
Project: ID IDA-I-230 Name of document: THES_COL
Document: Thesis Created: 1999-10-12
Responsible: Magnus Jakobsson / Johan Söderqvist Version: 0.6
Project manager: Anders Olsson Last revision: 2000-01-21
Customer: Ulf Gundersen Printed: 00-01-21 14:18

Ida Systems AB

Intelligent Distribution of Software
Components to Thin Clients

Thesis

Abstract
Many software companies are migrating to server based component systems. Such
distributed system uses thin clients. This gives lower administration costs, permits
updates to be performed automatically and gives a facilitated deployment.

One of the companies that are adapting their software to this way of thinking is Ida
Systems AB at Linköping. Most of Ida’s products are built on their component based
platform PAX Enterprise, which now is to be transformed into a server based
component system. However Ida wants to avoid the biggest drawback with thin clients,
the waiting times experienced by users as components are downloaded from the server.
Such perceived waiting times causes irritation and inefficiency and must therefore be
minimised.

This thesis presents a solution to the waiting time problem in thin clients, by using
intelligence at the server to model and predict users’ behaviour. Predictions are used to
push components to a client cache before any explicit requests have been made. If a
prediction is correct and the corresponding push operation finishes before the
components are needed, the user will have the feeling that she uses a local program. In
simulations based on PAX Enterprise usage it has been shown in this thesis that the
proposed distribution model can cut down the waiting times by nearly 60%.

1 Introduction

1

1 Introduction
This chapter gives a short introduction to this thesis and the examination project in
general. It includes the project background, the purpose of the project, a description
of the method of working used, the scope of the project and some general
information about the document.

1.1 About the Thesis
This thesis is a part of the obligatory master’s degree examination project on the
program “Computer Science and Engineering” at Linköping University. The work
has been performed during the fall of 1999 at the company Ida Systems AB.

1.2 Project Background
Ida Systems AB (Ida) is a company in Linköping that specialises on document
management systems and case management with workflow. These types of large-
scale systems need to serve the user with information created in different
applications on separate servers. Therefore the traditional client/server technology
is inefficient and the programs have been based on a 3-tier architecture. This
introduces a service layer between the servers and the clients, which offers the
needed services and mediate data between them. Even though this solution results
in less complex clients they still contain a lot of business logic, i.e. the clients are
fat. This causes a lot of overhead when configuring and updating the systems since
the administrators need to make individual installations for each user. By moving
components from the clients to the servers Ida wants to create server based
component systems. The purpose of this change is to avoid the problems described
above and make future web adaptations easy.

If the migration is complete the result will be that all business logic is collected at
the server-side of the system together with a repository for storing components. On
the other side of the system resides client software that basically provides an
infrastructure for downloaded components. These clients do not need any explicit
business logic since this functionality is provided by the components. Such clients
are called thin clients. By combining different sets of components at the server and
sending them to the client, the user is presented with workspaces for solving
specific tasks.

A drawback with the approach described above is that it causes a lot of network
traffic, hence is likely to result in waiting times. To minimise this unpleasant effect
the distribution mechanism could use personal information about a user’s everyday
tasks and behaviour to make predictions about her next action. Based on such
predictions, components can be pushed to a client before they are requested, thus
hiding waiting times for the user and upholding the illusion of running a local
program.

1 Introduction

2

The scheme described above is heavily influenced by the one-to-one philosophy in
today’s online marketing, see [Allen et al. 1998]. The idea with one-to-one
marketing is to create a long-term individual connection with each customer, since
it is much cheaper to increase sales to existing customers than to acquire new ones.
Online shops track their users’ actions in order to create a knowledge base about
individual needs and behaviour. The information is stored in profiles, used to
dynamically create personalised web pages that contain products predicted to be
especially interesting for the current viewer, personal rebates and support for earlier
bought products.

In a server based component system with thin clients the users, just as in the case
with customers in an online shop, must be kept satisfied. If they are delayed by the
system that is supposed to make their tasks easier they probably will not use it, just
as an unsatisfied customer is unlikely to return to a poorly designed online shop.
The important question is, can personalised component distribution be used as
effective as personalised web marketing?

1.3 The Target System
This part briefly describes the target system of the model presented in this thesis.
Some fundamental expressions that are used in the rest of this thesis are also
explained below.

Most of Ida’s products are built on their platform PAX Enterprise (PAX-E). This
platform includes a presentation system and the possibility to integrate different
building blocks, thus making it easy to build custom-made systems meeting the
customer’s demand to effectively collect, spread, process and store information.
The system is completed with client software and sold as a total solution to big
organisations.

PAX-E includes workflow management. This means that Ida identifies the different
work processes in an organisation and divides each of these into separate steps
called activities. Similar processes and processes that depend on each other are
grouped into cases. A case is opened when the first activity in the first process is
started and closed when the last activity in the last process has been completed. To
finish an activity a user must perform one or more tasks in the organisation’s PAX-
E system. Usually the work is divided in such way that each activity is performed
by a different user, making the case “travel” through the organisation. This makes it
practical to associate the responsibilities in a project, denoted group in workflow
management, with roles. Each user can belong to several groups and have many
different roles. A role connects a user to certain activities and thereby certain tasks.
In Figure 1 an example of a process is shown.

Draft Check

Edit

Pre-Release

Re-Work

Release

Figure 1. The activities in a workflow process defining the creation of a document.

1 Introduction

3

The platform is designed with support for workflow in mind. Therefore it is divided
into different workspaces where each of these present the components needed to
perform one type of task. In Figure 2, a screenshot of PAX-E shows the concept of
components and workspaces.

Figure 2. Screenshot of a PAX-E archive workspace with two components.

More information about PAX-E can be found in 4 PAX-E Observations.

1.4 Purpose
The purpose of this examination project is to create a model for the distribution of
software components to thin clients. This model should explain how user profiles,
caching and automatic delivery of components is to be combined to solve the
problem with waiting times in business applications using thin clients. The model
should be adapted to work in PAX-E systems. Since the model is likely to be used
in web based systems, platform independent aspects are to be considered.

An implementation in Java is to be made. It should consist of a server based
component system with thin clients, where components are distributed as defined
by the model. The implementation should show what level of performance that can
be achieved by using the model.

1 Introduction

4

1.5 Method of Working
The method of working used during the project time was a waterfall model with the
following steps:

1) Studies of background theory to get a wide knowledge base. The material
mainly consists of books, technical reports and online web pages.

2) PAX-E analysis. This includes working with the platform and interviewing
people at Ida. The goal with the analysis is to find out how the targeted
system can be combined with user prediction.

3) Modelling of the distribution mechanism. Different solutions and aspects
are considered and then combined into a model.

4) Design and implementation of a testbench in Java. The purpose with this
implementation is to create a way to evaluate and fine-tune the model.

5) Testing and fine-tuning of the implementation.

6) Conclusions and suggestions. How is the best solution, based on the model,
configured? Does it seem to be worth the effort of integrating the solution
in a business application or is the performance won negligible?

1.6 Scope
The examination project includes the following:

• The development of a distribution model for business applications.

• The implementation of a testbench.

• The writing of a thesis.

The examination project is limited in the following ways:

• The repository for storing the components is considered as given.

• The categorisation of the components and workspaces is also considered as
given.

• No in-depth security analyses of the actual distribution are to be made.

1 Introduction

5

1.7 Structure
This part gives an outline of this thesis. It also contains reading instructions,
abbreviations and a glossary.

1.7.1 Outline
The rest of the document is disposed in the following way:

• Problem Definition. Contains a problem description and analyses of the
different parts of the problem. The project requirements are also presented.

• Theoretical Background. Necessary background knowledge that is needed
in order to understand the problem area and the solution presented in this
thesis.

• PAX-E Observations. Summary of important observations made during the
analysis of the target system, PAX-E.

• Distribution Model. Describes a distribution model, based on the
theoretical background and the PAX-E observations, which solves the
problem with waiting times in thin clients.

• Implementation. Presents the implementation of the distribution model in
both functional and technical terms.

• Evaluation. Covers the testing of the implementation and shows how the
distribution model performs in PAX-E simulations.

• Conclusions and Further Work. Presents conclusions based on the results
shown in the evaluation. Also shows that the project requirements have
been fulfilled and gives some ideas about further work.

• References. Complete list over material referenced in this thesis.

1.7.2 Reading Instructions
Here is some reading instructions that chapter by chapter describes which parts that
are important to read and which parts that can be skipped.

In chapter 1 it is necessary to read about the project background and the purpose
with the project.

Chapter 2 is essential to understand the problem that is to be solved.

A lot of the information presented in chapter 3 might be familiar to the user and can
therefore be skipped to some extent. However it is very important to understand the
following areas: server based components, user prediction, the network aspects
discussed in the push introduction and client-side cache.

Chapter 4 covers target system observations, needed to understand some of the
model and implementation choices.

Chapter 5 is essential to understand the proposed solution.

In chapter 6 it is important to study the technical architecture and what the
implementation logs from the sessions.

1 Introduction

6

Chapter 7 is essential to understand how the distribution model should be
configured and what level of performance is to be expected in the target system.

In chapter 8 it is important to read about algorithm choice and the usage of the
distribution model.

1.7.3 Abbreviations
The abbreviations used in this thesis are presented below.

CORBA Common Object Request Broker Architecture

DAG Directed Acyclic Graph

DCOM Distributed Component Object Model

FIFO First In First Out

GUI Graphical User Interface

HTTP Hyper Text Transfer Protocol

IDA Ida Systems AB

IDL Interface Definition Language

IPAM Incremental Probabilistic Action Model

IUI Intelligent User Interface

JDBC Java DataBase Connectivity

LAN Local Area Network

LFU Least Frequently Used

LIFO Last In First Out

LPC Local Procedure Call

LRU Least Recently Used

LRV Least Relative Value

LZ Lempel-Ziv

OMG Object Management Group

ORB Object Request Broker

PAX-E PAX Enterprise

PAX-NG PAX Next Generation

PPM Prediction by Partial Match

RMI Remote Method Invocation

RPC Remote Procedure Call

SKL Statens Kriminaltekniska Laboratorium

TDAG Temporal Directed Acyclic Graph

WSC Workspace Selection Component

1 Introduction

7

1.7.4 Glossary
Some of the terms used in this thesis are explained below.

3-tier Architecture Advanced distributed computing model. This
architecture introduces a service layer between the
clients and the server. The usage of three tiers results
in higher performance, better scalability and a more
secure system.

Business Logic The part of an application that performs the required
data processing of the business. This includes the
functionality that performs data entry, update, query
and report processing. A server application is mostly
business logic. A client application is made up of a
graphical user interface and may also include some
business logic.

Common Object Request
Broker Architecture

A standard for communicating between distributed
objects, possibly written in different programming
languages and residing on different platforms.

Distributed Component
Object Model

Extension of Microsoft’s component object model
providing a network protocol for running distributed
objects. The technology is platform and operating
system dependent.

Discrete Sequence
Prediction

Uses a history, consisting of a sequence of atomic
symbols that is ordered by the time of appearance, to
predict which symbol is most likely to follow.

Fat Client Denotes a client application that contains not only a
graphical user interface but also a considerable
amount of business logic.

Framework The part of a thin client application that provides an
infrastructure for plugged in lightweight
components.

Heavyweight Component A software component that contains business logic,
a communication interface and possibly a graphical
user interface.

Hit Ratio Measurement of the performance of a cache.
Calculated as the number of locally stored data
requests divided by the total number of requests.

Incremental Probabilistic
Action Modelling

A discrete sequence prediction algorithm that bases
predictions on a table of previously seen symbols
and the corresponding weighted probabilities.

Lightweight Component A software component that contains a
communication interface and a graphical user
interface.

Lempel-Ziv A discrete sequence prediction algorithm that bases
predictions on a tree, consisting of previously
identified patterns and corresponding frequencies of
occurrence.

Markov A discrete sequence prediction algorithm that bases
predictions on a table of previously seen symbols
and the corresponding frequencies of occurrence.

1 Introduction

8

PAX Enterprise Software platform made by Ida Systems AB. Used
to create tailor-made document management systems
and case management systems with workflow.

Prediction by Partial
Match

A discrete sequence prediction algorithm that bases
predictions on multiple tables of different
dimensions, containing previously seen sequences of
symbols and the corresponding frequencies of
occurrence.

Prediction Ratio Measurement of the performance of a discrete
sequence prediction algorithm. Calculated as the
number of correct predictions divided by the total
number of predictions.

Profile Software entity describing a user’s preferences,
behaviour and privileges.

Push Server initiated data transfer, automatically started
before any explicit client request is received.

Remote Method Invocation A platform independent built-in mechanism in Java
for calling methods in remote objects located on
other computers.

Server based Component
System

Distributed system with framework clients and all
business logic collected at the server. The business
logic executes in application servers that the client
queries by plugging in lightweight components,
downloaded from server storage.

Software Component An indivisible collection of code that solves a
specific problem and has a well-defined
communication interface.

Temporal Directed Acyclic
Graph

A discrete sequence prediction algorithm that bases
predictions on a tree with nodes corresponding to
previously seen symbols and counters showing how
many times a node has been visited and followed by
one of its children.

Thin Client Denotes a minimal client application that contains a
graphical user interface without any business logic.

2 Problem Definition

9

2 Problem Definition
In this chapter an overview description of the problem area is presented. An
analysis of the area gives a deeper view of what needs to be done. The requirements
of the project are also defined.

2.1 Problem Description
To be able to minimise the waiting times for the user running a thin client,
components should be sent from the server before they are explicitly requested.
Such pushing of information needs to be based on some sort of predictions.

How can one predict a user’s next move? In [Davison & Hirsh 1998] it is asserted
that humans tend to repeat themselves, making it possible to predict future actions
by examining earlier behaviour. In a business application this would mean that
users are likely to evolve certain working patterns when solving their daily tasks. If
such patterns could be identified it should be possible to predict a user’s future
behaviour based on what operations she has performed in the past. Thus to be able
to make predictions, information needs to be gathered about a user, workspace
privileges and usage of components. This information can be stored in a personal
profile. Such profiles can be kept on the server and used by a distribution
mechanism to make decisions on what to send to an active client. The primary
problems in this project are to decide what needs to be stored in the profiles and
how the push decisions are to be made.

It is impossible to always make the correct prediction otherwise users would not be
needed at all in today’s computer systems. Due to this it is important to consider
when it is effective to push components to the client and when it is better to wait for
explicit requests. This implies that the push decisions need to be combined with a
pushing policy that defines in which situations it is suitable to automatically send
components.

The profiles needs to be dynamically updated, otherwise they could quickly become
obsolete and give a false image of the user they model. How such incremental
learning is to be performed is an important question that needs to be answered in
this project.

For pushing to work the client must be able to store the automatically delivered
components until they are actually used. Otherwise one must not only predict what
the user will do next but also when the operation will be performed. Therefore the
project also includes the creation of a client-side cache.

As can be seen, the model developed in this project must consider several different
aspects of the distribution of components. Those aspects are explored more in
section 2.2 Analysis.

2 Problem Definition

10

2.2 Analysis
Below follows a short summary of the different problems that need to be considered
during the development of the model.

• What information needs to be stored in the profiles?

• How should the profiles be structured and updated?

• How are push decisions to be made?

• When should push be used?

• How are components to be locally stored at the clients?

These are analysed in the following subsections.

2.2.1 Profile Information
The purpose of the profiles is to minimise the number of components to choose
among when pushing data to the client. One must compromise between the size and
the effectiveness of the profile. A profile containing an extensive collection of
information probably makes it easier to do a sound prediction, though it takes
longer time to accomplish it. The size of the profile also affects the usability of the
model in a more direct way. If the profiles require too much memory the scalability
may be insufficient as the number of concurrent clients increases in a system.
Another important aspect of the profile is how it affects the administration of the
system. It is desirable that the profiles do not introduce extra maintenance work. To
keep the clients as thin as possible the profiles should be stored on the server.

A study of today’s different predictive systems, see 3.2.1 Today’s Predictive
Systems, shows that a profile can contain the following types of data:

• Static data consisting of personal information.

• Dynamic data consisting of traces of the user’s behaviour.

• Session data consisting of information that is typical for the current usage.

Examples of static data in the targeted system could be a user’s roles and everyday
tasks. Such information can be used to select a set of workspaces that a user should
be able to access. Depending on what roles and privileges a user has in the system,
different workspaces are available.

An example of dynamic data could be a continuously updated history over which
workspaces and components a user has accessed. The dynamic data is the
information that the push decisions primarily are based on. It should be stored in a
data structure suited for the algorithm that makes the predictions.

Typical examples of session data are current bandwidth and preferred type of client
software. This kind of data can be used to adapt workspaces for the machine
running the client software. There could be several components, providing the same
functionality, but to be used with different platforms.

2 Problem Definition

11

2.2.2 Push Decisions
The distribution mechanism needs to make push decisions. These consist of two
parts. First of all it must decide whether to automatically push a set of components
or to wait for an explicit request. If the decision is to push, a prediction of what
components to transfer is also needed. Since PAX-E is divided into workspaces
consisting of components, the possible sets of components from which to choose
among are already defined.

An important issue is how many future selections of workspaces that are to be
predicted. There are two alternatives, either one restricts the prediction to one step
ahead due to uncertainty or one thrusts that a prediction is correct and uses this to
make another prediction of what is most probable to follow the earlier prediction.
The second approach can be extended to allow predictions to cover a whole chain
of future requests, but since it is impossible to always make correct predictions the
length of this chain is limited in practice.

There are different solutions to how the decision making is to be done. One solution
is to begin by predicting which workspace that seems to be best to push. This is
done by examining the dynamic data in the user’s profile. If a repetitive pattern
matches the current situation, that is it begins with accesses to the same workspaces
that the user now have made, the workspace that generally follows is chosen. After
this the prediction is weighted and if it is better than a certain threshold,
representing when push is to be used, it is realised. Another solution can be to use a
static push policy in which all suitable situations for using push are defined. If the
current situation belongs to this set a prediction is triggered and automatically
pushed.

