="1list-additional ">
<xsl : wi t h- par am name="el enent - nane" >enum r enoved</ xsl : wi t h- par anm>
<xsl : wi t h- par am nane="nore" sel ect =" $ol d/ nodel s/ m m enunt />
<xsl : wi t h- param name="1 ess" sel ect =" $new nodel s/ m m enunt />

</ xsl :call-tenpl at e>

<xsl:call-tenplate nane="list-altered">
<xsl : wi t h- param name="nore" sel ect =" $new nodel s/ m m enunt />
<xsl :wi t h- param nane="1 ess" sel ect =" $ol d/ nodel s/ m m enunt />

Appendix B: MIMDiff.xd Source Code 59

Using XML for Import and Export of Data

</ xsl :call-tenpl at e>

<xsl:call-tenplate name="1ist-additional">
<xsl : wi t h- par am nanme="el enent - nane" >cl ass_added</ xsl : wi t h- par an»
<xsl : wi t h- param nane="nore" sel ect ="$new nodel s/ m ni cl ass" />
<xsl :wi t h- param nanme="1 ess" sel ect ="$ol d/ nodel s/ m ni cl ass" />

</ xsl:call-tenpl ate>

<xsl:call-tenplate nane="list-additional ">
<xsl : wi t h- par am nanme="el enment - nanme" >cl ass_r enmoved</ xsl : wi t h- par an>
<xsl :wi t h- par am nanme="nore" sel ect ="$%ol d/ nodel s/ m ni cl ass" />
<xsl :wi t h- param nane="1 ess" sel ect =" $new nodel s/ m ni cl ass" />

</ xsl :call-tenpl at e>

<xsl:call-tenplate nane="list-altered">
<xsl : wi t h- par am nanme="el enent - nanme" >cl ass_al t er ed</ xsl : wi t h- par an
<xsl :wi t h- par am nanme="nore" sel ect ="$new nodel s/ m ni cl ass" />
<xsl : wi t h- param name="1 ess" sel ect =" $ol d/ nodel s/ mi ni cl ass" />

</ xsl :call-tenpl at e>

<xsl:call-tenplate name="1ist-additional">
<xsl : wi t h- par am nane="el enent - nane" >r el ati onshi p_added</ xsl : wi t h- par an»
<xsl : wi t h- param name="nore" sel ect =" $new nodel s/ m m rel ati onshi p" />
<xsl : wi t h- param nane="1 ess" sel ect =" $ol d/ nodel s/ mi m' rel ati onshi p" />

</ xsl:call-tenpl ate>

<xsl:call-tenplate name="1ist-additional">
<xsl : wi t h- par am nanme="el ement - nane" >r el ati onshi p_r enbved</ xsl : wi t h- par an»
<xsl : wi t h- param name="nore" sel ect =" $ol d/ nodel s/ m m' rel ati onshi p" />
<xsl :wi t h- param nane="1 ess" sel ect ="$new nodel s/ m m'rel ati onshi p" />

</ xsl:call-tenpl ate>

<xsl:call-tenplate nane="list-altered">
<xsl : wi t h- param name="nore" sel ect =" $new nodel s/ m m rel ati onshi p" />
<xsl :wi t h- param nane="| ess" sel ect =" $ol d/ nodel s/ mi m' rel ati onshi p" />
</ xsl:call-tenpl ate>

</ xsl : el enent >
</ xsl :tenpl at e>

<xsl:tenpl ate nane="list-additional ">
<xsl| : param nane="el enent - nanme" />
<xsl : param nane="nore" />
<xsl| : param nanme="| ess" />

<l-- cycle through each itemin the 'nore’ docunent -->
<xsl : for-each sel ect="$nore">
<xsl:variable nane="iten' select="." />

