Final Thesis

A CLP(FD) based model checker for CTL

by

Marcus Eriksson

LITH-IDA-EX—05/056—SE

2005-06-08






Avdelning, Institution Datum

%’4. Division, Department Date
s 2005-06-08

- gy Institutionen for datavetenskap
LINKOPINGS UNIVERSITET 581 83 LINKOPING

Sprak Rapporttyp ISBN
Language Report category
Svenska/Swedish Licentiatavhandling ISRN LITH-IDA-EX--05/056--SE
X Engelska/English X Examensarbete
C-uppsats Serietitel och serienummer ISSN
D-uppsats

Title of series, numbering

Ovrig rapport

URL for elektronisk version
http://www.ep.liu.se/exjobb/ida/2005/dd-d /056/

Titel En CLP(FD)-baserad modellverifierare for CTL
Title
A CLP(FD)-based model checker for CTL

Forfattare Marcus Eriksson
Author

Sammanfattning
Abstract

Model checking is a formal verification method where one tries to prove or disprove properties of a
formal system. Typical systems one might want to prove properties within are network protocols and
digital circuits. Typical properties to check for are safety (nothing bad ever happens) and liveness
(something good eventually happens).

This thesis describes an implementation of a sound and complete model checker for Computation
Tree Logic (CTL) using Constraint Logic Programming over Finite Domains (CLP(FD)). The
implementation described uses tabled resolution to remember earlier computations, is parameterised
by choices of computation strategies and can with slight modification support different constraint
domains. Soundness under negation is maintained through a restricted form of constructive negation.

The computation process amounts to a fixpoint search, where a fixpoint is reached when no more
extension operations has any effect. As results show, the choice of strategies does influence the
efficiency of the computation. Soundness and completeness are of course independent of the choice of
strategies. Strategies include how to choose the extension operation for the next step and whether to
perform global or local rule instantiations, resulting in bottom-up or top-down computations
respectively.

Nyckelord
Keywords

fixpoint engine, model checking, tabled resolution, Constraint Logic Programming, strategies






Link6pings universitet
Department of Computer and Information Science

Final Thesis

A CLP(FD) based model checker for CTL

by

Marcus Eriksson

LITH-IDA-EX—05/056—SE

2005-06-08

Supervisor: Vladislavs Jahundovics

Department of Computer and Information Science
at LinkOpings universitet

Examiner:  UIf Nilsson
Department of Computer and Information Science
at LinkOpings universitet






Abstract

Model checking is a formal verification method where one tries to prove or disprove
properties of a formal system. Typical systems one might want to prove properties
within are network protocols and digital circuits. Typical properties to check for
are safety (nothing bad ever happens) and liveness (something good eventually
happens).

This thesis describes an implementation of a sound and complete model checker
for Computation Tree Logic (CTL) using Constraint Logic Programming over
Finite Domains (CLP(FD)). The implementation described uses tabled resolution
to remember earlier computations, is parameterised by choices of computation
strategies and can with slight modification support different constraint domains.
Soundness under negation is maintained through a restricted form of constructive
negation.

The computation process amounts to a fixpoint search, where a fixpoint is
reached when no more extension operations has any effect. As results show, the
choice of strategies does influence the efficiency of the computation. Soundness
and completeness are of course independent of the choice of strategies. Strategies
include how to choose the extension operation for the next step and whether to
perform global or local rule instantiations, resulting in bottom-up or top-down
computations respectively.






Acknowledgements

I would like to thank Ulf Nilsson and Vladislavs Jahundovics for explaining some
of the less obvious parts of the theory involved, for their guiding comments during
the thesis work and for being patient with my inability to follow the time schedule.
T would also like to thank Mikael Asplund for his input in our discussions on syntax
and semantics of the source program and Simon Elén for being my opponent.

vii






Contents

Introduction
1.1 Problem . . . . .. . ...
1.2 Solution . . . . . . . ..
1.3 Reading instructions . . . . . . .. ... .o oL
Preliminaries
2.1 Constraint Logic Programming (CLP) . . . ... ... ... ....
2.2 Computation Tree Logic (CTL) . . . . ... ... ... ... ....
2.2.1 CLP representation of CTL . . . . . ... ... ... ....
2.3 Overview of the computation model . . . . ... ... .......
2.3.1 Resolution operations . . . . .. .. ... ... .......
2.3.2 Instantiation operations . . . . . .. ... .. ...,
2.3.3 Updating operations . . . . . . . .. ... ... ... ...
The computation model
3.1 Input specification . . . . . .. .. ... oL
3.1.1 CLP program . . . . . . .. . e
3.2 Thescanner . . . . . . . . . . ...
33 Theparser. . . . . . . . .. e
3.4 Thefixpoint engine . . . . . . . ..o
3.4.1 Structures . . . . ... oL
3.4.2 Update mechanism . . . . .. ... ... .. ... ......
3.4.3 Extension operations . . . . . ... ... oL
3.4.4 Soundness of the computation model . . . . . . . ... ...
3.4.5 Completeness of the computation model . . . . . ... ...
3.4.6 Computation process . . . . . . . .. . L.
3.5 Theoutput . ... ... ... ...
Strategies
4.1 Extension picking strategy . . . . . . ... ..o oL
4.1.1 Preference ordering on entry types . . . . . ... ... ...
4.1.2 Weighted random selection . . . .. ... ... .......
4.2 Entry picking strategy . . . . . . .. ... oo oL
4.3 EBC clause picking strategy . . . . . . . .. ...
4.4 EBC locality strategy . . . . . .. . ... o L.

ix

N N =

ot W W

D

11
12
13

15
15
15
16
17
17
17
18
20
23
24
27
27



441 GlobalEBC . . . . . . . . . e

442 Local EBC . ... ... ... . ...

5 Experimental evaluation
5.1 Input program . . . . . . . .. . ..o
5.2 Input interpretation . . . .. ... ... Lo
5.3 Discussion about theresults . . . . . . . ... ... ... ... ...