Some preferred characteristics to have in mind while designing the algorithm are:

• Speed. The algorithm must be fast enough to select and transfer a
workspace before it is needed at the client. Time-consuming operations
will neutralise the purpose of using push.

• Prediction quality. The algorithm has to achieve a fairly high level of
accurate predictions. Otherwise it will fail to reduce the perceived waiting
times at the client and also cause a lot of unnecessary network traffic.

• Manageable data structures. The algorithm should not use too complex data
structures since the update operations need to be performed online.
Incremental updating makes the algorithm dynamic and also lessens the
server load during critical hours (i.e. in the morning and the afternoon
when everyone logs in and out at approximately the same time).

The desired characteristics conflict with each other, making it necessary to make
compromises. To summarise, the algorithm should be as effective as possible while
still being suitable for online usage.

2.2.2.1 Initial Push Configuration
When a user uses the system for the first time there is no knowledge of previous
behaviour to base predictions on. Before enough dynamic data is collected about a
user an initial push configuration is needed to avoid a lot of bad predictions. This
could be solved in different ways. Some of them are listed below.

2 Problem Definition

12

• Do not use push until enough knowledge has been collected about a user.

• A new profile is initialised with dynamic data typical for the roles the user
has. This requires explicit knowledge about which roles exist, what roles
the targeted user has and what kind of behaviour each role represents.

• The first user belonging to a group of users automatically defines the
typical behaviour for that group. In this solution the dynamic data collected
during a learning period is saved and used to initialise all new similar users.

Since the idea with a server based component system is to avoid as much individual
configuration as possible, the initial configuration of the component distribution
should be automatic. If there is no role or group based solution that works
automatically and gives good prediction directly from the start, it probably is best to
avoid pushing until enough knowledge has been acquired.

2.2.3 Caching
For push to work some caching policy on the client-side is needed. However the
usage of caches is also motivated by the possibility to gain performance by storing
frequently used components locally. To avoid unnecessary file transfers some kind
of extra communication between the server and the clients regarding locally stored
components is needed.

The cache is supposed to be combined with the pushing solution to get a total
solution that is as efficient as possible. A separate, standard caching solution will
probably not perform well with pushing if it is not adapted to this kind of usage.

The size of the cache is another important issue. How many workspaces need to be
locally stored at the same time to get enough performance? This depends heavily on
how well the push solution works. It is positive if the cache can be kept small
enough to be memory based since this permits faster access than in a disk based
solution. There are also some situations in which a disk is not accessible, as in the
case with normal Java applets.

Other forms of caching might be required to get scalability. There are several forms
of proxy caching and distributed client caches that might solve scaling issues. By
using such solutions the server can concentrate entirely on making predictions and
pushing while explicit requests are handled at other levels.

2.3 Requirements
The requirements for the distribution model are:

• It is to be designed to work in a server based component system.

• It is to be adapted for PAX-E usage, however it is very positive if it is easy
to generalise the solution and use it in other systems.

• It is not to increase the amount of administration work considerably.

• It should be easy to implement platform independently, permitting different
types of clients.

3 Theoretical Background

13

3 Theoretical Background
This chapter present the theoretical background needed to fully understand the
proposed distribution model. Distributed computing, user prediction, push
technology and caching are discussed. All of the referenced material in this chapter
is centred on similar usage of the technologies, making it suitable for further studies
if the reader wants to get a deeper understanding.

3.1 Distributed Computing
Fast growing computer networks, like Internet, have widened the market for
distributed systems. In [Coulouris et al. 1994] the following definition of a
distributed system is given:

“We define a distributed system as a collection of autonomous
computers linked by a network, with software designed to produce an
integrated computer facility.” [Coulouris et al. 1994 p. 1]

The following main characteristics for a distributed system are described in
[Coulouris et al. 1994]:

• Resource sharing. The resources shared by applications or users over the
network can be hardware or data. This is the most fundamental concept of
distributed systems.

• Openness. New units for sharing the resources can be added to the system
without disruption of the currently available services.

• Concurrency. A mechanism for the resources and applications to co-
ordinate and interact with each other.

• Scalability. There is no need for change in the system or application
software when the scale of the system increases. Data can be replicated and
the load can be shared among computers to increase scalability.

• Fault tolerance. To avoid failure in the system there are two approaches:
hardware redundancy and software recovery. Hardware redundancy means
that there is extra hardware that automatically replaces failed hardware. If
software recovery is used the system automatically reconfigures itself to be
able to continue if for example a connection breaks down.

• Transparency. Even though data may be processed at many computers at
different places, the user of a distributed system should meet one single
environment hiding the resources used to solve the task.

In Figure 3 an example of a distributed system is shown. Computers are connected
to a Local Area Network (LAN). Software supports the access to the resources,
fileservers etc., connected to the network.

3 Theoretical Background

14

Figure 3. Typical parts of a distributed system.

In some cases a distributed system is a must. An example of this is if a company
needs to access a customer database from all of the computers in a LAN. In other
applications, like word processing, distribution is not suitable at all. There are
several approaches toward distributed systems. Some of these are described in the
following sections.

3.1.1 The Traditional Client/Server Model
In [Coulouris et al. 1994] the traditional client/server model is described. This
model divides a distributed system into two parts. One part is the server that
provides services. Examples of such services are database connections and access to
hardware. The servers can be located at separate computers in the network and one
service can be running in co-ordinated processes on different servers. The other part
is the clients that use the services on the servers. Most of the business logic in these
client/server applications is located at the clients. The term fat clients denote this.

In [d-tec 1998] two major drawbacks with the traditional systems are mentioned.
The first is the fat clients, causing a lot of overhead during the deployment of a
system and when a new release is to be installed. They also make it hard to
configure large systems since some types of changes need to be done at each client
installation. The second problem is related to scalability. Traditional systems
perform well up to a certain number of clients. When this limit is reached it is very
hard and expensive to add capability for more clients.

Despite the negative sides of the standard way to build distributed systems it is still
very common. The reason for this is that it is relatively cheap and easy to create
such systems. Why add complexity and cost if the targeted use of a system does not
require many users and is not likely to grow into a larger product in the future?

3.1.2 3-tier Architecture
The 3-tier architecture differs from traditional 2-tier architecture by introducing a
new layer between the clients and the servers. The new layer in the 3-tier
architecture offers services to the clients and decreases the need of business logic in

3 Theoretical Background

15

the clients. Usage of thinner clients result in a performance gain because large
requests for data are traded against small requests for services.

The typical 3-tier system is divided into the three tiers as shown in Figure 4. The
client-tier presents the data to the user and makes necessary calls to the application-
server-tier, depending on the user interaction. All the business logic is placed in the
application-server-tier. The data-storage-tier is used to handle and encapsulate data
storage. By executing servers on multiple machines simultaneously and dividing the
requests among them, both performance and scalability are increased. Since clients
do not have direct access to databases in this architecture a much smaller number of
connection licenses are needed, saving a lot of money. Detailed information about
the 3-tier architecture can be found at [Kauffman 1997].

Figure 4. 3-tier system with two types of thin clients.

Moving the business logic from the clients to the server gives more advantages. The
most important of them are presented in [d-tec 1998]:

• The user interface and the application logic are separated.

• Redesign of server services will not affect the clients.

• The security of transactions is higher.

• The change management is easier.

Since more of the logic is placed on the server the user interface could be made
more independent of the server implementation. This increases the modularity of
the system. If the server components need to be redesigned this does not affect the
clients, since the service layer hides the server implementation. If high security is
needed in the system this is easier to obtain with the 3-tier architecture model than
with the traditional model because data can be processed at the service layer
between the server and the client. Authentication when accessing the data storage is
also easier to achieve because the only authentication necessary is the identification
of a few application servers. When new versions of the software are developed less
effort is needed to update the system. If the traditional client/server model with fat
clients is used, all the clients have to be updated with the new software, but with the
3-tier approach a module can be changed on the server as long as its client interface
remains the same.

3 Theoretical Background

16

Even though there are a vast number of advantages with a system implementing the
3-tier architecture using this solution needs careful consideration. It adds a lot of
complexity to the system making it hard to design and implement. This results in a
high initial cost. In other words, using a 3-tier architecture is a long-term solution
that is justified if the system is expected to live long and have a large number of
clients. Figure 5 illustrates a general rule of thumb used in development of
distributed systems.

Number of users,
complexity and lifetime

Cost to develop
and maintain

2-Tier

3-Tier

Source:
Gartner Group

Figure 5. Cost comparison between 2-tier and 3-tier architecture.

3.1.3 Server Based Components
One of the biggest trends in distributed computing today is to migrate to server
based component systems. These are centred on the usage of software components
and combine this approach with the concepts of 3-tier architectures.

Components are an indivisible collection of code that solve a specific problem.
They have a well-defined interface describing the provided functionality. It is most
common that a component consists of one or more classes, although it could also
contain functional procedures and global variables. There are a lot of opinions on
what is and what is not a component. Clemens Szyperski gives the following
definition:

“A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to
composition by third parties.” [Szyperski 1998 p. 34]

Server based component systems extend the 3-tier architecture in the following
way:

• They are totally component based and all components are stored in a
database on the server, usually called the repository.

• The system contains two types of components, heavy- and lightweight.

• All business logic is implemented as heavyweight components running on
one or more application servers (in the application-server-tier).

3 Theoretical Background

17

• Lightweight components present a graphical user interface at the client,
which can be used to access the corresponding business logic on the server.

• The software on the client only provides an infrastructure for lightweight
components.

• When a task is to be solved by a client the necessary lightweight
components are requested and downloaded from the repository on the
server. After this they are deployed and activated, permitting the user to
perform the task.

The discussed parts of a server based component system are shown in Figure 6.

Local Area Network

Internet

Application servers

Repository

Thin Clients

…

Data Storage

Figure 6. A typical server based component system.

In a server based component system the size of the clients is minimal and all
configuration and versioning can be managed from the server. This saves a lot of
administration costs. One also gets more efficient development since components
and designs can be shared and reused.

It is very likely that the market of third-party components will grow rapidly in the
near future, making it possible to buy and integrate high quality code with your own
business applications.

Since this model is relatively new, most organisations that start to use this have to
change their development strategy to fit the component thinking. Learning to create
and co-ordinate complex components takes a lot of effort. Another drawback with
server based components is that it can generate heavy network traffic.

There are a lot of information about server based component systems on the web, a
good place for deeper studies is [Sun 1999/4].

3 Theoretical Background

18

3.1.4 Different Technologies
The three main solutions available today for using and co-ordinating distributed
components are Remote Method Invocation (RMI), Common Object Request
Broker Architecture (CORBA) and Distributed Component Object Model (DCOM).
In this section follows a short presentation of each technique and a performance
comparison.

3.1.4.1 Remote Method Invocation
Sun’s Java supplies a hidden transport layer that handles data encoding,
transmission and call protocols. This is used by the built-in mechanism RMI for
calling methods in remote objects, located on other computers. For this to work a
client must be able to locate a remote object. A remote RMI registry on the server
provides this service.

When a client object wants to make use of a remote object’s method it calls a
regular method encapsulated in a surrogate object called stub. Stubs reside on the
client and, among other things, use the remote RMI registry to get references to
remote objects. When the stub has performed the lookup it packages all parameters
and uses the transport layer to send an invocation to the server. On the server a
corresponding object called a skeleton resides. This is the object that the stub finds
in the remote RMI registry, provided that the skeleton has registered itself before
the lookup takes place. The skeleton automatically receives requests and extracts
the information in them. After this it passes on the information to the actual object
providing that remote method. Finally it returns the result to the stub, which passes
on this information to the object that initiated the request. The returned result can be
a simple data structure or a complex object. The described course of events is
illustrated in Figure 7.

Server
Object

Method
invocation
on server

Stub
Object

Method
invocation
on client

Request

Return

Skeleton
Object

Server

Parameters

Return value

Client

Figure 7. The principal of a remote method invocation in Java.

To create the needed stub and skeleton the programmer creates a Java interface and
sends it through a Java tool that automatically creates the needed classes. Hence
there is not much effort needed from the programmer.

As can be seen RMI is an extension of Java and therefore only supports this
language. Although this is compensated for since Java is platform independent. The
advantage with RMI is that it is well-integrated and easy to use, almost nothing
needs to be done outside the Java environment. More information regarding RMI
can be found at [Sun 1999/1].

3 Theoretical Background

19

3.1.4.2 Common Object Request Broker Architecture
The Object Management Group (OMG), an independent consortium, provides
another solution to the need of co-ordinating distributed components. This solution
is called CORBA. It is a specification and not an implemented product. There are
many implementations to choose from.

The programming model in CORBA is similar to the one found in RMI. Since
CORBA is language independent it is more complex. In Figure 8 the most
important parts of CORBA are illustrated.

Client Object Implementation

ORB

Dynamic
Invocation

IDL
Stubs

ORB
Interface

Static IDL
Skeleton

Dynamic
Skeleton

Object
Adapter

There may be multiple object adapters.

Interface identical for all ORB implementations.

There are stubs and skeletons for each object type.

ORB-dependent interface.

Figure 8. The fundamental architecture of CORBA.

To begin with there are two ways for a client to invoke a remote object’s method,
either by using a stub or by using a dynamic invocation interface. The stubs are
specified in an independent language called OMG Interface Definition Language
(IDL). These files are then passed through language specific IDL compilers that
create the corresponding classes in the target language. Stubs are static, if one wants
to make invocations “on-the-fly” the standard dynamic invocation interface can be
used instead. With this interface a client object can learn about the server object’s
services and create an appropriate call. Thus this interface is independent of the
actual target object’s interface. No matter which way of invocation is used the
request will be sent via the Object Request Broker (ORB). The ORB provides the
needed infrastructure and some common services. When a request reaches the ORB
it uses its naming service to find the remote object implementing the requested
method. After this it uses either an IDL skeleton or a dynamic skeleton, depending
on the type of request, to forward the invocation. The result is sent back in the same
manner. Objects on the client and the server can use an ORB interface to
communicate directly with the ORB. This interface gives access to a few special
services. Finally there is an object adapter between the ORB and the server objects.
Examples on services provided by object adapters are generation and interpretation
of object references, mapping and registration, object activation and deactivation,
method invocation and security interaction.

If the communicating objects reside on different ORBs the Internet Inter-Orb
Protocol (IIOP) can be used to connect them. This introduces another layer in the
CORBA model that connects different ORBs over Internet.

3 Theoretical Background

20

The advantage of CORBA is that it is entirely language and platform independent.
The disadvantage is that it is very complex and takes time to understand and use. It
also requires additional programming knowledge since IDL is used to create the
necessary stubs and skeletons. This summary of CORBA is relatively brief, for
more information and specifications see [OMG 1999].

3.1.4.3 Distributed Component Object Model
The third technique is Microsoft’s DCOM, described at [Microsoft 1997]. It is an
extension of the Component Object Model (COM) where a network protocol
replaces local interprocess communication. DCOM is language independent but
platform and operating system dependent. The services provided are almost the
same as in CORBA. A confusing difference is that stubs are called proxies and
skeletons are called stubs.

If a client wants to call a remote method it makes a request to DCOM. This will
cause DCOM to load the correct proxy into the client’s address space. DCOM will
also load a corresponding stub in the server’s address space and make a reference to
it in the proxy. The proxy and the stub handle the communication automatically
using DCOM, in much the same way as in the case with stubs and skeletons in RMI
and CORBA. To be able to know when a DCOM generated object is not used
anymore DCOM uses reference counters, when such a counter reaches zero the
corresponding object is unloaded.

In DCOM there is also a mechanism for making dynamic invocations. It is called
automation. With an automation object at the server, a client can learn about its
services during execution and build an appropriate call without using static
information.

One extra feature that DCOM has compared to the other two techniques is that it
supports inter-process communication on the same machine with a lightweight
mechanism called Local Procedure Call (LPC). Otherwise the more complex
Remote Procedure Call (RPC) is used.

DCOM’s advantages are its language independence and the LPC mechanism, but
the platform and operating system dependence is a major drawback. And though it
supports Java it requires the Java Virtual Machine to execute on one of the
supported platforms.

3.1.4.4 Performance Comparison
In this section two independent performance tests of the different techniques are
presented. This will give a feeling of how fast they are and how much effort that is
required from the programmer when they are to be used with Java. In both of the
tests the CORBA implementation used is VisiBroker from Visigenic.

In [Edlund 1998] a comparison of all of the above techniques is made regarding the
speed of server calls and data transfer from the server to the client. In this
comparison both the client and the server is implemented in Java and the data sent
are arrays of objects. Two test configurations have been used; one with the server
and the client located at the same computer and another with them located at
different computers. The main results in the performance tests are listed below.

3 Theoretical Background

21

• RMI has by far the longest waiting times for sending the data used in this
test. It does not matter whether the client and the server run on different
computers or not.

• DCOM is the fastest technique if the client and the server are located at the
same computer. The reason for this is the LPC feature.

• CORBA is slightly faster than DCOM if the client and the server are
located at different computers.

In [Edlund 1998] further results show that RMI got a big advantage over the other
techniques when the programming effort is measured. The reason for this is the
tight integration with the Java environment. CORBA is not as easy to use as RMI
since the programmer need to use the external OMG IDL among other things, but it
works well with Java. It also tends to increase the complexity of the application.
DCOM and Java are not a good combination. The integration is bad, causing
serious limitations and problems.

In [Juric et al. 1998] RMI’s and CORBA’s invocation times are compared with
each other. The performance test was extensive using multiple testing patterns and
different data types of parameters and return values. The program used in the tests
was an automatic teller machine application implemented in Java and there was
different tests ranging from one up to eight clients. For a more detailed description
of the test see [Juric et al. 1998]. The main results are:

• On fast computers the RMI performance is acceptable, sometimes even
comparable to CORBA, provided that the data amounts sent between the
objects are small.

• Under heavy client load CORBA outperforms RMI. With eight clients
CORBA was more than twice as fast as RMI.