<xsl :vari abl e name="conp" sel ect ="$| ess[@ane=$i tenl @ane] "/ >
<xsl:if test="count($conp) = 0">
<xsl: el ement name ="{$el ement-nane}">
<xsl:attribute nane = "nane" >
<xsl : val ue-of sel ect="%$item @ane" />
</ xsl:attribute>
</ xsl : el ement >
</xsl:if>
</ xsl : for-each>
</ xsl :tenpl at e>

<xsl :tenplate name="list-additional-attributes">
<xsl : param nane="nore" />
<xsl : param nane="1 ess" />

<l-- cycle through each itemin the 'nore’ docunment -->
<xsl :for-each sel ect="$nore">
<xsl :variabl e name="itent select="." />

<xsl :vari abl e name="conp" sel ect ="$| ess[@ane=$i ten! @ane] "/ >

60 Appendix B: MIMDiff.xsl Source Code

Using XML for Import and Export of Data

<xsl:if test="count($conp) = 0">
<xsl:element name ="attribute_added">
<xsl:attribute nane = "nanme" >
<xsl : val ue- of sel ect="%item @ane" />
</xsl:attribute>
<xsl:attribute name = "nandatory" >
<xsl:if test="count(./mandatory) > 0">
<xsl : val ue-of select=""true" />
</xsl:if>
<xsl:if test="count(./mandatory) = 0">
<xsl :val ue-of select=""false'" />
</xsl:if>
</xsl:attribute>
</ xsl : el enent >
</xsl:if>
</ xsl : for-each>
</ xsl:tenpl ate>

<xsl :tenplate name="Ilist-al tered2">
<xsl : par am nane="el enent - nane" />
<xsl : param nanme="nore" />
<xsl : param nane="1| ess" />

<l-- cycle through each itemin the 'nore’ docunment -->
<xsl : for-each sel ect ="$nore">
<xsl :variabl e name="itent select="." />

<xsl : for-each sel ect="$l ess">
<xsl:if test="$iten @ane = ./ @ane">

<xsl:call-tenplate name="1ist-additional ">
<xsl : wi t h- par am nane="el enent - nane" >at tri but e_r enoved</ xsl : wi t h- par an»
<xsl : wi t h- param nanme="nore" select="." />

<xsl :wi t h- param nane="1 ess" select="8$itenl />
</ xsl:call-tenpl ate>
</xsl:if>
</ xsl : for-each>
</ xsl : for-each>
</ xsl :tenpl at e>

<xsl:tenplate nane="list-altered">
<xsl : param nane="nore" />
<xsl : param nane="1| ess" />

<l-- cycle through each itemin the 'nore’ docunent -->
<xsl : for-each sel ect="$nore">
<xsl :variabl e name="itent select="." />
<xsl :variabl e name="di ffrnore" select="." />
<l-- select the 'l ess’ docunent so that elenents can be selected fromthat

docurent -->
<xsl :for-each sel ect="%l ess">
<xsl :variabl e nane="ol ditem' select="." />
<xsl :variabl e name="di ffl ess" select="." />
<xsl:if test="$item @ane = $ol di tem @Grane" >
<xsl : el ement name ="{concat (nanme($iten),’ _changes’)}">
<xsl:attribute nane = "name" >
<xsl : val ue-of sel ect="3%$item @ane" />
</xsl:attribute>
<xsl : choose >
<xsl :when test="name($iten) = 'struct’ ">
<xsl:call-tenplate nane="list-additional ">
<xsl : wi t h- par am nane="el enent - nane" >str uct Menber _added</ xsl : wi t h-
par anp
<xsl :wi t h- param nane="nore" sel ect="3$itenm struct Menber" />
<xsl :wi t h- par am nane="1ess" sel ect ="$ol di t enl st ruct Menber" />
</ xsl:call-tenpl at e>
<xsl:call-tenplate nanme="list-additional ">
<xsl : wi t h- par am nane="el enent -
name" >st r uct Menber _r enoved</ xsl : wi t h- par ane
<xsl :wi t h- par am nane="nore" sel ect ="%ol di t eml struct Menber" />

Appendix B: MIMDiff.xd Source Code 61

Using XML for Import and Export of Data

<xsl:wi th-param name="1ess" sel ect="8itenl struct Menber" />
</ xsl:call-tenpl at e>
<xsl:call-tenplate name="list-al tered">
<xsl : wi t h- par am nanme="nore" sel ect="$itenm struct Menber" />
<xsl :wi t h- param nanme="1ess" sel ect ="%ol di tenl struct Menber" />
</ xsl:call-tenpl at e>
</ xsl : when>

<xsl : when test="nane($item = 'enunm ">
<xsl:call-tenplate nanme="list-additional ">
<xsl : wi t h- par am nane="el enent - nane" >enumvenber _added</ xsl : wi t h-
par anp
<xsl:wi t h- param name="nore" sel ect="%i tenf enum\Venber" />
<xsl : wi t h- par am nanme="1 ess" sel ect =" $ol di t eml enumvenber" />
</ xsl:call-tenpl ate>
<xsl:call-tenplate nanme="list-additional ">
<xsl : wi t h- par am nane="el enent - nane" >enumvenber _r enoved</ xsl : wi t h-
par anp
<xsl:wi t h-param name="nore" sel ect ="%ol di t eml enunmvenber"” />
<xsl : wi t h- par am nane="1 ess" sel ect ="$i t em enunienber" />
</ xsl:call-tenpl ate>
</ xsl : when>
<xsl :when test="name($iten) = 'class ">
<xsl:call-tenplate name="list-additional-attributes">
<xsl:wi th-param name="nore" select="S$itenfattribute" />
<xsl:with-param name="1ess" select="$olditenfattribute" />
</ xsl:call-tenpl ate>
<xsl:call-tenplate name="list-additional ">
<xsl : wi t h- par am nane="el enent - nane" >at tri but e_r enoved</ xsl : wi t h-
par anp

<xsl:wi th-param name="nore" select="%olditenfattribute" />
<xsl:with-param name="1ess" select="$itenfattribute" />
</ xsl:call-tenpl ate>
<xsl:call-tenplate name="list-altered">
<xsl:wi th-param name="nore" select="S$itenfattribute" />
<xsl:wi th-param name="1ess" select="%olditenfattribute" />
</ xsl:call-tenpl at e>
</ xsl : when>
<xsl:when test="name($item) = "attribute ">
<xsl :cal |l -tenpl ate name="anal yse-attri bute-changes" >
<xsl:wi th-param name="new' select="$itenml." />
<xsl :wi t h- param nane="ol d" select="$olditenl." />
</ xsl:call-tenpl at e>
</ xsl : when>
<xsl :when test="name($iten) = 'structMenber’ ">
<xsl : cal | -tenpl at e name="anal yse- dat aTr ee- changes" >
<xsl:wi th-param name="new' select="$itenl." />
<xsl :wi th-param nane="ol d" select="%$olditeni." />
</ xsl:call-tenpl at e>
</ xsl : when>
</ xsl : choose>

</ xsl : el ement >
</xsl:if>
</ xsl : for-each>
</ xsl : for-each>
</ xsl:tenpl ate>

<xsl : tenpl at e nane="anal yse- dat aTr ee- changes" >
<xsl : param nane="new' />
<xsl : param nane="ol d" />
<xsl :vari abl e nanme="newNodeNanesStr" >
<xsl : for-each sel ect="$new/ /*">
<xsl : val ue-of select="nane(.)" />
</ xsl : for-each>
</ xsl :vari abl e>
<xsl :vari abl e nanme="ol dNodeNanesStr" >
<xsl :for-each select="%old//*">