The conclusion from these tests is that if Java is to be used the choice stands
between RMI and CORBA. If the system is big and fairly complex, as in the case
with a commercial system using component distribution, CORBA is preferable. In
smaller systems RMI might be a worthy contender. The biggest reason for this is
that it is so much easier to use RMI and that the introduced complexity with
CORBA and its many layers can cause a performance degrade in small systems.

It should be noted that as this thesis is written Sun and IBM have released RMI over
IIOP. This introduces fully CORBA compliant capabilities in Java. This solution
gives the programmer the ability to use both RMI’s simplicity and CORBA’s
complexity. More information about this can be found on [Sun 1999/2].

3.2 User Prediction
Users act in different ways and their actions are not always easy to predict.
However by focusing on a single user or a group of similar users, patterns are often
likely to occur either with or without consciousness, see [Davison & Hirsh 1998].

It seems like repetitive behaviour is part of human’s nature. An example of this can
be a person’s morning routine. It is not entirely uncommon that it goes something
like this: she wakes up and takes a shower, clothes, makes breakfast, eats, brushes
her teeth and goes to work. Of course this order is broken every once in a while, but
most of the mornings it is the correct procedure. Based on the fact that it is morning

3 Theoretical Background

22

and this person has taken a shower and clothed, the average prediction that she will
enter the kitchen next is very likely to be fulfilled. This knowledge could be used to
create automated electrical home appliances products that for example have a glass
of fresh orange juice ready when the person is finished showering, provided that she
has followed the procedure so far.

Exactly the same kind of repetitive patterns tend to appear when a person uses a
business application at work, i.e. after saving a new contact in the customer
database the user usually opens a workspace for entering personal notes about this
customer’s preferences.

Correctly used user prediction can make our lives easier in many ways. This chapter
presents computer systems utilising prediction, important design issues in such
systems and common approaches (including data structures and algorithms).

3.2.1 Today’s Predictive Systems
Models for predicting user actions are used in several areas today. Most of the
systems are made for research purposes. Some of these areas are presented in the
following subsections.

3.2.1.1 Command Prediction
The purpose with command prediction is to make command shells that try to predict
what command the user will input next. It has been shows from studies of command
histories that a user’s sequence of commands contains a lot of patterns. With a
history of the current session and knowledge of commonly repeated interaction
sequences it is possible to predict the next input. The knowledge can be acquired by
studying data collected from the user’s previous sessions. The usage of patterns can
be used together with presence frequencies of the different commands.

The user modelling in command prediction systems are usually extensions of
traditional machine learning algorithms. Most of these build some kind of
probabilistic graph, which is used to predict the current user’s next input based on
the history.

There is a lot of research in command prediction and numerous reports present
algorithms and different kinds of implementations. In [Davison & Hirsh 1997] and
[Davison & Hirsh 1998] extensive analysis of this field can be found.

3.2.1.2 Intelligent User Interfaces
According to [Lau 1999] the increasing use of complex computer systems opens up
the market for applications supporting the user. Non-expert users may need to be
guided through the system whereas expert users may need support to speed up their
tasks. By predicting future user actions, user interfaces can be made adaptive to the
user’s needs and make her work easier. These interfaces are called Intelligent User
Interfaces (IUI). They are used to increase a system’s usability.

Examples on different uses of IUI are intelligent tutoring systems, natural language
systems and systems with adaptive graphical user interfaces. One of the most
interesting possibilities with IUI is to create adaptive help systems where answers
are based on the current user’s knowledge and experience. Information about such a
system can be found in [Bladh 1995]. As in the case with command prediction,
systems with IUI usually rely on machine learning algorithms.

3 Theoretical Background

23

3.2.1.3 Information Filtering
The usage of information filtering based on user models is getting rather common.
The essence of information filtering is to find and present a set of relevant
information out of the superset of available information.

There are different areas of application of information filtering such as: to help
users search web pages, push relevant web pages via web channels, help users find
relevant information in a database system and to support users in document
handling systems.

A common solution in information filtering systems is autonomous software agents.
The user models used by these agents are usually based on a collection of
keywords, weighted by a factor of relevance [Çentimentel et al. 1999]. The agents
use these weights together with the frequency of appearance of the keywords to
decide if a document is relevant. To learn which documents that the user found
interesting explicit feedback often is needed.

3.2.1.4 Similarities Between the Areas
As can be seen above the different areas where user prediction is utilised share
similarities in their approaches. The reasons for this are that all need to use some
kind of user models and that there exists a common goal to create an individualised
system helping the user become more efficient. The result of the similarities is that
the algorithms used for user modelling and prediction can be used in many different
kinds of applications. This is of course not entirely true in practice since many of
the algorithms are optimised for usage in a certain area.

In the field of command prediction and IUI it is very common to make user
predictions by using discrete sequence prediction. Philip Lard and Ronald Saul
define discrete sequence prediction in the following way:

“In discrete sequence prediction, the input is an infinite stream of atomic
symbols. The task is to find statistical regularities in the input so that the ability
to predict the next symbol progresses beyond random guessing.”
[Laird & Saul 1994 p. 43]

There are three requirements that a system must fulfil in order to be suitable for
usage with discrete sequence prediction algorithms:

1) The history of a user’s behaviour must be divisible into atomic actions.

2) The history of a user’s behaviour must contain repetitive patterns of such
atomic actions.

3) There must not be a large quantity of different atomic actions, if there are
more than a hundred different atomic actions most algorithms fail.

Provided that a system can be created so that these requirements are fulfilled, it is
very likely that discrete sequence prediction can be used to model its users.

3.2.2 Design Issues
The first thing one must consider before developing a system using user prediction
is the question: is there a need for user models in this system? The approach with
user models and prediction mechanisms is not always suitable. Even if the target
system fulfils the requirements mentioned in 3.2.1.4 Similarities Between the Areas
it may not be a good idea to use user prediction. The reason for this is the

3 Theoretical Background

24

complexity that this feature tends to add to a system. Making user prediction work
is difficult and requires considerable efforts.

In [Bladh 1995] user modelling in a help system is analysed. [Bladh 1995] mentions
a few general issues one must consider when developing an adaptive system, these
are:

• Should the user model be generic or individual? If the users can be divided
into groups with similar needs it could be easier to design generic user
models based on these groups.

• Should the user model be static or dynamic? It is much easier to create a
system whose user models are static. However static modelling causes
serious limitation due to the fact that people tends to change their
behaviour with time as they get new working tasks.

• Should the user model be long- or short-term? Long-term user models
make use of knowledge that is not only useful in the current interaction.
Short-term user models specialise on a small part of the usage of the
system. The choice between these entirely depends on the area of
application.

• Should the user model collect knowledge implicitly or explicitly? In some
systems it is important to get explicit information from the user to be able
to make an accurate user model. Of course one can combine the usage of
explicit knowledge with implicit knowledge acquisition.

• Should the user model be visible or hidden? In a visible user model the user
can inspect the contents of the corresponding model. This can build a good
relationship between the user and the prediction system. If a system with
visible user models is extended with functionality permitting the users to
control and fine-tune the models it could get more effective.

3.2.3 Common Approaches
There are many different approaches to how the problem with user prediction
should be solved. In this section some common data structures and algorithms that
seem to be applicable in the area of component distribution are presented. These
have been selected from the field of machine learning with discrete sequence
prediction in mind, see 3.2.1.4 Similarities Between the Areas.

3.2.3.1 Fundamental Data Structures
In user prediction some kind of storage is needed to keep the data that represents
knowledge about the user’s behaviour. The main purpose of such structures is to be
a basis for the predictions.

In discrete sequence prediction most algorithms rely on extensions of Directed
Acyclic Graphs (DAG), denoted probabilistic graphs. In these graphs there are
nodes representing different states of the system and directed connections between
them symbolising possible transitions. Each transition has attributes that represent
the probability of its occurrence.

3 Theoretical Background

25

With probabilistic graphs it is only possible to take the current state of the system
into consideration when making a prediction. In many cases it is desirable to not
only use the current state but also information about the path to it. This can be done
with N-dimensional arrays. In such data structures the N-1 transitions before the
current state are also used to predict the next state.

3.2.3.2 The Markov Model
The Markov model is described in [Russell & Norvig 1995]. This model is widely
used in many different fields of artificial intelligence, for example speech
recognition and decision making. Several algorithms for command prediction are
based on the Markov model. The model describes a process and it is based on a
number of states with transitions between them, see Figure 9. A probability value is
assigned to each of the transitions. In this model the next state is only depending on
the current state. There are no dependencies of previous states. It is easy to
implement the Markov model using a probabilistic graph. In most cases this results
in a Markov tree.

A

B

C

0.75

0.85

1.00 0.15

0.25

Figure 9. Example of a Markov model with three states.

The Markov algorithm can be extended to use a finite number of elements in the
history. The depth of the history varies with different applications [Lau 1999]. This
is called the Markov model of Nth order if the predictions are based on the most
recent N steps of the history.

The following example from [Curewitz et al. 1993] explains a second order Markov
prediction. Let the input sequence be ABAABAABBAAB. Since the prediction is of
second order it is based on the last two items in the sequence AB. In the input
sequence the block AB is two times followed by A and one time followed by B.
Therefore the probability of A as the next item in the sequence is 2/3 ≈ 66% and the
probability of B is 1/3 ≈ 33%.

A drawback with the traditional Markov model is that its precision is limited.
However there exist numerous extensions of this model where the precision has
been improved, examples of such follow below.

3.2.3.3 Temporal Directed Acyclic Graph
Temporal Directed Acyclic Graph (TDAG) is an extension of Markov trees
[Laird & Saul 1994]. This algorithm is constructed with important parameters, like
time and space required for generating a prediction, in mind. The basic principle of
TDAG is to construct a tree, where each node corresponds to one discrete symbol in
a sequence of input.

3 Theoretical Background

26

Every node has two counters: in-count, which tracks the number of times the
node has been recognised in the input sequence, and out-count, which stores the
total number of times the node has been succeeded of one of its children nodes. A
queue of nodes, state, is needed to store the nodes from which to continue with
the updating of the tree. The state variable is initialised with a root node. If a
node exists in the current state the probability of one of its children being visited
next is calculated as the in-count of the child divided by the out-count of the
parent. The modules of a simplified TDAG are presented in Figure 10.

 input(x) /* x = the next input symbol */
• Initialise new-state := {Λ}
• For each node v in state,

− Let µ := make-child(v,x).
− Enquque µ onto new-state.

• state := new-state.

 make-child(v, x) /* Create or update the child of v labelled x */
• Find or create the node µ with a symbol of x in the list of children(v). If

creating it initialise both its count fields to zero.
• Increment in-count(µ) and out-count(v) each by one.

 project-from(v) /* Return a probability distribution */
• Initialise projection:={}.
• For each child µ in children(v), add the pair[symbol(µ), in-

count(µ)/out-count(v)] to the projection.
• Return projection.

Figure 10. Basic TDAG algorithm in meta-code. The input module is invoked every
time a new symbol is input. The project-from module returns a probability
distribution, which can be used to make predictions.

Using the algorithm to build the TDAG tree for the simple input sequence A
followed by B gives the following example:

1) When the first input (A) arrives, a corresponding child node of the root
node is created. The in-count of node A is set to one. The out-count
of the root node is increased by one. The new state consists of the root
node and the A-node.

2) When the second input (B) arrives, corresponding child nodes are created
to the nodes in the state. The in-count of both B-nodes is set to one.
The out-count for both the root node and the A-node is increased by
one. The new state consists of the root node and the B-nodes.

The example results in the tree in Figure 11.

3 Theoretical Background

27

In: 0
Out: 2

A
In: 1

Out: 1 B
In: 1

Out: 0

B
In: 1

Out: 0

Figure 11. The tree that TDAG constructs to represent the sequence AB.

To predict the next input by using the sequence seen so far, the function
project-from in FIGUR is used. This gives a distribution with the probability
for each of the possible symbols. The input with the highest probability is chosen as
the prediction.

The TDAG presented above was simplified. To use this algorithm in practice, some
restrictions are necessary to limit the computations. The following limitations are
bounded to reach this:

• The node probability. A node that represents a symbol that does not occur
frequently is removed from the tree. A threshold value for the probabilities
is introduced to select what nodes to remove.

• What node to trust. A node with a very low out-count should not be
trusted when making predictions since the probabilities are very uncertain.
A threshold value is introduced, defining the required out-count for a
node in the state to be used when making predictions.

• The height of the tree. The height of the tree must be bounded in some way
otherwise the tree will grow unlimited. A threshold value is introduced for
the maximal height of the tree and nodes are not added if the threshold is
exceeded.

• The size of the prediction. The number of distinct symbols is unknown and
can be very large. Therefore some restrictions are wanted when using
TDAG in real-time applications. This is solved by limiting the number of
answers in the projection to the ones with the highest probabilities.

Which of these limitations to use and how to use them must be decided from case to
case. Generally an out-count threshold and a height limit are required. The other
limitations are mainly needed in situations where there are a large number of
different symbols.

Some examples of applications where the TDAG algorithm has been successfully
used are text compression, dynamic optimisation and predictive caching. To get the
most out of this algorithm in a multi-user system a TDAG should be made for each
of the users or for each group of users. This is due to the differences in behaviour
and tasks of users.

3 Theoretical Background

28

3.2.3.4 Incremental Probabilistic Action Modelling
In [Davison & Hirsh 1998] the Markov model is extended to form an algorithm
called Incremental Probabilistic Action Modelling (IPAM). This algorithm was
invented for command prediction. IPAM is started with an empty table for storing
data. Each new command given by the user causes the addition of a new row to the
table. One essential parameter for this algorithm is α, which determines how much
the prediction should depend on the history. With an α-value of 0 the history is
disabled and the most recently used command is predicted. If α equals to 1 the
probabilities are never updated.

The algorithm was evaluated in [Davison & Hirsh 1998]. The evaluation was made
in a command prediction for UNIX. Data was collected from 77 users during a
period of two to six months. Empirical tests gave the optimal value .80 of α in this
environment.

The algorithm consists of the following steps for updating the probabilities in the
table:

1) The user enters command c1.

2) A new row for c1 with a uniform statistical distribution is added to the
table.

3) The user enters command c2.

4) A new row for c2 with a uniform statistical distribution is added to the
table. The row for the previous command, c1, is updated. This is done by
multiplying each probability in the c1-row by α and then increasing the
probability of c2 in the c1-row by 1-α.

For each newly entered command step four is repeated and if the entered command
already exists in the table the row of the previous command is updated. Checking
the row of the current command and picking the one with the highest probability
makes the prediction in the IPAM algorithm. IPAM can easily be adapted for usage
in a server based component system by predicting workspaces instead of
commands.

As shown above, the algorithm only makes use of the two most recently entered
commands when updating the table. This is a drawback since the algorithm will not
recognise long-term patterns in the command sequences.

3.2.3.5 Lempel-Ziv
The Lempel-Ziv Algorithm (LZ) is an algorithm designed for data compression. In
[Curewitz et al. 1993] a character based LZ is extended to be used in the area of
prefetching instead.

The basic principle of the LZ algorithm is to divide the input into pattern based
blocks. The whole input sequence of items is divided into shorter sequences of
length n. Each of these sequences is divided into blocks x0=λ, x1, x2, …, xc in such
way that for all j ≥ 1 every block xj without the last item is equal to some block xi

for 0 ≤ i < j . The block λ represents the empty block. A probabilistic model can be
built from the occurrence of patterns in these blocks. This model can be represented
as a tree with weights on the branches. A weight can be implemented as an integer
count of the number of visits to the node.

3 Theoretical Background

29

The following example explains the algorithm. With the premise that the input
sequence consists of objects from the domain {A, B, C}, the input sequence is given
as AAAABACABCBAC. The Lempel-Ziv decoder parses this as the blocks A, AA,
AB, AC, ABC, B and AC. When these blocks are found, a probability tree can be
built by considering the occurrence of these blocks. There are six blocks starting
with item A and one starting with item B. Therefore the probability of branch A is
6/7 ≈ 86 % which implies the probability of 1/7 ≈ 14 % of branch B. If the first item
is A the probability of the branches from this node will be 1/6 ≈ 17 % for A,
2/6 ≈ 33 % for B, and so on. When a pattern ends at node that is not a leaf a
end-of-pattern leaf must be inserted to represent the probability of this. The
complete probability tree is shown in Figure 12.

A B C

A 0.86 B 0.14

C

0.17 0.33 0.33 0.17

1.00

Node

Leaf

End-of-Pattern
Leaf

Figure 12. The tree LZ constructs to represent the sequence AAAABACABCBAC.

The resulting tree is used to make the predictions. By starting in the root node and
choosing the item with the highest probability a prediction of the next item can be
made. If the prediction is wrong when the actual request arrives the tree is updated
to better reflect reality. If a leaf is reached the current pattern has ended and the
traversal restarts from the root node. After n input items the algorithm will discard
the tree and start building a new one. This must be done since the algorithm does
not add new nodes to the tree otherwise, causing it to miss previously unidentified
patterns in the input.

Even though the LZ algorithm is invented for data compression it seems to work
rather well for prediction. Updating of the tree is simple and can be done during the
traversal of the tree, since the weights are implemented as integer counters on each
branch in the tree. One drawback with LZ is that the tree occasionally needs to be
rebuilt. This generates a lot of unwanted calculation load on the server. Due to the
dividing into blocks the LZ algorithm will not recognise all of the patterns in the
input sequence.

3 Theoretical Background

30

3.2.3.6 Prediction by Partial Match
Another algorithm used for compression of data is the Prediction by Partial Match
(PPM) algorithm [Curewitz et al. 1993]. This algorithm is rather simple and it is
based on the Nth order Markov model, see section 3.2.3.2 The Markov Model.

An Mth order PPM algorithm uses several Markov models of order N, where
0 ≤ N ≤ M. These models can be combined in two different ways when making
predictions:

1) Each individual model makes predictions. The different probabilities are
multiplied by weights, giving preference to predictions of higher order
since these are generally more reliable. Finally the prediction with the
highest combined value is chosen. This results in that the faster models of
lower order are used when the other models can not find a long pattern
matching the current situation or has not been fed with enough data yet.