62 Appendix B: MIMDiff.xsl Source Code

Using XML for Import and Export of Data

<xsl : val ue-of select="nanme(.)" />

</ xsl : for-each>

</ xsl :vari abl e>

<xsl :vari abl e name="newNodeVal uesStr" >

<xsl :for-each sel ect="$new /*">
<xsl :val ue-of select="." />

</ xsl : for-each>

</ xsl :vari abl e>

<xsl :vari abl e name="ol dNodeVal uesStr" >

<xsl :for-each select="%old//*">
<xsl :val ue-of select="." />

</ xsl : for-each>

</ xsl :vari abl e>

<xsl:if test="$newNodeNanesStr != $ol dNodeNanesStr" >
<xsl : el ement nane="dat aEl emrent NamesChanged" />

</xsl:if>

<xsl:if test="$newNodeVal uesStr != $ol dNodeVal uesStr">
<xsl : el ement nanme="dat aVal uesChanged" />

</ xsl:if>

</ xsl :tenpl at e>

<xsl :tenpl ate nanme="anal yse-attri bute-changes" >
<xsl : param nane="new' />
<xsl : param nane="ol d" />
<xsl : vari abl e nanme="newDat aType" sel ect ="$new dat aType/ *[position()=1]" />
<xsl :vari abl e nane="ol dDat aType" sel ect ="$ol d/ dat aType/ *[posi tion()=1]" />
<xsl :vari abl e nane="newbDat aTypeNodeStr" >
<xsl : for-each sel ect ="$new dat aType//*">
<xsl :val ue-of select="nanme(.)" />
<xsl : val ue-of select="." />
</ xsl : for-each>
</ xsl : vari abl e>
<xsl : vari abl e name="ol dDat aTypeNodeStr" >
<xsl : for-each sel ect ="$ol d/ dat aType//*">
<xsl : val ue-of select="nane(.)" />
<xsl : val ue-of select="." />
</ xsl : for-each>
</ xsl:vari abl e>
<xsl:if test="count($new mandatory) > count (%ol d/ mandatory)">
<xsl : el ement name="nandatory" />

</xsl:if>
<xsl : el ement nanme ="newDat aType">
<xsl:attribute name = "type" >

<xsl : val ue- of sel ect ="nane($newDat aType)" />
</ xsl:attribute>
<xsl:if test="nanme($newDat aType) = ’'structRef’ or nanme($newDataType) = 'enunRef’">
<xsl:attribute name = "nane" >
<xsl : val ue- of sel ect =" $newbDat aType/ @anme" />
</ xsl:attribute>
</xsl:if>
</ xsl : el ement >
<xsl : el ement nanme ="ol dDat aType" >
<xsl:attribute name = "type" >
<xsl : val ue- of sel ect ="nane($ol dDat aType)" />
</xsl:attribute>
<xsl:if test="nanme($ol dDat aType) = ’'structRef’ or nanme($ol dDat aType) = 'enunRef’">
<xsl:attribute name = "nane" >
<xsl : val ue- of sel ect ="$ol dDat aType/ @anme" />
</xsl:attribute>
</xsl:if>
</ xsl : el enent >
<xsl:if test="count($new /range) > 0">
<xsl : el ement nanme ="newRange">
<xsl:attribute name = "mn" >
<xsl : val ue- of sel ect="$new /range/mn/." />
</xsl:attribute>

Appendix B: MIMDiff.xd Source Code 63

Using XML for Import and Export of Data

<xsl:attribute name = "max" >
<xsl : val ue- of sel ect="$new /range/ max/." />
</xsl:attribute>
</ xsl : el ement >
</xsl:if>
<xsl:if test="count($old//range) > 0">
<xsl : el enent nane ="ol dRange">
<xsl:attribute nane = "mn" >
<xsl : val ue-of select="$%old//range/nmn/." />
</xsl:attribute>
<xsl:attribute nane = "max" >
<xsl : val ue-of sel ect="%ol d//range/ max/." />
</xsl:attribute>
</ xsl : el ement >
</xsl:if>
<xsl:if test="$%ol dDat aTypeNodeStr != $newbDat aTypeNodeStr" >
<xsl : el ement nane="dat aTypeTr eeChanged" />
</xsl:if>
</ xsl:tenpl ate>

</ xsl : styl esheet >

64 Appendix B: MIMDiff.xsl Source Code

Using XML for Import and Export of Data

Appendix C: DTD/schema Formats

This appendix contains the DTD-definitions of the different MIB XML -file formats that were evaluated.

CCM IRP

Thisversion of the CCM IRP DTD is defined in the specification document: Common Configuration
Management N-Interface (N-IF), Specification: CORBA/XML Solution Set, ERA/RT-00:506, version 1,
2000-09-18, A.

<l--
| mport/export file DITD.

-->

<I ELEMENT confi gbDataCol | ection (fil eHeader ?,
configbDat a
fil eFooter?)>

<l-- fil eHeader -->

<! ELEMENT fil eHeader EMPTY>

<I' ATTLI ST fil eHeader fil eFormatVersi on CDATA #REQUI RED
sender Nane CDATA #REQUI RED
vendor Nane CDATA #REQUI RED>

<!-- configData -->

<!l ELEMENT configbata (managedObject*) >
<! ATTLI ST confi gData m nmName CDATA #REQUI RED
m nVer si on CDATA #REQUI RED>

<! ELEMENT vendor Speci fic EMPTY>

<! ELEMENT managedObj ect (nodifier?, attribute*, vendorSpecific?)>
<I' ATTLI ST managedObj ect di stingui shedNane CDATA #REQUI RED>

<I-- nodifier

The nodifier is used only when downl oadi ng configuration
towards the managed sub-network.

-->

<IELEMENT nodifier (create | delete | update)>

<I ELEMENT create EMPTY>

<! ELEMENT del ete EMPTY>

<! ELEMENT update EMPTY>

<l-- attribute -->

<I ELEMENT attribute ((structVal ue
sequenceVal ue
si npl eVal ue
referredMO |
undefi nedVal ue), vendor Specific?)>

Appendix C: DTD/schema Formats 65

Using XML for Import and Export of Data

<I ATTLI ST attribute name CDATA #REQUI RED>

<I--
A sinpleValue is a plain attribute value that is expressed
as a string. This is relevant for the follomnng dat atypes :
bool ean can have the values "true" or "fal se”
| ong max and m ni mrum val ues as defined in CORBA/IDL
* float where Sign, FloatingPointLiteral are as
defined in paragraph 3.10.2
of the Java Language Specification. |
* string as defined in CORBA/I DL
* 1 ongl ong max and m ni mum val ues as defined in
CORBA/ | DL
* enumis represented as the long (as defined in
CORBA/ 1 DL) value of the attribute.
The synbolical values of each enunerated values is
defined in respective attribute definition in the NRM

o>
<! ELEMENT si npl eVal ue (#PCDATA) >

<! ELEMENT undefi nedVal ue EMPTY>

<l-- structValue -->
<I ELEMENT structVal ue (struct Menber+ | undefi nedVal ue) >
<I' ATTLI ST struct Val ue nane CDATA #REQUI RED>

<! ELEMENT struct Menber (sinpl eVal ue+
referredMOt |
sequenceVal ue+
struct Val ue+
undef i nedVal ue) >

<I' ATTLI ST struct Menber nane CDATA #REQUI RED>

<l-- sequenceVal ue -->

<! ELEMENT sequenceVal ue (si npl eval ue*
referredMO |
struct Val ue*
undefi nedVval ue) >

<l-- referredMO -->

<! ELEMENT referredMO (null | distingui shedNane) >

<! ELEMENT nul | EMPTY>
<! ELEMENT di sti ngui shedNane EMPTY>
<! ATTLI ST di sti ngui shedNanme di sti ngui shedNane CDATA #REQUI RED>
<l-- fileFooter -->
<!l ELEMENT fil eFoot er (DateTine)>
<!l ELEMENT DateTinme (Date, Tine)>
<! ELEMENT Ti ne EMPTY>
< ATTLI ST Ti ne
Hour CDATA #REQUI RED