2) The currently chosen model only makes predictions. The order of the
model to use when making a prediction is based on how well the algorithm
has performed earlier. When a prediction is correct the currently preferred
order is increased, permitting the algorithm to use longer patterns when
making predictions. When a prediction is wrong the algorithm punishes
itself by lowering the preferred order, thus limiting itself to use shorter
patterns when making predictions.

Which way the PPM should be configured depends on the field of application. If it
is known that shorter patterns are more common than longer patterns the second
approach might be more suitable with a low value of M. Otherwise the first
approach probably works better together with a high value of M.

The conclusions about using compression algorithms for prediction presented in
[Curewitz et al. 1993] are that an algorithm’s prediction effectiveness is directly
depending on its ability to compress data effectively. The PPM algorithm is found
to be a bit more effective than LZ for both compression and prediction.

3.3 Push Technology
The term push technology was one of the biggest buzzwords in 1996. Since the
push-revolution on the Internet failed, because of unfulfilled promises, most
software companies have tried to avoid it in their marketing. This has resulted in a
bad reputation and the widely used term “shove technology”. In this section the
general ideas behind automatic delivery of data are presented among some different
fields where it has been used with varying success.

3.3.1 Introduction to Push
The main idea of push technology is to automatically deliver data from a server to a
client. Provided that the selected data is relevant and will be used in a near future,
an explicit request has been avoided combined with the sensation that the download
seems to be instantaneous at the client-side.

Important aspects that one need to consider before including support for push in a
system are the high demands that it makes on computing resources and network
bandwidth. The server not only needs to take care of the requests but also needs to

3 Theoretical Background

31

make predictions and initiate transfers of the chosen data. Nevertheless hardware
gets faster every day and it is also relatively cheap compared to software licenses.
The most obvious drawback is the potential to waste bandwidth. If the predictions
are faulty, unnecessary and useless traffic has been caused. Thus the quality of the
predictions need to be fairly high. Another bandwidth related issue is that during
peaks of high network utilisation the performance will degrade because of added
background load. This may get so bad that, if the periods last long enough, the
degradation will be noticed by the users. Also if there are time-critical sessions
between certain hours the usage of pushing may have to be limited.

In [Crovella & Barford 1997] the network effects of prefetching are discussed in
depth. Prefetching is based on the same idea as pushing but in this case the
mechanism for automatic transfers lies on the client-side instead. Since the two
techniques are so close, most conclusions apply to pushing as well. Results in
[Crovella & Barford 1997] show that the automatic delivery of data changes the
average traffic pattern on the network. This is rather obvious, prefetching and
pushing will cause more traffic variability (sometimes called burstiness) since there
will be periods of automatic transfers alternated with explicit requests due to faulty
prediction. Between these periods there will be total passiveness when the user
works with the data and the push mechanism has emasculated its predictions. The
variability directly affects the average queuing sizes at the network switches,
causing an increased packet delay. However [Crovella & Barford 1997] states that
this negative side of prefetching can not only be avoided, it can be used to increase
overall network performance compared with a situation where none such techniques
are present. The way to do this is to use a transport rate limiting mechanism to
control when to deliver the predicted data. If all prefetching and pushing takes place
during the idle times between a finished transfer and a user request for more data
the network traffic flow will be smoother and more evenly distributed over time.
The result will be a network where the variability is kept low and the resources are
better used.

3.3.2 Areas of Application
The usage of push technology today is primarily concentrated on web channels and
automatic program distribution. The technology has been used in these areas with
varying success. Below follows a discussion of the areas and how push has been
used. There is also a short presentation of the usage of push in component
distribution systems.

3.3.2.1 Pushing Web Pages
Automatic delivery of web pages was the original target of the push technology. At
first it was used for web crawling and sending information via web channels. Later
it also was incorporated in web marketing. More information regarding push
technology on the web can be found in [Cerami 1998].

Web crawling essentially means that the user schedules automatic download of
interesting web pages. The downloaded pages are stored locally and the user can
browse them offline. In many cases the service includes support for differential
updating of the locally stored information.

Web channels are a way to organise information on the web and automatically
deliver it to subscribed users. First the channels were used solely for standard web
pages but in time support for applets and applications where included in some

3 Theoretical Background

32

solutions, this is discussed later in 3.3.2.2 Program Distribution. The web channels
are deceptive since they do not use true push, instead the client automatically asks
the server if there is new information to download.

In web marketing push technology is used to send user and situation adapted
advertising banners. This has been truly successful and is an excellent way to use
push. The banner to send is chosen from simple models that usually are based on
user information input by the user, what pages a user has visited and what services
she has requested. After this the chosen banner is simply pushed to the client via the
HyperText Transfer Protocol (HTTP).

The basic problem with the usage of push technology on the web is that it mostly
consists of camouflaged pull sessions. That is, in most implementations there is no
server automatically delivering data to the clients instead there is a list of scheduled
pulls at the client-side. However in the identified area of web marketing true push is
used in a powerful way. Another issue is the fact that the web represents a too big
domain of information, making it difficult to predict what information the user
wants to download. Though this is not entirely true due to people’s preference to
repetitive behaviour it still often causes a waste of bandwidth and presents
unwanted information to the user.

What one can learn from the above is that a bad implementation of push combined
with an unsuitable domain results in more harm than good. The bad reputation that
push has is to some extent undeserved since the most well known implementations,
i.e. web crawling and web channels, do not rely on true push.

3.3.2.2 Program Distribution
Automatic program distribution and updating probably is the most successful
application of push technology. With such systems the administrator of a big
organisation or company is permitted to avoid making individual installations,
instead all of this can be handled automatically. This not only saves a lot of man-
hours and money but also makes it possible to control what versions of the software
the clients use.

One of the most famous solutions is Castanet from Marimba. It took push to a new
level when it was released because it made it possible to deliver both software
applications and information. Its main components are the Castanet Tuner and the
Castanet Transmitter. The Castanet Tuner is the client software, it is free and
included in Netscape’s Netcaster. The Castanet Transmitter is a special server for
broadcasting information to the tuners. To cut down the network traffic the system
uses differential updates. Depending on how Castanet is configured the delivery is
true server-initiated push or scheduled pull from the client-side. One way of looking
at Castanet is seeing it as a fully automated Intranet. The necessary information can
automatically be distributed to the employees together with updates of software
applications. More information about Castanet can be found in [Cerami 1998] and
on Marimba’s homepage [Marimba 1999].

What one can learn from the area of program distribution is that a good
implementation of push technology can be truly successful. The idea of using
differential updating to compensate for the extra network traffic caused by
erroneous pushing is appealing. Finally it is clear that there exists a market for
systems with automatic versioning.

3 Theoretical Background

33

3.3.2.3 Component Distribution
The migration to server based component systems has opened a new market for
push technology. In these systems the components must be distributed from the
server to the clients. Preferably this would be done automatically, before the user’s
actions has led to an explicit request, otherwise waiting times will arise and the
system will be perceived as slow and inefficient. Luckily the domain from where to
choose components is limited. This indicates that push technology should be a good
solution to integrate in such a system, provided that there is some way to make a
good model of the users and that there exist some kind of order between accessed
sets of components.

3.4 Caching
A common way to increase the efficiency of distributed systems is to use caches at
different levels. In most systems there are two levels at which it is possible to use
caching solutions, between the server and the clients and on the clients’ local disks.
The goal with a cache is to increase the local hit rate and decrease the network
traffic. In this section some standard approaches to caching are presented, followed
by more specialised solutions.

3.4.1 Standard Approaches to Caching
The success of a caching strategy depends mostly on how it replaces data when the
cache is full and how fast its decision making is. Usually the replacement decisions
are solely based on the current state of the cache. This is called using just-in-time
information. Below follows a listing of some commonly used algorithms, see
[Shaheen 1999] for more information.

• In the Least Recently Used (LRU) strategy the most recently used data is
protected and objects that have not been used for the longest period of time
are replaced.

• In the Least Frequently Used (LFU) strategy the least frequently used data
is replaced first.

• In the First In First Out (FIFO) strategy a queue is used, resulting in that
the data which arrived first also is replaced first.

• In the Last In First Out (LIFO) strategy the oldest data is protected and the
newest is replaced first.

Today a lot of efforts are made to make caching algorithms that not only use just-in-
time information but also utilise profile information. An example of such an
algorithm is Least Relative Value (LRV). This is an extension of LRU, where every
object is assigned a relative value. When the cache is full the data with the lowest
value is replaced, thus it dynamically tries to evict what data to keep. When
assigning values to objects in the cache, the algorithm weighs in many different
factors. First the probability that the object will be requested again is estimated.
Also the cost of bringing the object into the cache, based on size and time of
transfer, and the cost of keeping the object in the cache, based on its size, are used.
According to [Wong 1998] this algorithm has a good performance and easily beats
LRU. The drawback with LRV is that it can be hard to implement.

3 Theoretical Background

34

3.4.2 Caching in a Distributed System
In a distributed system it is especially important to use caches. This could give
considerably decreases in the perceived latency times.

There are some special issues that need to be considered when implementing caches
in this type of environment. First of all it is important to identify at which levels to
put caches. It is also important to evaluate the replacement strategy thoroughly
since bad replacements will cause unnecessary network traffic and long waiting
times. Another issue is consistency. If there are local copies of an object and an
update occurs this could lead to inconsistencies.

In the following sections some different levels and types of caching are presented.
These are all techniques that seem to be suitable to use in a system with component
distribution.

3.4.2.1 Client-Side Cache
Caching at the clients is preferred since it gives good performance without adding
to much complexity. The client-side cache should be placed in the local memory of
the client if it is small enough. Otherwise the cache must be disk based. This results
in slower cache access and requires the client software to have access to the local
disk, which is not always true.

The usage of client-side caches is somewhat direct since all of the strategies in
3.4.1 Standard Approaches to Caching can be used. In a component distribution
system there are some specific aspects regarding client-side caching that must be
considered:

• The cache needs to be integrated with the push operations. This includes
avoiding unnecessary component transfers. Predicted components also
need to be handled in a suitable way compared to requested and already
used components.

• The size of the cache. If the cache is too small it will be ineffective. If the
cache is too big it will require a lot of memory and thereby needs to be disk
based. If the local disk is accessible, a big cache allowing the client to store
all lightweight components will be very fast (once the cache is full). The
cost of this is a high risk of network congestion when a lot of users log in at
approximately the same time. The goal is to make the cache as small as
possible while still getting the required performance.

• Should the cache be flushed when a user logs out? Local storage between
the sessions could result in a performance gain in the beginning of each
session. But it requires the cache to check its contents against the server to
avoid using old, replaced versions of a component. Persistent caching
easily introduces serious security flaws in a system and therefore generally
is avoided.

3.4.2.2 Caching with Proxies
Today it is common to use proxies between the clients and an Internet connection,
see [Luotonen & Altis 1994]. This saves bandwidth and cuts down the average
transfer times.

3 Theoretical Background

35

A proxy essentially is a big cache that resides between the clients and the server.
All requests from the clients are directed to the proxy, who if it does not have the
wanted data downloads it from the server and before forwarding it to the client also
saves it for future use. For this to work efficiently the proxy need to be able to serve
as many requests as possible without having to use the server. The implications of
this are that it must have a large cache and as many clients connected to it as
possible.

If this idea were to be used in a server based component system it would probably
not make any big difference in the perceived latency times at the clients. Though it
would make the system more scalable since it lessens the burden of the server. In
the best case scenario the proxy can store all components and handle all requests
while the server takes care of prediction and pushing. The only time the proxy and
the server need to communicate with each other is when a component is updated.

It should not be too difficult to implement a good proxy since this area is well
known and commonly used in networks today.

3.4.2.3 Distributed Cache
An extension of traditional client-side caching would be to bind all local caches
together into one big distributed cache. This needs some kind of message protocol
handling the inter-communication. Also communication patterns need to be defined
because it is not effective if all caches communicate with all others, causing a lot of
extra load on the network. Probably these patterns will form some kind of hierarchy
where caches at the higher levels keep tables over which objects are stored at the
lower levels.

A big question is whether distributed caches should be limited to the client-side? It
would probably be more efficient if several co-operating proxies where used. This
makes it easier to find general communication patterns and limits the needed
intelligence in the clients.

In [Engberg 1998] several distributed HTTP caches were evaluated. There were
principally two solutions that performed well in the tests:

• Hierarchical cache. In this case there are a hierarchy of proxies and the
clients send their requests to the nearest one. If the object does not reside at
this location this proxy asks a proxy closer to the server if it has the wanted
data. The request chain will eventually reach the server if the object is not
found, which returns the data. On its way back to the originating source of
the request the object is cached at the intermediate levels. Before a proxy
returns an object to a client it checks with the server if the locally stored
data matches its version, this ensures that the delivered data always is up to
date.

• Summary cache. In this case each cache keeps a summary of the other
participating caches’ contents. This is done through multiple advanced
hashing functions in an arrangement called Bloom filter. Using the
summary a cache always knows which, if any, cache has the needed data.
The updating is handled in a smart way where a cache that is to report a
change of state only need to send its specification of the hashing functions
and a declaration of which bits have changed to the all of the others.

A more detailed presentation of these strategies can be found in [Engberg 1998].

3 Theoretical Background

36

As can be seen a distributed cache is complex. It should only be used in large
systems to increase the scalability. The advantages are shorter average transfer
times and less pressure on the server. The price for this is extra communication over
the network, though it tends to localise this traffic.

Distributed caches are hard to implement, requiring thorough analyses of possible
communication patterns. These often result in ad hoc solutions needing initial
configuration that one wants to avoid in a server based component system. It is also
difficult to find security holes in systems using distributed caches, due to the
introduced complexity.

4 PAX-E Observations

37

4 PAX-E Observations
This chapter contains a summary of observations made during the analysis of
PAX-E. Both the distribution model proposed and the implementation in this thesis
are based on this knowledge.

4.1 Current PAX-E Implementation
Currently PAX-E uses fat clients and thereby does not transfer any workspaces
from the server to the clients. However this will change in a near future, see
4.2 Future PAX-E Implementations. Even if the current system needs modifications
to be integrated with the distribution model in this thesis, it still can be used, as it is,
to study how suitable such a combination is. For a successful integration PAX-E
must be “user prediction”-friendly. This property is analysed in the following
subsection.

4.1.1 User’s Behaviour in PAX-E
As mentioned in 1.3 The Target System the users use different workspaces in PAX-
E to solve tasks connected to workflow activities. One of the most important
workspaces is the “to-do-list”, see Figure 13. This is an automatically updated,
personalised workspace presenting a user’s incoming activities. Because of this the
“to-do-list” is often used as a starting point, where the user checks out an activity.
After this the user accesses the different workspaces necessary to solve the tasks
associated with this activity. When an activity is finished the user usually returns to
the “to-do-list” and repeats the procedure with the next activity. This cyclic
behaviour combined with the fact that a user’s roles limit her work to certain types
of activities, requiring certain workspaces to be accessed in a certain order indicates
that a user should be possible to predict.

Figure 13. A “to-do-list” in PAX-E. The left part of the workspace contains a list of
activities and the right part shows details about the selected activity.

4 PAX-E Observations

38

Is it suitable to use user prediction at the workspace selection level of PAX-E? To
answer this question the required properties mentioned in 3.2.1.4 Similarities
Between the Areas are checked. The result is:

1) The workspace selection in PAX-E is an easily identified atomic action.

2) The conclusion that users often use the workspaces in certain order was
reached above. In other words, workspace selection patterns are very likely
to occur in PAX-E.

3) There are only a few different workspaces in a PAX-E product. One can
make the assumption that the distribution model does not need to handle
more than ten different workspaces without limiting its usability in this
platform. This does not mean that there cannot be more than ten
workspaces in the system, but that one user will not need to have access to
more than ten workspaces.

Everything indicates that PAX-E is a system highly suitable to utilise user
prediction in. This user prediction should be used to predict the next workspace the
user will select.

4.2 Future PAX-E Implementations
At the same time as this project has been done, Ida has been working with the next
generation of PAX-E, denoted PAX Next Generation (PAX-NG). This will be a
true server based component system implemented in Java. Although the system is
still under development one can already approximate how many components each
workspace will have and what sizes these will have. These are important
observations, needed to make a realistic implementation.

The workspaces will require one to five components each. The size of the
components will vary some, but the way they are combined should result in rather
equal sizes of the workspaces, around 50 KB. This is a manageable amount of data
to transfer automatically in the background while the user works uninterrupted.

It is likely that PAX-NG will provide various types of client software, since one
solution will not fit all customers preferences. Examples on such solutions are
clients implemented as Java applications and Java applets. PAX-NG also makes it
possible to create personalised workspaces and workspaces tailor-made for a certain
type of client platform.

5 Distribution Model

39

5 Distribution Model
In this chapter the distribution model is presented. It consists of three parts: user
profiles, push strategy and caching. All of these are discussed in detail.

5.1 Overview
Below follows a scenario that shows how the distribution model works for a user
with an existing profile.

1) The user logs in to the system.

a) The client sends login information to the server.

b) The server authenticates the user and loads the corresponding user
profile. The profile consists of owner information and workspace
privileges. It also contains a number of subprofiles. Each of these
represents dynamic data that is specific to a certain kind of client
software. Depending on which platform the user currently uses, the
corresponding data structure is used to configure the prediction
mechanism.

2) The user selects the first workspace.

a) The client sends a request of the necessary components. The dynamic
data at the server is updated. The downloaded components are stored in
the client’s cache.

b) When all components have been transferred the user can begin
working with the workspace. Meanwhile the prediction mechanism
uses the dynamic data to choose the workspace that the user is most
likely to activate next. The corresponding components are
automatically transferred to the client.

c) The cache at the client stores the pushed components.

3) After a while the user selects a new workspace.

a) The client checks if the necessary components already are available. If
so the workspace is shown to the user. If the previous prediction was
wrong or the push failed to transfer all components to the client, the
necessary data will not be available in the cache and must be
requested. After this the dynamic data at the server is updated.

b) The workspace is shown to the user, meanwhile the server’s prediction
mechanism predicts another workspace and begins to push it.