M nut e CDATA #REQUI RED
Second CDATA #REQUI RED>

66 Appendix C: DTD/schema Formats

Using XML for Import and Export of Data

<! ELEMENT Date EMPTY>
<! ATTLI ST Dat e
Year CDATA #REQUI RED
Mont h CDATA #REQUI RED
Day CDATA #REQUI RED>

CCM IRP Example

<?xm version="1.0" encodi ng="UTF-8"?>

<conf i gDat aCol | ecti on>
<fil eHeader vendor Nane="Ericsson" fil eFormat Versi on="1"
sender Nanme="172. 31. 24. 5"/ >
<configbData ni mversion="1" m mNane="CCM NRM' >
<managedhj ect di sti ngui shedName="Net wor k=21000005" >
<attribute name="User Label ">
<si npl eVal ue>Eri csson subnet wor k</ si npl eVal ue>
</attribute>
<attribute name="NetworkType">
<si npl eVal ue>NEM donai n</ si npl eVal ue>
</attribute>
</ managedObj ect >
<managedObj ect
di stingui shedNane="Net wor k=21000005, Managenent Node=21000005" >
<attribute name="Managenent NodeType" >
<si npl eVal ue>UTRAN- GSM NEMK/ si npl eVal ue>
</attribute>
<attribute name="User Label ">
<si npl eVal ue>Eri cssonNEM/ si npl eVal ue>
</attribute>
<attribute name="Locati onNane">
<si npl eVal ue>Koel n_O fi ce</ si npl eVal ue>
</attribute>
<attribute name="Managenent NodeVendor" >
<si npl eVal ue>Eri csson</ si npl eVal ue>
</attribute>
</ managedObj ect >
</ conf i gbat a>
<fil eFoot er>
<Dat eTi ne>
<Dat e Day="1" Year="2000" Month="1"/>
<Ti me Second="33" M nute="33" Hour="19"/>
</ Dat eTi me>
</fil eFooter>
</ confi gDat aCol | ecti on>

VXML

VXML hastwo different DTD-definitions. Fundamental DTD (vxml) and Language DTD (vxmllang)

Vxml and vxmllang are effectively the same relative to the definition of XML elements and attributes.
The key differenceisin their usage. The vxmllang DTD makes extensive use of the compoasite element to
show language structure. Aside from providing a more natural view (from the language’s point of view)

of the object structure, it permits attributes to be named by their language names rather than their database
names. Thevxml DTD "flattens' a database object, reflecting its database representation.

Appendix C: DTD/schema Formats 67

Using XML for Import and Export of Data

Fundamental DTD

<?xm version="1.0" encodi ng="UTF-8" ?>

<IELEMENT vxm (inst)* >
<! ELEMENT i nst (compositelattr)* >
<! ATTLI ST i nst
cl ass CDATA #REQUI RED
id CDATA #I MPLI ED >
<! ELEMENT conposite (conpositelattr)* >
<I ATTLI ST conposite
nane CDATA #REQUI RED >
< ELEMENT attr (#PCDATA) >
<! ATTLI ST attr
nanme CDATA #REQUI RED >

Language DTD

<?xm version="1.0" encodi ng="UTF-8" ?>

<IELEMENT vxm | ang (inst)* >
<! ELEMENT conposite (conposite|lattr)* >
<! ELEMENT i nst (compositelattr)* >
<! ATTLI ST i nst
cl ass CDATA #REQUI RED
id CDATA #I MPLI ED
hash CDATA #I MPLI ED >
<I ATTLI ST conposite
nane CDATA #REQUI RED
serialization CDATA #| MPLI ED >
<! ELEMENT attr (#PCDATA) >
<! ATTLI ST attr
nane CDATA #REQUI RED

serialization CDATA #|l MPLI ED >

Examples
The examples below are based on the following class-structures:

Java
cl ass human {
String narne;
i nt age;
}
cl ass enpl oyee extends human {
i nt sal ary;
i nt daysOf[2];
}