Before the server initiates any component transfers it asks the client if any of the
predicted data is locally stored. In this way unnecessary transfers are avoided.

In Figure 14 different parts of the distribution model are illustrated. One can also
see how they are interconnected.

5 Distribution Model

40

Active
Workspace

Cache

Client Server

Profile
Storage

Component
Storage

Prediction
MechanismPush

Request

Figure 14. Illustration of the distribution model.

5.2 General Design Decisions
In 3.2.2 Design Issues several design issues were mentioned that one should take
into consideration when developing any kind of adaptive system. Below follows a
short discussion around the different design decisions.

• The user model is individual. The reason for this is that in PAX-E users can
belong to different groups and have many different roles, making it hard to
make good group based user models.

• The user model is dynamic. Otherwise it will quickly become out-of-date
when a user changes behaviour due to new working tasks etc.

• The user model is long-term since the collected knowledge is to be used in
future sessions and not only in the current interaction.

• The user model collects knowledge implicitly. It is hard to create good
questions that the user can answer in such a way that relevant information
can be extracted. It is also desirable that as much as possible is handled
automatically without causing inconveniences for the users and
administrators.

• The user model is hidden. The collected knowledge about a user is difficult
to present in a comprehensible way. This combined with the fact that the
predictions are based on dynamic data that cannot be fine-tuned by the user
explicitly makes the hidden model suitable.

5.3 User Profiles
The user profiles can contain three kinds of information about the user and her
behaviour, as described in 2.2.1 Profile Information: static data, dynamic data and
session data. This section describes what the profile needs to contain.

The static data of the profile consists of the username associated with the profile
and the corresponding user’s workspace privileges. Since the handling of privileges
can generate high administration costs it is important that it is well arranged. In
systems like PAX-E it is efficient to store privilege information implicitly by
defining which groups a user belong to in the profile. Mappings between groups

5 Distribution Model

41

and workspaces can then be kept separately in a database. Whether the workspace
privileges are stored explicitly or implicitly is not relevant to the distribution model
and one can choose the solution that suits the current situation best. The static part
of the profile does not need to include which roles a user has in the workflow since
the predictions are to be made on an individual basis, see 5.4.2.1 Initial Push
Configuration.

The dynamic data of the profile contains the user’s history of workspace selections
and statistics about her behaviour. This information is stored in a data structure
suited for the chosen algorithm. The data structures used by the proposed
algorithms consist of tables and trees. During one session a user is not able to
change client software without logging out. This makes transitions between
different types of tailor-made workspaces (only to be used on a specific kind of
client platform) impossible. This observation, combined with the desire to keep the
data structures as small as possible due to performance issues, implies that it is best
to separate the dynamic data into subprofiles for each type of client platform. If one
single, big data structure were used there would be a risk that it would grow too big
to handle as the number of different platforms and workspaces increases during the
lifetime of the system. This is prevented by the usage of subprofiles. When a user
logs in, a new subprofile is created and initialised if the user has never used that
kind of client software before. Otherwise the corresponding subprofile is loaded and
used by the prediction mechanism.

The profile does not have to store session data explicitly since the different
subprofiles represent the different types of client platforms a user has used. Any
other kind of session-related information that might be interesting to use, i.e.
network bandwidth, can be extracted during each session and does not need to be
stored.

How the profile is to be structured is not practical to define in the model. A
structure that works well in one implementation is not necessarily the best solution
in another implementation. However it is probably best to store the subprofiles
separately from the static part of the profile, making it possible to develop effective
administration tools and to store the static part in a relational database. More
information about the subprofiles and their contents can be found below.

5.4 Prediction and Push Strategy
The push strategy defines how the prediction mechanism will work. There are two
questions that must be answered:

• How will the prediction be performed?

• When is prediction and pushing to be used?

These questions are analysed in the next subsections.

5.4.1 Prediction Algorithm
The choice of a prediction algorithm is crucial for the performance and
requirements of the distribution model. It is hard to draw any conclusions about the
performance of the different algorithms described in 3.2.3 Common Approaches
without testing them in this field of application. Therefore the final choice of
prediction algorithm is postponed to 8.1 Algorithm Choice, when both accuracy and

5 Distribution Model

42

speed have been evaluated in the testbench. The subsections below discuss the
properties of the proposed algorithms, needed limitations and configurations.

5.4.1.1 Algorithm Properties
The strengths and weaknesses of the proposed algorithms are summarised in
Table 1.

Table 1. Summary of the properties that the prediction algorithms have.

Algorithm Strengths Weaknesses

Markov Very fast. Easy to
implement.

Generally has bad
accuracy since it only
takes the current state into
consideration when it
makes a prediction. The
data structure needs to be
rebuilt if new workspaces
are added.

IPAM Prioritises new knowledge
over older, maybe out-of-
date, information.

7KH�SDUDPHWHU� �PXVW�EH
set explicitly. Only takes
two previous workspaces
into consideration when it
makes a prediction. The
data structure needs to be
rebuilt if new workspaces
are added.

LZ Fast, provided that the tree
has been updated.

Divides the history into
blocks and therefore
cannot identify all
patterns. Occasionally
needs to rebuild its tree,
this is time-consuming and
causes loss of gained
knowledge.

PPM Tries to adapt itself to the
current situation by using
a variable amount of
history.

The orders of the different
Markov models must be
explicitly set. As the used
orders increase the speed
decreases and much more
space is required. The data
structures need to be
rebuilt if new workspaces
are added.

TDAG Automatically identifies
all previously seen
patterns that match the
current selection. The data
structure does not need to
be rebuilt when a new
workspace is added.

Requires a lot of space. As
its data structure grows its
speed decreases.

Since the algorithm should learn incrementally LZ is inappropriate due to its
restarting behaviour. In a server based component system this would result in
widely varying performance. The rebuild is also a time-consuming operation that

5 Distribution Model

43

should be avoided. These are the reasons why LZ should not be used in the type of
system targeted by this distribution model.

Two algorithms that have especially interesting features are TDAG and PPM. The
ability to add workspaces without having to rebuild any data structures is a
desirable feature of TDAG. The attempt of PPM to adapt its current predictions to
the current level of accuracy makes it dynamic and might result in good
performance.

5.4.1.2 Algorithm Limitations
In a PAX-E system there are many clients logged in at the same time. If the
distribution model is to be used in this kind of environment it is important that the
data structure of the chosen prediction algorithm does not require too much
memory. Each active user needs a memory resident data structure to base
predictions on. What is a reasonable limit for the memory requirement of an
algorithm? This question is difficult to answer since the amount of available
memory and the number of concurrent clients will vary a lot between the different
systems. However discussions with personnel at Ida has resulted in an agreed
memory limit at approximately 100 KB per each activated profile. This limit will be
used as a guideline when the algorithms are analysed below. When reading these
analyses, have in mind that there are at most ten different workspaces that the
algorithm has to choose from when making predictions. This observation was made
in 4.1 Current PAX-E Implementation.

Markov does not have any problems with the memory limit. It will use a table with
at most ten rows and ten columns when making predictions. In this data structure
the frequency of occurrence will be stored as integers. An integer in Java requires
4 bytes. Thus the size of the data structure will be at most 400 bytes in a Java
implementation.

IPAM uses the same data structure as Markov, although it stores floats in its table
instead. A float in Java requires the same amount of memory as an integer. In other
words IPAM will also need a data structure of at most 400 bytes in a Java
implementation.

PPM extends Markov by combining Nth order Markov models of different
dimensions. An Nth order Markov is easy to implement as a N+1 dimensional table
of integers. If N=4 this would result in a data structure containing 100.000
elements, requiring 390 KB of memory in a Java implementation. This is more than
the decided limit permits. But if first, second and third orders are used instead, the
data structure of PPM will use 11.100 elements, requiring 43 KB instead. This is an
acceptable amount of memory. PPM also needs a way to combine the separate Nth

order Markov models. In 3.2.3.6

5 Distribution Model

44

Prediction by Partial Match two solutions were presented. Since the memory
limitation will cause the algorithm to miss long patterns, due to the low orders used,
the solution using one model at a time is best. Therefore PPM should use a
preferred order, automatically increased or decreased depending on how well it
performs.

TDAG differs from the other algorithms by using a tree and a vector instead. This
tree needs to be limited in order to prevent it from growing infinitely. If a height
limit of four is used, the tree contains at most 8.201 nodes
(1+10+10·9+10·92+10·93=8.201). Each node consists of a workspace identifier and
two counters. Nodes need to keep references to their children. An ordinary node
implemented in Java will therefore require one byte as an identifier, two integers as
counters and if it is not a leaf, nine memory references (32 bits each). Thus a node
will require 45 bytes, if it is not a leaf in which case it requires only nine bytes. This
results in a maximal tree size of 104 KB (there are at most 8.201 nodes and 7.290 of
these are leaves). Besides the tree TDAG uses a vector to represent the current state.
Height limitation is implemented by denying leafs to be added to the current state.
This means that there are 911 nodes left. At most a tenth of these can contain the
current workspace identifier and thus belong to the current state. Therefore the
current state can maximally contain 92 memory references, requiring 368 bytes of
memory. The conclusion is that a TDAG with a height limit of four will at most
require 105 KB. This is an abnormal situation very unlikely to occur, hence TDAG
can be allowed to use a tree of depth four in this distribution model.

All algorithms are to be prevented from making “strange” predictions. In the case
with TDAG this means that no predictions based on nodes with an out-count,
the counter telling how many times the node has been placed in the current state,
equal to one will be made. Without this threshold, predictions based on seldom
visited nodes could seem better than predictions based on frequently visited nodes.
The other algorithms also need a similar kind of limitation, preventing them from
making predictions when all the considered alternatives has a probability equal to
zero. Otherwise predictions based on the order of the workspace identifiers in the
tables will be made in the early stages.

5.4.2 Push Policy
Is it suitable to push a new workspace before the currently predicted workspace has
been used? Since this prediction will be based on a prediction, which has not been
proven to be correct so far, a lot of uncertainty is introduced. Bad predictions do not
shorten the perceived latency and should be avoided as much as possible. In this
way unnecessary network traffic is avoided. The conclusion is that a new prediction
should not be made until the result of the current prediction is known.

The usage of thresholds to identify situations where predictions are good enough to
be realised by pushing is a good way of limiting waste of network bandwidth.
However such thresholds are very difficult to define and they require rigorous
testing. Beside the thresholds mentioned earlier in 5.4.1.2 Algorithm Limitations,
the proposed prediction algorithms are not designed for such usage either.
Therefore pushing should always be performed when a prediction has been made.

5 Distribution Model

45

The push operations should start immediately after a prediction is completed. Since
the predictions are made on a workspace selection basis, it is best to update the
dynamic data of the profile as soon as the server has been informed of a user’s
workspace selection. This is followed by a prediction based on the current situation
and finally the chosen workspace is pushed.

If a push fails to finish before the client requests the next workspace it is to be
stopped immediately and replaced by the requested component transfer. The reason
for this is that the corresponding prediction is old and does not apply to the new
situation.

5.4.2.1 Initial Push Configuration
The initial push configuration has not been covered by the push policy so far. This
is a special case, defining how a new profile or a new subprofile is to be used in the
system. There are several solutions to how pushing should be handled when a user’s
behaviour is not known yet. The alternatives are:

• Push based on groups and learning phases. This solution is based on the
fact that similar users often can form groups. These groups are used
together with learning phases of a suitable duration. For each group the
access pattern of the first user during the learning phase is stored. After this
it is used to initialise the dynamic data of all new users that belongs to that
group.

• Push based on frequency. The pushing is based on the frequency of usage
of the different workspaces; meanwhile the dynamic data is updated. When
enough knowledge has been collected the normal prediction mechanism
takes over.

• Role based push. In this solution there are initial dynamic data
corresponding to the different roles in a workflow system. Every new user
profile is initialised with dynamic data typical for the behaviour associated
with her roles.

• No push in the initial phase. The pushing is not started until the algorithm
has collected a sufficient amount of data about the user’s behaviour and is
positive about making the right prediction.

If push is based on groups and the first user of every group is used to build the
typical profile for that group a number of problems occur. One problem is how to
be sure that the first user uses the system in the intended way. Another problem is
that in a workflow system a user can have many kinds of roles. This implies that it
is hard to create user groups where all members work with the system in the same
way. Therefore the usage of push based on groups is not suitable in PAX-E.

Push based on frequency is easy to implement. A threshold value can be set for the
number of times, after which sufficient data about the user has been collected. This
approach does not use workspace selection patterns in the initial phase causing the
predictions to be uncertain. As mentioned in 4.1.1 User’s Behaviour in PAX-E
PAX-E users often work in cyclic workspace selection, making push based on
frequency unsuitable.

If the push is based on roles, some initial profiles are needed for each role. An
advantage with this approach is that the administrator is given more control over the
initial profiles, compared to the solution with a learning phase. However the
administration costs are high since these initial profiles have to be manually

5 Distribution Model

46

configured. The roles in PAX-E are strongly connected to the customer’s
organisation, requiring new initial profiles to be created for each installation. Since
one of the project requirements is to avoid causing more administration work, role-
based initial pushing is not suitable to use in this model.

One way of minimising the administration costs is to disable the push operations
until a sufficient amount of data has been collected about the user. Even if typical
workspace selection patterns for roles and/or groups can be identified, the profiles
are built purely on the user’s own actions and not on an expected behavioural
pattern. The only drawback with this approach is that users can experience waiting
times during the initialisation. However provided that it is possible to correctly
define how long the push should be disabled and that the users are well informed on
how the system works, this solution provides automatic individual customisation
suitable for PAX-E. An easy way to decide when it is time to activate the pushing is
to count the number of updates made to the prediction mechanism’s data structure
and compare it to a threshold value. Which threshold value to use cannot be decided
until a prediction algorithm has been chosen.

5.5 Caching
The caching policy consists of a client-side cache that supports the pushing. Of the
cache strategies mentioned in 3.4.1 Standard Approaches to Caching the LRU
solutions seems promising. The reason for this is that the way a user works in
PAX-E tends to make him/her access workspaces that have been recently used.
FIFO also seems suitable, due to the way pushing works. In ordinary push systems
newly pushed data always replace older predicted data. The final contender is LRV,
normally outperforming LRU. But in this field of application this solution is not
fitting, requiring the client to predict how likely a re-transfer of a component is.
Predictions should only be made at either side of the system in order to avoid
conflicts.

Distributed client-side caching, mentioned in 3.4.2.3 Distributed Cache, is complex
and almost always need to be tailor-made for each system. Therefore it does not
seem to be general enough to include in this type of model. Also it increases the
network load, which probably should be avoided in a server based component
system that already uses a considerable amount of network bandwidth.

If the LRU and the FIFO strategy could be combined and adapted to the usage of
push, this should result in a good cache solution at the client. It is desirable to
replace earlier false predictions and components that have not been used recently.
The easiest way to combine the strategies and to accomplish this property is to
divide the cache into two separate layers. The layers can then be used to separate
predicted components that have not been used yet from the ones that actually has
proven themselves useful. The parts of the cache are denoted: prediction layer and
active layer.

The prediction layer is essentially a FIFO cache with a queue ordered by the time of
arrival. When a new prediction is made the cache checks if the components already
are available. If a predicted component exists in the cache, there is no need for re-
sending it from the server instead it only needs to be repositioned in the queue. On
the other hand, if a predicted component is not in the cache it is sent and placed in
the queue of the prediction layer. If there is not enough space to store the

5 Distribution Model

47

component, the oldest component is removed since it is either part of a false
prediction or has not been used for a long time.

The active layer stores components that are currently used or have been used at
least once. The basic principle for its operation is LRU. When the client makes a
request for a component, there are the following three possibilities of where to place
the component:

• If the component already is in the prediction layer, it changes place with
the least recently used component in the active layer. This component is
placed in the queue and thus recycled instead of deleted. In this way
network bandwidth is saved if it is part of a near future prediction.

• If the component already is in the active layer, the priority in that layer is
updated so that the requested component is marked as most recently used.

• If the component is not in the cache it needs to be sent from the server. It is
then placed in the active layer and marked as most recently used. If there is
not enough space in the active layer, the component marked as least
recently used is replaced and moved to the prediction layer.

Figure 15 shows the structure of the 2-layer cache.

Prediction Layer

Active Layer

Activate
component

Recycle
component

New prediction False prediction or
not recently used

Requested
component

Server Trashcan

Figure 15. The handling of components in the 2-layer cache.

The design of this 2-layer cache makes it possible to avoid unwanted replacement
of the most recent predictions. By using a pure LRU cache this can be a problem,
since in this strategy the order of the components is based on the usage and the
predicted components are not always used.

5 Distribution Model

48

Due to reasons mentioned in 3.4.2.1 Client-Side Cache the size of the cache should
be as small as possible. The active layer must be able to store a complete workspace
in order to work as described above. The prediction layer must be able to store more
than a complete workspace otherwise the recycling of components will be disabled.
This indicates that a suitable cache configuration would be to have an active layer
with the size of the biggest workspace and a prediction layer twice as big. This size
should be limited, permitting the cache to be memory based. The cache is always
flushed in the end of a session. This avoids the requirement of disk access and the
introduction of security flaws.

Large systems with a lot of clients will probably need several load balanced servers.
And in some cases component proxies, see 3.4.2.2 Caching with Proxies, might be
needed to handle explicit component requests and thus lessen the burden on the
servers. This kind of caching needs to be created individually for each system and
will therefore not be included in this distribution model.

6 Implementation

49

6 Implementation
This chapter presents the implementation made in this project. The language used
was, as mentioned earlier, Java. The purpose of the implementation was to evaluate
the distribution model presented in this thesis and to be able to choose the most
suitable prediction algorithm.

First a system overview gives both a functional and a technical presentation of the
implementation. The latter one shows the different parts of the system and how
these work together. It contains a user case, how the communication between client
and server is done and detailed information about each part. A section about
logging follows this showing what is logged and how necessary statistics can be
extracted from the log files. Finally some limitations of the implementation are
presented.

6.1 System Overview
The implementation is a distributed library system. However it is designed for
usage at a computer company, like Ida, where it is not only interesting to store
books and magazines in the system but also software and electronic publications. It
is also easy to configure the system for more traditional usage at a public library
etc. The implementation is a multi-user system, although at the present time only
one user at a time can login.

6.1.1 Functionality
The functionality is, as in PAX-E, divided into different workspaces. Each of these
contains components that together provide all functionality needed by the user to
solve one task. There are eight different workspaces making it possible for the user
to:

• Perform media dependent or independent searches among available books,
magazines and software. It is also possible to get detailed information
about specific search hits.

• List comprehensive information about all available books.

• List comprehensive information about all available magazines.

• List comprehensive information about all available software.

• Order a new book.

• Store a new item (book, magazine or software).

• Read electronic publications.

• Get help.

The user can choose workspaces from a selection toolbar in the main window. The
currently active workspace is also shown in the same window. There are also
separate windows presenting search results, detailed information about a search hit
and for logging in. For testing purposes it is also possible to view the client’s cache
contents and its actions in a concurrent window.

6 Implementation

50

The implementation is a multi-user system where workspace privileges can be set
on an individual level. Thus it is possible to completely hide functionality for users
that should not be aware or allowed to perform certain operations. Figure 16 shows
a screenshot from the implementation.

Figure 16. Screenshot of the media search workspace. The toolbar at the top allows
the user to select between the available workspaces.

6 Implementation

51

6.2 Technical Architecture
In Figure 17 the technical architecture of the implementation is illustrated.

Client

Disk

GUI Framework

Workspace
Selection

Component

Plugged in
Components

Login Handler

Cache Manager

Active

Log File

Server Disk

Log File
Subprofiles

Components
Electronic Publications
Workspace Definitions

Database

Library Contents
User Information

Database
Manager

Prediction
Mechanism

Plugged in
Profile

Login Handler

Workspace
Manager

Business Logic

Prediction

Figure 17. The main parts of the client and the server in the implementation. The
arrows show remote method invocations.

Section 6.2.1 User Case describes how the different parts of the system work
together. Then sections describing each part of the system in detail follow.

6.2.1 User Case
When the server is started it configures itself by using a workspace definition file.
After this the following scenario takes place:

1) The login handler at the client asks the user for username and password.
When these have been entered the corresponding handler at the server is
invoked.

2) The login handler at the server uses the database manager to validate the
information entered by the user. If the login is invalid the procedure
restarts, otherwise the stored information about the user is used to plug in
the user’s profile into the prediction mechanism. The user’s privileges are
also used to initialise the same mechanism and to configure the Workspace
Selection Component (WSC). In this way the user will not be aware of any
other workspaces than those she may use.

6 Implementation

52

3) The client triggers the cache manager to get the WSC from the server. This
is done by a message to the workspace manager at the server. It returns the
personalised WSC.

4) The WSC is plugged into the Graphical User Interface (GUI) framework
and activated. Now the user is presented with a toolbar in which workspace
selections can be made.

5) When the user selects a workspace the WSC asks the server’s workspace
manager which components the client needs. A list is returned and passed
to the cache manager.

6) The cache manager checks if the components are available. Since no
predictions have been made yet, the cache is empty and the manager
therefore asks the server for all of the needed components.

7) The cache manager places the returned components in the active cache and
tells the GUI framework that there are new components to plug in.

8) The GUI framework activates and shows the components, thus the selected
workspace is now available for usage. Feedback is sent to the prediction
mechanism, this is used to update the user’s profile with the workspace
selection. At each time the mechanism receives feedback it predicts which
workspace the user is most likely to select next. The components belonging
to that workspace are pushed, if necessary, to the prediction cache of the
client. When receiving pushed components the cache manager removes old
contents from the prediction cache if this is necessary.

9) When the user uses the components, they invoke the business logic of the
server to get results of needed calculations and database queries. Upon
return these are shown in the workspace.

10) When the user selects another workspace the procedure is repeated from
step five. However since a prediction has been made the client may not
have to request any components in step six.

If the cache manager requests a component explicitly at the same time as the server
is performing a push operation, the push is aborted and replaced by pull.

6.2.2 Client/Server Communication
The implementation uses RMI to handle all communication between the client and
the server. The reasons for this are:

• The application is not a large distributed system; only one client at a time
can log in on the server. Therefore the system will not suffer from
performance degradation due to RMI being unsuitable to serve many
clients at the same time.

• The objects passed between the server and the client mostly have a small
size, with exceptions for a few of the biggest components. Therefore the
performance difference between RMI and CORBA should be small.

• Everything is implemented in Java. RMI is by far the easiest way to make a
distributed application in this language.

• The development time was too short to permit the more advanced approach
using CORBA.

6 Implementation

53

6.2.3 Data Storage
There are two types of storage in the system. Some of the data is well suited for
storage in a database, while other data is more practical to store directly in the file
system of the server.

6.2.3.1 Database
The user accounts and all library data (information about books, magazines etc.) are
stored in an Oracle Lite 3.5 database. The user account consists of a user’s
username, password and the static data in the profile. For more information about
the profile see 6.2.5 Profiles. The part of the server that handles this database is
called the database manager. It uses the built-in Java DataBase Connectivity
(JDBC) package to connect to the database and make queries.

6.2.3.2 File System
The data that is stored in the file system is divided into two different types of files,
ordinary text files and serialised Java files. The text files are used to:

• Log results. This is done at both the server and the client. More information
about logging can be found in 6.3 Logging.

• Define the different workspaces. A workspace definition contains the name
of the workspace, a unique identifier, a list of what components it contains
and a path to where those components can be found.

• Store electronic publications. In the current version a text file based format
is used for storing electronic publications. An electronic publication
consists of several files: a table of content file and individual chapter files
containing the bodies of each chapter.

Serialised Java files are used to store the components of the workspaces and the
users’ subprofiles. Serialisation is a built-in Java feature that permits the
programmer to store the current state of an object. After an object has been
serialised to file it can be restored and used in any Java program at any time.
However the program must be aware of the corresponding class definition to be
able to interpret the serialised file correctly.

6.2.4 Components
The components in the workspaces are implemented as Java Beans.

“A Java Bean is a reusable software component that can be
manipulated visually in a builder tool.”
[Horstmann & Cornell 1998 p. 333]

In the implementation two types of Java Beans are used. The first type of
component is one or a combination of several user interface components. These are
interconnected in the Java Bean to work together and appear as one component. The
second type of component is called dummy component. These are invisible
components that do not provide any kind of functionality. They are put into some of
the workspaces to make the implementation as similar to the future version of
PAX-E, mentioned in 4.2 Future PAX-E Implementations, as possible in terms of
the number of components and the size of them. One to five Java Beans are
combined in each workspace, resulting in workspace sizes between 30 and 60 KB.

6 Implementation

54

6.2.4.1 Infobus
In most workspaces several Java Beans need to communicate with each other
and/or the GUI framework to be able to provide the needed functionality. This is
achieved with an Infobus, a solution that makes it possible to interconnect Java
Beans and dynamically exchange data between them. The protocols used are based
on the notion of an Infobus, hence the name. Infobus is free to use and currently
distributed by Sun Microsystems at [Sun 1999/3]. In Figure 18 the components of a
workspace and their communication ways are illustrated.

Figure 18. The dashed lines mark the different components. Arrows symbolises
Infobus communication.

6.2.5 Profiles
In the implementation the profiles are split into two separate parts. One part
contains the static data and is, as mentioned earlier, stored together with the user
account in the database. The other part consists of an object containing a prediction
algorithm and the dynamically updated data structure it uses to model the
corresponding user. This object corresponds to the subprofile in the distribution
model. Since there is only one type of client software involved, each user has one
subprofile. The subprofile can predict the user’s next workspace selection, update
its data structure according to the result of the last prediction and prepare itself for
storage. To minimise its size the subprofile uses small unique workspace identifiers
instead of full names.

As mentioned in 6.2.3.2 File System the subprofiles are stored using serialisation.
This makes it particularly easy to use different solutions for making predictions in
the system. Since everything that is specific for one solution is encapsulated in its
specific profile one does not need to change anything in the prediction mechanism
to try another solution in the future. The drawback of this approach is a slight

6 Implementation

55

overhead due to the fact that the same algorithm definition might be stored in
several different subprofiles. However since almost the subprofiles’ entire file size
is caused by the data structure that is different in all profiles, this is not as serious as
it might seem.

The subprofiles do not return the identifier of the workspace that seems most
probable in the current situation. Instead a probability distribution is returned. It
contains the probabilities for all workspaces that currently exist in the system. The
reason for this is that otherwise a profile needs to be aware of the corresponding
user’s workspace privileges. This would make it more difficult to change privileges
and it would also slow down the predictions.

6.2.6 Business Logic
All business logic in the system is collected at the server. It is divided in managers
responsible for different types of calculations. When the user uses a component in a
workspace in such a way that business logic is required, the component invokes the
correct manager at the server and the result is computed and prepared for
visualisation. Then it is returned to the component, which presents it to the user.

6.2.7 Prediction Mechanism
The prediction mechanism is responsible for handling the subprofiles. It loads the
subprofile data from disk and plugs it in when a user logs on. During the logout
sequence the subprofile is serialised to disk to save the current state until next login.

When the mechanism is not loading or storing subprofiles it is always waiting for
feedback from the client. The feedback consists of the identifier of the currently
active workspace. When such feedback is received the server starts a concurrent
thread dedicated to the prediction mechanism. It forwards the feedback to the
currently plugged in subprofile. This triggers the subprofile to update itself. After
this the mechanism asks the subprofile for a probability distribution based on the
current situation, see 6.2.5 Profiles. The current user’s privileges are used to select
the most probable (and allowed) workspace from the distribution. The mechanism
now asks the workspace manager about which components that belong to the
predicted workspace. Before any components are pushed the mechanism asks the
cache manager if any of them already are stored at the client. Finally the
components that really need to be transferred are pushed. After this the prediction
thread is disposed. Component requests from the client interrupt and automatically
dispose prediction threads, if such are still running. The reason for this is that the
push handled by such a thread is either transferring the wrong components (due to
an erroneous prediction) or has chosen the correct components but initiated the
delivery too late.

6.2.8 Cache Manager
The cache manager provides the client with the 2-layer cache described in
5.5 Caching. If a needed component is not available in the cache, the manager
requests it from the workspace manager at the server.

The active layer requires 61 KB memory and the prediction layer 122 KB. These
sizes where determined by the size of the components in the largest workspace.

6 Implementation

56

6.2.9 Graphical User Interface Framework
The GUI framework at the client contains the different windows of the client; see
6.1.1 Functionality for information about which these are. The most important of
these is the main window where the user works with the current workspace. Before
the user can use a selected workspace the framework needs to activate that
workspace. The activation procedure starts by a deactivation (resets the
communication provided by Infobus) and removal of the current workspace’s
components from the main window. Thereafter the new components are loaded and
activated (configures the communication provided by Infobus). The activation of
some components also includes initialisation utilising the business logic at the
server. After this the workspace is plugged into the framework, now it can be
shown to and used by the user.

For the workspace selections to work the WSC and the GUI framework need to co-
operate. This is solved by an Infobus connection between them. This connection is
configured during the activation of the WSC and exists during the whole session.

6.3 Logging
The performance of the implementation is measured in several different ways at
both the client and the server. During a session intermediary timing results and
information about the predictions are written into log files. At the end of each
session extracted statistics are appended to the logs.

6.3.1 Client-side logging
During the session the following things are measured and logged for each
workspace selection:

• Workspace name.

• The waiting time measured from the moment the user selects the
workspace to when it is possible to start working with it. This includes the
time it takes to deactivate and remove the former workspace, the time it
takes to load and/or transfer all components to the client and the time it
takes to activate and show the workspace.

• Time to deactivate the former workspace.

• Time to activate the workspace.

• The number of components that were available in the client’s cache.

• The number of components that the client had to request from the server.

At the end of each session a summarisation is written containing the following:

• Total number of components that existed in the cache when needed.

• Total number of components that had to be requested from the server.

• The cache hit ratio.

• Total waiting time.

• Total time spent activating and deactivating workspaces.

6 Implementation

57

The hit ratio of the cache is calculated by dividing the number of components that
existed in the cache when needed by the total number of used components. In this
case it not only measures the efficiency of the cache since it depends heavily on the
prediction quality.

6.3.2 Server-side logging
During the session the following things are measured and logged for each
workspace selection:

• The result of the last prediction.

• The time it takes to update the profile.

• The identifier of the predicted workspace.

• The time spent on decision-making.

• The number of pushed components versus the total number of components
in the predicted workspace.

• The time it took to push the components.

At the end of each session a summarisation is written containing the prediction
ratio. That is the number of successful predictions divided by the total number of
workspace selections. This measures the efficiency of the prediction mechanism.

6.4 Limitations
There are some limitations to the implementation that one should be aware of, these
are:

• Concurrent Java threads perform all timing. This introduces time-sharing
that results in uncertain times. The logged times can therefore not be solely
trusted, but they are good enough for comparisons between different
solutions in the same implementation.

• The system would probably be marginally more efficient if CORBA were
used instead of RMI.

• It is possible that a socket solution instead of object passing through RMI
can reduce the time it takes to transfer components.

• At the present time the server does not allow more than one session at a
time. This makes it impossible to test such things as scalability etc.

7 Evaluation

58

7 Evaluation
Running the implementation with sequences of workspace selections has been the
basis for an extensive evaluation of the algorithms and the cache. The workspace
selections simulate a user working in the system as she moves between the
workspaces to perform tasks. This chapter presents the objectives, the test cases
used and the results.

7.1 Objectives
The main objective is to identify the best solution based on the distribution model.
To be able to do this several test cases and configurations have been designed.
Together these should reveal characteristics of the algorithms and the cache making
it easier to weigh advantages against disadvantages. The tests also show the level of
performance achievable by combining the client-side cache with the prediction
mechanism at the server.

7.2 Measurements
The performance of the algorithms is measured by the prediction ratio that is
defined in 6.3.2 Server-side logging as the number of correct predictions divided by
the total number of predictions. This ratio is recorded in the server-side log.
However one must also take into consideration the size of the corresponding profile
and the time it takes to update the profile and make predictions.

The performance of the cache is measured by its hit ratio which is defined in
6.3.1 Client-side logging as the number of times when a needed component is found
in the cache divided by the total number of times a component is needed. This ratio
is recorded in the client-side log. Clearly the measured hit ratios are dependent on
how well the prediction mechanism performs, it is therefore important that all
comparisons are made using the same push situation. At first thought, one could
easily think that the cache performance should be measured without using any
server initiated component transfers, but this would not give a fair picture since the
cache has not been designed for this type of situation.

The waiting times at the client are the best way of measuring the overall
performance of the total solution. In this implementation such waiting times can be
extracted by using the client-side logs. The waiting time is calculated as the
difference between the total waiting time and the time spent activating and
deactivating workspaces. The reason for this subtraction is that the latter time is a
constant overhead that is not influenced by different combinations of the individual
solutions.

7 Evaluation

59

7.3 Tests
The test cases have been run several times using different test configurations.
Reference sessions, where both the cache and the prediction mechanism are
disabled, have also been run in each case. Below follow descriptions of the different
test cases and test configurations used.

7.3.1 Test Cases
The test cases consist of both artificial tests and real world simulations. All tests are
divided into two sessions. The first session is used to train the profile. The second
session is used to test the profile. It is the latter session from which the
measurements are taken.

The artificial cases are constructed to test certain properties of the different
algorithms. These are completely fictitious sequences of workspace selections
without any connection to the functionality of the implementation.

To find out how the algorithms perform in a real system, two kinds of simulations
have been constructed. The first simulation consists of workspace selection patterns
likely to occur if the implementation is used as a library system. The second
simulation is based on an analysis of one of Ida’s PAX-E solutions.

Some of the test cases include white gaussian noise, which is a randomised
sequence of workspace selections. This is used to model a user clicking around
planlessly among the workspaces. The randomisation is made from an evenly
distributed probability. The term noise will be used from now when referring to
such randomised sequences.

In the examples below sequences of workspace selections are represented by
combinations of workspace identifiers, i.e. AB represents the situation where a user
starts working in workspace A and then continues in workspace B. A plus sign (+)
marks the end of an initialisation and the start of the test session. For readability
comma signs (,) have been inserted to mark each pattern.

7.3.1.1 Artificial
The artificial test cases are:

1) Adaptability to pattern change. In these tests the profile is initialised with a
sequence containing a repeated pattern. After this follows a test session in
which the original pattern has been replaced by a similar one. The
prediction ratio in the tests shows how well the algorithm adapts when a
user changes behaviour. The tests use different patterns, type of
transformations and sequence lengths. A small example of this kind of test
is: ABCDEF,ABCDEF+BACHEF,BACHEF.

2) Noise sensitivity. These tests consist of two parts. In the first part the
profile is initialised with a sequence that starts with the repetition of a
pattern and ends with noise. After this follows a test session in which only
the regular pattern occur. The second part extends the test and makes it
more realistic by using sequences containing several different patterns,
randomly ordered and repeated. In this part the training sequence also ends
with noise (that does not exist in the test session). The prediction ratio in

7 Evaluation

60

the tests shows how sensitive the algorithm is against interruptions in a
user’s normal behaviour. This situation could occur in PAX-E when new
users start to use the system and/or if a user needs to perform small duties
beside the normal tasks. Different patterns and length of the noise have
been used in these tests. A small example of the first part of the test is:
AGFE,AGFE,CBGBFEHA+AGFE,AGFE. A small example of the second
part of the test using the patterns H, DEG and BCDE is:
H,DEG,DEG,H,BCDE,DEG,BCDE,H,BDFACABHGFEGBCDFHD+
BCDE,H,BCDE,DEG,H,DEG,DEG,H.

3) Handling of irrationality. In these tests the profile is trained and tested with
a long sequence of noise. The prediction ratio shows how the algorithm
handles total randomness. Several noise sequences of different lengths
were used in these tests.