Fundamental DTD

<?xm version="1.0"?>
<I DCCTYPE vxm SYSTEM
"http://ww. versant.com devel oper/vxm /dtds/v1l. 0/ vxm .dtd">
<vxni >
<i nst class="enpl oyee" id="3.1.12345">
<attr name="nanme">Fred</attr>
<attr name="age">32</attr>
<attr name="sal ary">50000</attr>

68 Appendix C: DTD/schema Formats

Using XML for Import and Export of Data

<conposite nane="daysO f">
<attr name="[0]">6</attr>
<attr name="[1l]">7</attr></conposite></inst></vxm >

Language DTD

<?xm version="1.0"?>
<! DOCTYPE vxm | ang SYSTEM
"http://ww. versant.com devel oper/vxnm /dtds/v1l. 0/ vxm | ang. dtd" >
<vxm | ang>
<inst class="enpl oyee" id="3.1.12345">
<conposite name="human">
<attr name="nanme">Fred</attr>
<attr name="age">32</attr></conposite>
<attr name="sal ary">50000</attr>
<conposite nanme="daysO f">
<attr name="[0]">6</attr>
<attr name="[1l]">7</attr></conposite></inst></vxm | ang>

XMi

The XMI-specification is too complex to be included in this appendix. The latest specification can be
found at http://www.omg.org/.

Mib.dtd

Due to demands from Ericsson the mib.dtd format has not been included in the public version of the
thesis. The information has been moved to a company internal appendix, which only the examiner and
Ericsson employees are allowed to access.

Appendix C: DTD/schema Formats

69

U,
-OQ“'AGS NI’%@ Avdelning, institution gg:gm
& t’ @3\ Division, department
~
%’Jt‘; Institutionen for datavetenskap
&
N
G”%s um*’“&% Department of Computer 2001-06-08
LINKOPINGS UNIVERSITET and Information Science

Sprak Rapporttyp ISBN _
Language Report category

|:| Svenska/Swedish |:| Licentiatavhandling ISRN

Engelska/English Examensarbete

C-uppsats
I:I PP Serietitel och serienummer ISSN _
|:| D-uppsats Title of series, numbering

|:| Ovrig rapport

I

LiTH-IDA-Ex- 01/61

URL for elektronisk version

Titel
Title

Using XML for Import and Export of Data

Forfattare
Author

Martin Axlid

Sammanfattning
Abstract

Ericsson is developing a Corba service for data storage of radio networks. This service is implemented on {
object database. The database contains data that describes a model of the physical network and its configy
One task is to import and export the configuration data. Today XML is used as the file-format for the import
export. The current implementation of the import/export function has a linear growth of heap-memory consu
when the XML-files are processed. This causes the possibility of a fatal error when large amount of data sh
handled. The purpose with the first part of the thesis has been to study and compare alternative XML-parsi
techniques with limited memory consumption. The study shows that the best solution would be to use a corf
of a SAX and DOM-parser in the import, and a non-standard “hardcoded” solution in the export.

Another task is to migrate data from one network model format to another; this is today performed outside t
service. This can be very time-consuming, especially when the network model contains many elements, an
therefore a need to make the process fully- or semi-automatic. The purpose of the thesis’s second part has
find a suitable technique to perform the conversion. The study shows that an implementation of a new cony
tool in Java will be most effective and flexible. The use of a standard XML-conversion technique like XSL o
party product would be less effective.

There is a need to make the format of the XML-file as effective as possible with respect to the following fac
correct functionality, easy implementation, simple readability and good runtime performance. In the third pa
thesis, the current format has been compared to several other “standard” XML-formats. The conclusion of t
is that the other formats do not have any significant advantage over the current format. The best solution w
apply some minor changes to the current format and continue to use that.

op of an
ration.
and
mption
ould be
g
nbinatior

he
d there is
been to
ersion

a third

ors:
rt of the

nis study
buld be t

Nyckelord
Keywords

XML, SAX, DOM, Parser, XSL, Java, Radio network, Object oriented database.