4) Long patterns reminding of each other. These tests use sequences of
varying length that contains a mix of long, similar patterns. The length of
some patterns is intentionally chosen so that the algorithms cannot classify
the whole pattern as one unit. The prediction ratio shows how good the
algorithm is at identifying and separating patterns. A small example of this
type of test using the patterns ABCDEHA, ABDEFHG and AHCD is:
ABCDEHA,ABCDEHA,ABDEFHG,AHCD,ABDEFHG,AHCD,AHCD+
ABDEFHG,AHCD,ABCDEHA,ABDEFHG,ABCDEHA,ABCDEHA,AHCD.

Each test case has been used to generate test suits with up to ten individual tests.

7.3.1.2 Simulations
The simulations show how well the different algorithms would perform in real
systems of the targeted type. They have been based on analyses on how users are
likely to behave in the implemented library system and a PAX-E system that
recently has been delivered by Ida to Statens Kriminaltekniska Laboratorium
(SKL). The results of the SKL analyses are user model charts that can be used to
generate long, realistic working sequences.

The library system simulation consists of eight different patterns of lengths varying
from one to four, although most of the patterns have a length of three or four.
Therefore this test probably requires an algorithm that handles long patterns well
otherwise the profile can have problems separating the patterns of equal length from
each other. The patterns are randomly combined into two different sequences. One
used as a training session containing 500 workspace selections and a second used as
test of length 1,000.

The SKL simulation is more realistic and advanced. It is based on three subtests.
Each subtest is connected to a user with one or two roles at SKL. The workspaces
used at SKL are mapped to the workspaces of the implementation. The functional
differences between these two systems does not affect the tests since it is only
interesting to simulate the behaviour of a user in terms of movement between eight
workspaces. The first subtest is based on likely behaviour of an administrator of the
system. It contains patterns for solving typical administration tasks. However it is
very common that an administrator sometimes works as a registrar. Therefore this
subtest also includes the possibility of role changes and thereby it also shifts
between two sets of patterns. The second subtest is based on behaviour likely to
occur for a dedicated registrar. It contains patterns for solving typical registrar
tasks. The third subtest is based on the behaviour of a regular user.

7 Evaluation

61

Figure 19 shows the chart used to generate sequences for the first subtest.

Archive
4

3

Official in Charge MaterialCreate
5

4

3

3

Case Registration
1

3

4

Search

Work as Administrator

To Do List
3

5

1

3

2

Case Manning
2

3

0.7

0.3

1.0

1.0

1.0

0.2

0.8

0.6

0.1

0.2

0.2

1.0

0.4

0.1

0.4

Figure 19. User model chart for a typical administrator at SKL. The boxes
represent workspaces. Arrows symbolises likely transitions between these. Each
transition is associated with a probability of it being realised. The box named
“Work as Administrator” symbolises a transition to a chart for administrators.

The subtests use two sequences each, a training session with 500 workspace
selections and a test session of length 1,000.

7.3.2 Test Configurations
This section describes the different system configurations that have been used
during the evaluation.

7.3.2.1 Algorithm Configuration
To be able to evaluate how the chosen algorithm limitations in 5.4.1.2 Algorithm
Limitations affect the performance of TDAG and PPM the simulation tests also
were run with other algorithm configurations. In the TDAG case the performance of
the chosen TDAG profile, using tree depth four, was compared with an extended
profile, using tree depth six. In the PPM case the performance of the chosen PPM
profile (using first, second and third ordered Markov) was compared with an
extended profile (using first, third and fifth ordered Markov). The extended profiles
thus have the capability of identifying more and longer patterns.

To be able to evaluate how the performance of IPAM is affected by the value of the
parameter α the simulations where run with profiles using different values. Recall
that the value of α tells how much IPAM’s predictions depend on earlier collected
data about the user, see 3.2.3.4 Incremental Probabilistic Action Modelling. The
values used are 0.7, 0.8 and 0.9. The reason for this is that 0.8 proved to be the
optimal value in [Davison & Hirsh 1998]. Even if the optimal value varies between
different fields of application it should be close to 0.8 in this implementation too.

7 Evaluation

62

These tests where executed with an active cache and a prediction cache of equal
size (with enough space to store the largest workspace in each).

7.3.2.2 Cache Configuration
The simulation tests were used to measure the performance of the client-side cache
presented in 5.5 Caching. This was done to validate that the cache performance was
adequate, using an active layer of the same size as the largest workspace (61 KB)
and a prediction layer twice as big.

7.4 Results
The results from the different tests are presented and analysed in the following
subsections.

7.4.1 Algorithm Configurations
This section answers the question if the chosen algorithm configurations are
reasonable in terms of performance. All of the simulation tests were used in this
evaluation.

7.4.1.1 IPAM
The results presented below in Table 2 show that the general guideline for the value
RI� �VHHPV�WR�KROG�LQ�WKLV�ILHOG�RI�DSSOLFDWLRQ��7KH�SHUIRUPDQFH�FRXOG�SUREDEO\�EH
increased slightly if the value of the parameter was to be thoroughly appointed with
a higher precision. This is only worth the effort if this algorithm is chosen as the
EHVW�VROXWLRQ�DQG�ZLOO�WKHUHIRUH�EH�SRVWSRQHG��,Q�WKH�UHVW�RI�WKH�WHVWV� �LV�VHW�WR�����

Table 2. Prediction ratio averages from all of the simulation tests, using different
configurations of IPAM.

α Prediction Ratio

0.7 47.3%

0.8 49.4%

0.9 47.3%

7.4.1.2 PPM
The size of a profile using the standard PPM configuration is approximately 40 KB.
The extended profile increases this to almost 5 MB. This is too big to handle in a
multi-user system where many clients are permitted to log in at the same time. It is
also worth to mention that the large profile slows down the log in and out
procedures noticeably, though the time it takes to update and make predictions is
not increased to an unacceptable level. Does the extra space give an equally big
performance boost? The test results clearly indicate that in this field of application
this is not to be expected. The performance using first, second and third order
Markov is even slightly higher than in the extended case with first, third and fifth
order Markov, as can be seen in Table 3. This is most likely due to the fact that the
usage of up to ten workspaces does not result in very long workspace selection
patterns when the user’s work is controlled by a workflow. Hence the higher

7 Evaluation

63

ordered Markov’s are too powerful and thereby risk failing by trying to find longer
non-existent patterns instead of using the common smaller patterns.

Table 3. Prediction ratio averages from all of the simulation tests, using different
configurations of PPM.

Configuration Prediction Ratio

1st, 2nd and 3rd order Markov 59.9%

1st, 3rd and 5th order Markov 58.1%

7.4.1.3 TDAG
The simulation tests result in manageable profile sizes in both of the TDAG
configurations. Both configurations are indifferent in the time perspective. However
as in the case as above there is no need to take more history into consideration when
making a prediction in these situations. This is confirmed by the results in Table 4,
both profiles result in approximately the same performance. It is possible that the
extended TDAG could perform slightly better if the training session was longer, but
this performance boost is not likely to be worth the increased profile size.

Table 4. Prediction ratio averages from all of the simulation tests, using different
configurations of TDAG.

Tree Depth Prediction Ratio

4 63.3%

6 62.8%

7.4.2 Algorithm Properties
Results and analysis of specific properties tested by the artificial tests are presented
in the following subsections.

7.4.2.1 Adaptability
When the user changes between tasks and/or alters behaviour this introduces
changes in the workspace selection patterns. The algorithms handle this with
varying success. Figure 20 shows that Markov needs more time to adapt to a new
pattern, while IPAM very quickly identifies the new pattern and starts to make
correct predictions. TDAG and PPM find the new pattern somewhat slower but still
rather fast.

7 Evaluation

64

57%

92%
83% 86%

0%

20%

40%

60%

80%

100%

Markov IPAM TDAG PPM

Prediction Ratio

Figure 20. Average results of the adaptability tests.

Markov is not very dynamic. When it has been initialised with a pattern a number
of times it requires at least as many feeds with the new pattern to adapt to this.
IPAM avoids this by giving higher priority to the most recent data, making it very
dynamic.

7.4.2.2 Noise Sensitivity
When the user combines regular workspace selection patterns with total
randomness, all of the algorithms naturally are affected in terms of performance.

In the easier tests using only one pattern none of the algorithms, except IPAM, are
noticeably more sensitive to noise than another. The prediction ratio naturally goes
down during the noise, but they recover immediately as the noise is replaced by a
known pattern. IPAM is however not as good as the others. It seems as the
adaptability of IPAM makes it more sensitive to noise. IPAM replaces its earlier
gathered knowledge with bad data collected from the noise and when the pattern re-
appear it makes wrong predictions at first, see Table 5.

Table 5. Average results of the simple noise sensitivity tests.

Algorithm Prediction Ratio

TDAG 100,0%

IPAM 86,4%

Markov 100,0%

PPM 100,0%

In the advanced tests using several different patterns, the performance of the
different algorithms varied noticeably. As can be seen in Figure 21 the situation
becomes difficult for both Markov and IPAM. Algorithms based on first order
Markov cannot distinguish the patterns from the noise and thus if the noise
sequence is long enough they tend to unlearn. Markov can endure noise longer than
IPAM since it is not as dynamic but when its limits are reached the same property
makes the recovery slower. PPM makes the fastest recovery and starts to make

7 Evaluation

65

correct predictions earlier than the others. The reason for this is that during the
noise the low quality of the predictions saves the knowledge stored in the higher
ordered Markov’s, since the lower ordered data structures are used more frequent.
TDAG also works reasonably well.

38%
41%

44%

57%

0%

10%

20%

30%

40%

50%

60%

Markov IPAM TDAG PPM

Prediction Ratio

Figure 21. Average results of the advanced noise sensitivity tests.

7.4.2.3 Handling of Irrationality
If the input to the algorithms is pure noise, none of them are able to make any good
predictions. As Figure 22 shows, this kind of irrational usage of the system gives
only slightly shorter waiting times than a system without prediction mechanism.
The prediction ratios are close to the performance that should be reached with
random pushing, 1/7 ≈ 14.3%, varying from 11.6% to 14.2%. An important
observation is that none of the solutions result in worse waiting times than in the
case where predictions are not used, even if the input only contains noise. This
could easily be interpreted to mean that the prediction mechanism never can
decrease the performance of the system, this is however not entirely true since the
unnecessary load on the network could result in longer waiting times in large
systems.

7 Evaluation

66

60,0 57,5
60,2 60,0 60,8

0

10

20

30

40

50

60

70

Markov IPAM TDAG PPM Without Prediction

Waiting time (s)

Figure 22. Average waiting times in the irrationality tests.

7.4.2.4 Ability to Identify Long Patterns
When the algorithms are used with several similar long patterns there are two
contenders that distinguish themselves, see Figure 23. These are TDAG and PPM.
Both of these are configured to recognise patterns of length four, even if most of the
patterns used in these tests exceed this length these algorithms perform well. Since
Markov and IPAM base their predictions on only the current and the previous
workspace their ability to identify long patterns are very limited, as can be seen in
the test results. The performance of this type of algorithm decreases drastically as
the number of different patterns and the lengths of the patterns increase.

30%
26%

62%

51%

0%

10%

20%

30%

40%

50%

60%

70%

Markov IPAM TDAG PPM

Prediction Ratio

Figure 23. Average results of the long pattern tests.

7 Evaluation

67

7.4.3 Algorithm Performance
The algorithm performance is evaluated by measuring the prediction ratios in the
different simulations.

The results from the library system simulation are shown in Figure 24. In this test
TDAG gives the highest performance. PPM also performs well. The others fail to
produce acceptable prediction ratios. The reason for this is that this test uses
several, similar patterns of approximately the same length. This requires the
algorithms to be able to identify and separate long patterns, a property that Markov
and IPAM lacks.

40% 38%

62%
55%

0%

10%

20%

30%

40%

50%

60%

70%

Markov IPAM TDAG PPM

Prediction Ratio

Figure 24. Prediction ratios achieved in the library system simulation.

The SKL simulation contains three subtests, the result from each of these are shown
in Figure 25. In both the administrator and the regular user tests TDAG turns out to
have the best performance. However all algorithms perform almost as good, the
reason for this is that these tests includes a lot of short patterns due to the way
PAX-E systems are designed. It is a good sign that the administrator test with its
sudden role changes did not result in unacceptable prediction ratios.

7 Evaluation

68

0%

10%

20%

30%

40%

50%

60%

70%

80%

Markov IPAM TDAG PPM

Prediction Ratio

SKL Registrar
SKL Administrator
SKL Regular User

Figure 25. Prediction ratios achieved in the SKL simulations.

TDAG has a good prediction ratio in all of the simulations, closely followed by
PPM. Although Markov and IPAM perform unexpectedly well their ratios drops
drastically in the library system simulation and they cannot keep up with the other
two contenders.

By analysing the server-side logs from the simulations the required training
duration for the different algorithms can be estimated. This show how long the push
should be disabled during the initialisation of a subprofile, see 5.4.2.1 Initial Push
Configuration. For a subprofile to be trained enough it should at least provide a
prediction ratio of 50%. Otherwise it is hard to justify the usage of pushing, an on-
demand solution with a large cache is probably better in situations where a
subprofile cannot make the correct choices in at least half of the invocations.

In the library system simulation TDAG required a training phase of length 200 to
reach 50% accuracy. PPM was a bit slower, requiring a training phase of length
250. Markov and IPAM never reached the prediction ratio threshold. In the SKL
simulations IPAM only needed a training phase of length 30, followed by Markov
that required 50. TDAG was a bit slower needing 70 and PPM needed 80.

In all of the simulations all of the algorithms perform updates and prediction
making very fast, in fact so fast that this time is insignificant. In terms of required
memory all of the algorithms result in more than manageable subprofiles, sizes
ranging from 625 bytes to 45 KB.

7 Evaluation

69

7.4.4 Cache Performance
The cache performance is evaluated by measuring the hit ratios in the simulations.
The results are shown in Figure 26.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Markov IPAM TDAG PPM

Hit Ratio

SKL Registrar

SKL Administrator

SKL Regular User

Library System

Figure 26. Cache performance in the simulations.

An average hit ratio of 77% is more than adequate and shows that the cache works
well together with automatic component transfers.

When the simulations were run without pushing, the cache hit ratio decreased by
nearly 40%. This shows the necessity of the prediction mechanism at the server.

7 Evaluation

70

7.4.5 Overall Performance
The waiting times when running the simulations with the different solutions are
presented in Figure 27. Reference waiting times, measured by running simulations
without a cache and with disabled pushing, are also presented for comparison.

0%

10%

20%

30%

40%

50%

60%

70%

Markov IPAM TDAG PPM

Waiting Time
Reduction

Figure 27. Average performance achieved in the simulations.

As can be seen the most successful solution, based on the distribution model, uses
TDAG. By using this solution, the waiting time can be decreased by 58%.

8 Conclusions and Further Work

71

8 Conclusions and Further Work
This chapter presents the conclusions of the examination project by discussing the
performance of the tested algorithms and the distribution model. Also some ideas
for further work are presented.

8.1 Algorithm Choice
Several algorithm properties were evaluated in the implemented testbench. The
results are summarised below.

• Adaptability. IPAM is best at adapting itself to new situations. TDAG and
PPM are somewhat slower. The adaptability of Markov is inferior to the
other algorithms.

• Noise sensitivity. PPM and TDAG are less sensitive to noise than Markov
and IPAM.

• Handling of irrationality. The algorithms are all affected bad at handling
total randomness.

• Ability to identify long patterns. TDAG and PPM are better at identifying
long patterns than Markov and IPAM.

TDAG and PPM have the best properties of the proposed algorithms. Although
IPAM is more adaptable than these algorithms it suffers from higher noise
sensitivity, which is not wanted in the distribution model.

The performance of the different algorithms in real systems was evaluated in two
types of simulations. In the simulation based on usage of the implementation TDAG
had the highest prediction ratio. PPM also performed well while Markov and IPAM
failed to produce acceptable ratios. In the simulation based on a PAX-E system
delivered to SKL this was not the case. Once again TDAG had the highest
prediction ratio, but this time Markov came second. It was closely followed by
PPM. The prediction ratio produced by IPAM was noticeably lower, though still
acceptable. The required training duration for the different algorithms varied a little.
TDAG is a bit faster than PPM at acquiring enough knowledge to be permitted to
start pushing. The other two algorithms failed the library system simulation, but in
the SKL simulations they were twice as fast as TDAG and PPM.

All algorithms are fast at making predictions and updates. None of them require a
large amount of memory or an exceptional amount of training. However they are
not as similar in terms of performance and abilities. Two contenders proved
themselves to be more suitable than the others. These are TDAG and PPM. Since
TDAG performed best in the simulations it seems to be the best choice. It is also
highly configurable, making it possible to fine-tune it. In addition to this it does not
have to rebuild its data structures when a user’s privileges are altered, as in the case
with the other algorithms.

8 Conclusions and Further Work

72

8.2 Usage of the Distribution Model
The performance increase reached by incorporating the model in a system with thin
clients depends on the system characteristics. However it has been shown that the
waiting times can be expected to decrease by nearly 60% in a system suitable for
user prediction.

The advantages of the distribution model are, besides the decreased waiting times,
that it is very easy to implement and that it does not increase the amount of needed
administration work. The price for this is increased network and server load.
However if the model is combined with well-implemented traffic shaping the
network performance does not necessarily have to decrease perceptibly. The
possibilities with traffic shaping were discussed in 3.3.1 Introduction to Push. If the
server load reaches unacceptable levels, the work can be shared between several
servers by using load balancing.

The SKL simulation was heavily based on a real world PAX-E solution. The results
of those tests clearly prove that PAX-E is not only suitable to use together with user
prediction, but also that satisfactory waiting times can be achieved without
requiring a large amount of memory at the client. The simulations also show that
the length of the training phase, where the pushing is disabled while TDAG builds a
sufficient tree to base predictions on, must be decided from system to system. A
system where the users tend to work in many selection patterns of equal length, as
in the case with the library system simulation, seems to require long training phases.

Even if the distribution model was designed particularly for PAX-E it should also
work well in other type of systems, but such a system must fulfil the requirements
mentioned in 3.2.1.4 Similarities Between the Areas. Also the system must be
analysed thoroughly in order for the developers to be able to configure TDAG
properly.

The conclusion is that the distribution model indeed decreases the waiting times and
that the disadvantages can be handled by supplementary solutions.

8.3 Fulfilment of Requirements
Requirements of the distribution model listed in 2.3 Requirements are fulfilled in
the following way:

• The model is designed for distribution of server based components.

• The model is suited for PAX-E, since the basis of the model is the
workspace and component model used in PAX-E. Customisations, like
component sizes and number of workspaces, have been made in
accordance to current PAX-E systems and future PAX-NG systems. The
model can be configured to work in other types of system, as long as these
are suitable to combine with user prediction based on discrete sequence
prediction.

• The model requires no extra administration. The only manual configuration
of the profiles consists of numbering the user’s workspace privileges. This
configuration must be made in a PAX-E system anyway.

• The model can be implemented platform independently in languages such
as Java. It also permits different types of clients to be used.

8 Conclusions and Further Work

73

8.4 Further Work
Some ideas about further work around the distribution model presented in this
thesis are presented in the following subsections. The most important studies that
remain are an extensive security analysis and an evaluation of the scalability of the
distribution model.

8.4.1 Neural Networks
Neural networks are a learning mechanism used in the area of artificial intelligence.
A neural net is input with data over and over again and thereby learns from it. After
this initialisation, the net can be used to extract knowledge from. This might be
used to base user predictions on. The drawbacks with neural networks are that they
require a lot of training data before any information of sufficient quality can be
extracted. Most neural networks are only initiated with data during the learning
phase and therefore no incremental updating is possible. However there are some
special variants that allow incremental updating. These might be used in a
prediction mechanism and therefore a deeper evaluation of the area of neural
networks could prove itself useful.

8.4.2 Security Analysis
In most systems, security risks exist and often cause a lot of trouble. The security of
the distribution model should therefore be analysed. The increased amount of
network communication and the way this communication is performed might
introduce security problems that have not been realised.

8.4.3 Scalability
The scalability of a system incorporating the distribution model is an interesting
property that has not been possible to test in this examination project. In the test
implementation only one user at a time can be logged in. Performance tests of a
system, extended to allow several concurrent clients, are important to make before
using the distribution model further. How the distribution model works together
with the supplementary solutions mentioned in 8.2 Usage of the Distribution Model
should also be evaluated.

8.4.4 Comparison of CORBA and RMI
The total performance of the implemented system can be increased if the
communication between the server and the client can be speeded up. Even though
there are several tests of CORBA and RMI in reports and books, an extensive
evaluation of which of these that is best to use in a professional server based
component system should be made. An interesting question is how much can
changing the communication from RMI to CORBA speed up the system? What is
the cost in develop time for this increased performance?

8.4.5 Fine-tuning of Algorithm Effectiveness
Another idea about further work is to evaluate the possibility to fine-tune and
increase the performance of the prediction algorithm. The height of the tree used by
TDAG can be increased, if the target system seems to require this. To save memory

8 Conclusions and Further Work

74

in such a situation pruning of seldom visited nodes can be implemented. If the size
of the tree is increased, limiting the size of each prediction can shorten the time it
takes to make a prediction. A higher threshold value for out-count might result
in a higher performance in some systems. This change will extend the learning
phase of the algorithm, but when it starts to make predictions these should have
higher quality.

8.4.6 Activation and Deactivation
The perceived waiting times that have been decreased by the introduction of a push
mechanism could be reduced even more if the activation and deactivation of the
components are made in advance. This could be implemented by extending the
clients to allow recently pushed components to pre-activate themselves in the cache.
When a prediction is correct the time to plug in the component into the GUI
framework thus should be drastically reduced.

References

75

References
[Allen et al. 1998] Allen, C., Kania, D. and Yaeckel, B. Guide to One-

To-One Web Marketing. New York: John Wiley &
Sons Inc. 1998. ISBN 0-471-25166-6.

[Bladh 1995] Bladh, M. User Modelling in a Help System for a
System Development Process. Linköping: Department
of Computer and Information Science at Linköping
University 1995. ISRN LiTH-IDA-Ex-9507.

[Çentimentel et al. 1999] Çentimentel, U., Franklin, M. J. and Giles, C. L.
Flexible User Profiles for Large Scale Data Delivery.
Maryland: Institute for Advanced Computer Studies at
the University of Maryland 1999.

[Cerami 1998] Cerami, E. Delivering Push. New York: McGraw-Hill
1998. ISBN 0-07-913693-1.

[Coulouris et al. 1994] Coulouris, G., Dollimore, J. and Kindberg, T.
Distributed Systems Concepts and Design. Second
Edition. Essex: Addison-Wesley Longman 1994.
ISBN 0-201-62433-8.

[Crovella & Barford 1997] Crovella, M. and Barford, P. The Network Effects of
Prefetching. Boston: Computer Science Department at
Boston University 1997.

[Curewitz et al. 1993] Curewitz, K. M., Krishnan, P. and Vitter, J. S.
Practical Prefetching via Data Compression. The 1993
ACM SIGMOD International Conference on
Mangagement of Date, Washington, USA, pp. 257-
266, May 1993.

[d-tec 1998] Distributed Technologies 1998. 3-Tier Architectures.
Accessed 1999-11-10.
http://www.corba.ch/e/3tier.html

[Davison & Hirsh 1997] Davison, B. D. and Hirsh, H. Experiments in UNIX
Command Prediction. New Jersey: Department of
Computer Science at Rutgers, The State University of
New Jersey 1997.

[Davison & Hirsh 1998] Davison, B. D. and Hirsh, H. Predicting Sequences of
User Actions. New Jersey: Department of Computer
Science at Rutgers, The State University of New
Jersey 1998.

[Donkers 1997] Donkers, H. H. L. M. Markov Decision Networks.
Maastricht: Faculty of General Sciences at Maastricht
University 1997.

References

76

[Edlund 1998] Edlund, P. Distribuerade objekt med Java, CORBA vs
DCOM vs Java RMI. Linköping: Department of
Computer and Information Science at Linköping
University. ISRN LiTH-IDA-Ex-98/9.

[Engberg 1998] Engberg, T. Master’s Thesis: Distributed HTTP
cache. Luleå: Luleå Tekniska Universitet 1998.
ISRN LTU-Ex-98/359-SE.

[Horstmann &
Cornell 1998]

Horstmann, C. S. and Cornell, G. Core Java1.1 Volume
II – Advanced Features. California: Sun Microsystems
Press 1998. ISBN 0-13-766965-8.

[Juric et al. 1998] Juric, M. B., Rozman, I. and Zivkovic, A. Are
Distributed Objects Fast Enough? Java Report, vol 3,
no 5 pp. 29-38 & 65, 1998.

[Kauffman 1997] Kauffman, T. 1997. 3-Tier Client/Server Research
Page. Accessed 2000-01-19.

http://sandbox.aiss.uiuc.edu/3-tier/index.htm

[Laird & Saul 1994] Laird, P. and Saul, R. Discrete Sequence Prediction
and Its Applications. Machine Learning, vol. 15, no. 1
pp. 43-68, 1994.

[Lau 1999] Lau, T. A comparison of sequence-learning
approaches: implications for intelligent user
interfaces. Washington: Department of Computer
Science and Engineering at the University of
Washington 1999.

[Luotonen & Altis 1994] Luotonen, A. and Altis, K. 1994. World-Wide Web
Proxies. Accessed 2000-01-19.

http://www.lib.uwaterloo.ca/IRC/Annual_Report/wro
present/Overview.html

[Marimba 1999] Marimba 1999. Marimba Products. Accessed
1999-11-10.
http://www.marimba.com/products/products.htm

[Microsoft 1997] Microsoft 1997. DCOM Architecture. Accessed
2000-01-19.
http://msdn.microsoft.com/library/backgrnd/html/msd
ndcomarch.htm

[OMG 1999] Object Management Group 1999. News & Info.
Accessed 1999-11-10.
http://www.omg.org/corba/index.html

[Russell & Norvig 1995] Russell, S. J. and Norvig, P. Artificial Intelligence A
Modern Approach. New Jersey: Prentice-Hall 1995.
ISBN 0-13-360124-2.

[Shaheen 1999] Shaheen, T. What is Caching? Accessed 2000-01-19.
http://dimacs.rutgers.edu/~tshaheen/caching.html

References

77

[Sun 1999/1] Sun Microsystems 1999. Java™ Remote Method
Invocation. Accessed 1999-11-10.
http://java.sun.com/products/jdk/rmi/index.html

[Sun 1999/2] Sun Microsystems 1999. RMI over IIOP. Accessed
1999-11-10.
http://www.javasoft.com/products/rmi-iiop/index.html

[Sun 1999/3] Sun Microsystems 1999. JavaBeansTM Architecture:
Infobus. Accessed 2000-01-07.
http://java.sun.com/beans/infobus/index.html

[Sun 1999/4] Sun Microsystems 1999. Enterprise JavaBeansTM

technology. Accessed 2000-01-19.

http://java.sun.com/products/index.html

[Szyperski 1998] Szyperski, C. Component Software Beyond Object-
Oriented Programming. Essex: Addison Wesley
Longman 1998. ISBN 0-201-17888-5.

[Wong 1998] Wong, A. Prophet: Predictive Profiling for Web
Cache Eviction. Cambridge: Computer Science
Department at Harvard University 1998.

Contents

i

Contents
1 Introduction __1

1.1 About the Thesis __1
1.2 Project Background__1
1.3 The Target System __2
1.4 Purpose ___3
1.5 Method of Working__4
1.6 Scope___4
1.7 Structure __5

1.7.1 Outline ___ 5
1.7.2 Reading Instructions ___ 5
1.7.3 Abbreviations __ 6
1.7.4 Glossary __ 7

2 Problem Definition __9

2.1 Problem Description ___9
2.2 Analysis__10

2.2.1 Profile Information ___ 10
2.2.2 Push Decisions __ 11

2.2.2.1 Initial Push Configuration _________________________________ 11
2.2.3 Caching__ 12

2.3 Requirements ___12

3 Theoretical Background _____________________________________13

3.1 Distributed Computing ______________________________________13
3.1.1 The Traditional Client/Server Model _______________________________ 14
3.1.2 3-tier Architecture__ 14
3.1.3 Server Based Components _______________________________________ 16
3.1.4 Different Technologies __ 18

3.1.4.1 Remote Method Invocation _________________________________ 18
3.1.4.2 Common Object Request Broker Architecture __________________ 19
3.1.4.3 Distributed Component Object Model ________________________ 20
3.1.4.4 Performance Comparison__________________________________ 20

3.2 User Prediction __21
3.2.1 Today’s Predictive Systems ______________________________________ 22

3.2.1.1 Command Prediction _____________________________________ 22
3.2.1.2 Intelligent User Interfaces _________________________________ 22
3.2.1.3 Information Filtering _____________________________________ 23
3.2.1.4 Similarities Between the Areas ______________________________ 23

3.2.2 Design Issues ___ 23
3.2.3 Common Approaches ___ 24

3.2.3.1 Fundamental Data Structures_______________________________ 24
3.2.3.2 The Markov Model _______________________________________ 25
3.2.3.3 Temporal Directed Acyclic Graph ___________________________ 25
3.2.3.4 Incremental Probabilistic Action Modelling____________________ 28
3.2.3.5 Lempel-Ziv ___ 28
3.2.3.6 Prediction by Partial Match ________________________________ 30

3.3 Push Technology___30
3.3.1 Introduction to Push __ 30

Contents

ii

3.3.2 Areas of Application __ 31
3.3.2.1 Pushing Web Pages ______________________________________ 31
3.3.2.2 Program Distribution _____________________________________ 32
3.3.2.3 Component Distribution ___________________________________ 33

3.4 Caching __33
3.4.1 Standard Approaches to Caching __________________________________ 33
3.4.2 Caching in a Distributed System___________________________________ 34

3.4.2.1 Client-Side Cache __ 34
3.4.2.2 Caching with Proxies _____________________________________ 34
3.4.2.3 Distributed Cache__ 35

4 PAX-E Observations __37

4.1 Current PAX-E Implementation _______________________________37
4.1.1 User’s Behaviour in PAX-E ______________________________________ 37

4.2 Future PAX-E Implementations _______________________________38

5 Distribution Model ___37

5.1 Overview___39
5.2 General Design Decisions____________________________________40
5.3 User Profiles __40
5.4 Prediction and Push Strategy _________________________________41

5.4.1 Prediction Algorithm__ 41
5.4.1.1 Algorithm Properties _____________________________________ 42
5.4.1.2 Algorithm Limitations_____________________________________ 43

5.4.2 Push Policy ___ 44
5.4.2.1 Initial Push Configuration _________________________________ 45

5.5 Caching __46

6 Implementation __49

6.1 System Overview __49
6.1.1 Functionality__ 49

6.2 Technical Architecture ______________________________________51
6.2.1 User Case __ 51
6.2.2 Client/Server Communication_____________________________________ 52
6.2.3 Data Storage __ 53

6.2.3.1 Database___ 53
6.2.3.2 File System ___ 53

6.2.4 Components __ 53
6.2.4.1 Infobus __ 54

6.2.5 Profiles __ 54
6.2.6 Business Logic __ 55
6.2.7 Prediction Mechanism___ 55
6.2.8 Cache Manager __ 55
6.2.9 Graphical User Interface Framework_______________________________ 56

6.3 Logging__56
6.3.1 Client-side logging ___ 56
6.3.2 Server-side logging ___ 57

6.4 Limitations ___57

7 Evaluation __58

7.1 Objectives __58
7.2 Measurements ___58
7.3 Tests __59

Contents

iii

7.3.1 Test Cases __ 59
7.3.1.1 Artificial ___ 59
7.3.1.2 Simulations ___ 60

7.3.2 Test Configurations___ 61
7.3.2.1 Algorithm Configuration___________________________________ 61
7.3.2.2 Cache Configuration______________________________________ 62

7.4 Results___62
7.4.1 Algorithm Configurations__ 62

7.4.1.1 IPAM__ 62
7.4.1.2 PPM __ 62
7.4.1.3 TDAG ___ 63

7.4.2 Algorithm Properties__ 63
7.4.2.1 Adaptability __ 63
7.4.2.2 Noise Sensitivity ___ 64
7.4.2.3 Handling of Irrationality __________________________________ 65
7.4.2.4 Ability to Identify Long Patterns_____________________________ 66

7.4.3 Algorithm Performance__ 67
7.4.4 Cache Performance ___ 69
7.4.5 Overall Performance __ 70

8 Conclusions and Further Work _______________________________71

8.1 Algorithm Choice __71
8.2 Usage of the Distribution Model_______________________________72
8.3 Fulfilment of Requirements __________________________________72
8.4 Further Work__73

8.4.1 Neural Networks ___ 73
8.4.2 Security Analysis __ 73
8.4.3 Scalability __ 73
8.4.4 Comparison of CORBA and RMI__________________________________ 73
8.4.5 Fine-tuning of Algorithm Effectiveness _____________________________ 73
8.4.6 Activation and Deactivation ______________________________________ 74

References __75

Figures

iv

Figures
Figure 1. The activities in a workflow process defining the creation of a document.__ 2
Figure 2. Screenshot of a PAX-E archive workspace with two components. ________ 3
Figure 3. Typical parts of a distributed system. _____________________________ 14
Figure 4. 3-tier system with two types of thin clients. ________________________ 15
Figure 5. Cost comparison between 2-tier and 3-tier architecture. _______________ 16
Figure 6. A typical server based component system. _________________________ 17
Figure 7. The principal of a remote method invocation in Java._________________ 18
Figure 8. The fundamental architecture of CORBA. _________________________ 19
Figure 9. Example of a Markov model with three states. ______________________ 25
Figure 10. Basic TDAG algorithm in meta-code. The input module is invoked

every time a new symbol is input. The project-from module returns a
probability distribution, which can be used to make predictions. ________ 26

Figure 11. The tree that TDAG constructs to represent the sequence AB.__________ 27
Figure 12. The tree LZ constructs to represent the sequence AAAABACABCBAC. _ 29
Figure 13. A “to-do-list” in PAX-E. The left part of the workspace contains a list

of activities and the right part shows details about the selected activity.___ 37
Figure 14. Illustration of the distribution model. _____________________________ 40
Figure 15. The handling of components in the 2-layer cache. ___________________ 47
Figure 16. Screenshot of the media search workspace. The toolbar at the top

allows the user to select between the available workspaces. ____________ 50
Figure 17. The main parts of the client and the server in the implementation. The

arrows show remote method invocations. __________________________ 51
Figure 18. The dashed lines mark the different components. Arrows symbolises

Infobus communication. _______________________________________ 54
Figure 19. User model chart for a typical administrator at SKL. The boxes represent

workspaces. Arrows symbolises likely transitions between these. Each
transition is associated with a probability of it being realised. The box
named “Work as Administrator” symbolises a transition to a chart for
administrators. ___ 61

Figure 20. Average results of the adaptability tests.___________________________ 64
Figure 21. Average results of the advanced noise sensitivity tests. _______________ 65
Figure 22. Average waiting times in the irrationality tests. _____________________ 66
Figure 23. Average results of the long pattern tests. __________________________ 66
Figure 24. Prediction ratios achieved in the library system simulation.____________ 67
Figure 25. Prediction ratios achieved in the SKL simulations.___________________ 68
Figure 26. Cache performance in the simulations. ____________________________ 69
Figure 27. Average performance achieved in the simulations.___________________ 70

Tables
Table 1. Summary of the properties that the prediction algorithms have. _________ 42
Table 2. Prediction ratio averages from all of the simulation tests, using different

configurations of IPAM. _______________________________________ 62
Table 3. Prediction ratio averages from all of the simulation tests, using different

configurations of PPM. __ 63
Table 4. Prediction ratio averages from all of the simulation tests, using different

configurations of TDAG._______________________________________ 63
Table 5. Average results of the simple noise sensitivity tests.__________________ 64

0

1