6 Conclusions

6.1 Summary . . . . ...

6.2 Results. . . . . . . . .

6.3 Future improvements . . . . . . .. .. ...
Bibliography

A BNF for input program

B Configuration file example

35
35
36
38

41
41
41
42

43

45

47



Chapter 1

Introduction

A formal system, according to Encyclopedia Britannica, is a formal language to-
gether with a deductive apparatus by which some well-formed formulas can be
derived from others. Formal verification is then the process of proving or disprov-
ing properties within this formal system.

An instance of formal verification is model checking [4], which is an intriguing
problem in computer science today. The model is often derived from a hardware
specification or protocol (e.g. network communication protocols) and it is of great
value to be able to check properties such as liveness or safety of the model in a
mathematically rigorous way.

Since the invention of symbolic model checking [8], where a set of states can be
implicitly represented by a logic formula as opposed to listing all states explicitly,
model checking has been considerably more useful.

Nilsson and Liibcke [9] presented a way of doing model checking using Con-
straint Logic Programming [6], which is currently being revised by Jahundovics
and Nilsson [7]. Their approach was to use tabled resolution [14] to cache results
of computations and a restricted form of constructive negation [13] to maintain
soundness for general programs.

The caching also made it possible to solve a goal partially and move on to
solving another goal in between. This permitted a great number of possible com-
putation paths and picking which computation path to pursue was the basis on
which to define computation strategies, such as top-down or bottom-up computa-
tion or a hybrid of the two.

1.1 Problem

When implementing a model checker based on Constraint Logic Programming,
one would naturally attempt to use Prolog or some other similar system which
already has support for Constraint Logic Programming and merely implement the
missing parts, but in this case it would be like implementing a Prolog interpreter
in Prolog, since some of the missing parts is basic system functionality.



2 Introduction

Perhaps the most recognised problems with Prolog’s control strategy are infi-
nite loops and redundant computations. This is because Prolog does not remember
earlier computations and therefore is deemed to repeat them every time they are
needed. Often infinite loops can be avoided by rewriting the program, but as is
the case with the fixpoint calculations described in this thesis, this is just not
practical. Another problem with most Prolog implementations is the lack of a
sound negation strategy.

The goal of this thesis and the underlying implementation is to provide a
facility for testing different choices of computation strategies when performing
model checking of CTL specifications and to see how well this can be done using
constraint logic programs over finite domains. The implementation should also
permit extensive parameterisation through choice of computation strategies and
different finite domains. Soundness and completeness are paramount, of course.
This requires, among other things, a sound negation strategy. The model checker
described herein uses the same kind of restricted constructed negation as in [7].

1.2 Solution

To deal with redundant computations and infinite loops, we employ tabled resolu-
tion. This enables us to store previous computations in an internal abstract table
and use them when a compatible call is made later on. An introduction to the
concept of tabled resolution (albeit without constraints) can be found in [2].

Having an internal table of stored computations can be quite space-consuming
for large programs, since each entry may spawn several other entries, which the-
oretically makes for an exponential growth of the table. A solution for this is to
merge similar entries. This will keep the number of entries in the table linear to
the number of clauses in the program.

Efficient merging also requires an update mechanism that can be applied when
an existing entry is augmented with a new one. This mechanism is described
in-depth in Section 3.4.2.

1.3 Reading instructions

This thesis report consists of three main parts. The first is the introductory part,
which is covered in this chapter and Chapter 2, which explains the underlying
concepts. The second part describes the implementation of the fixpoint engine,
wherein Chapter 3 describes the computation model and Chapter 4 describes var-
ious strategies used to influence the computation process. The last part shows an
experimental evaluation (Chapter 5) and draws conclusions (Chapter 6).



Chapter 2

Preliminaries

In this chapter, we present the underlying definitions and theory used in Chapter 3.
This mostly includes definitions from the field of Constraint Logic Programming
(CLP).

2.1 Constraint Logic Programming (CLP)

Constraint Logic Programming [6] aims to determine under which constraints a
goal in a logic program holds. A constraint logic program looks like any logic
program, with the exception that each program rule has an associated constraint,
saying “This rule is applicable if this constraint is satisfied.”

Definition 2.1 (constraint logic program) A constraint logic program con-
sists of a set of universally quantified program rules (clauses)

Ao« C|Bi,...,Bp. (n>0)

where Ay is an atomic formula (the head), By, ..., B,, are body literals (or subgoals
of the rule) and C' is a constraint. The meaning of such a rule is that Ay is satisfied
whenever C' and By, ..., B, are satisfied.

Definition 2.2 (literal) A literal is a possibly negated atomic formula. The
terms positive literal and negative literal will be used to refer to non-negated and
negated atomic formulae.

Definition 2.3 (call, answer) A program rule with one or more body literals is
called a call or a non-unit clause. A program rule with no body literals is called
an answer or a unit clause.

Definition 2.4 (renaming substitution) A renaming substitution 6 is a bijec-
tive mapping VAR — VAR on the set VAR of variables.



4 Preliminaries

Definition 2.5 (variant) Two formulae Fy; and Fy are called variants if there
exists a renaming substitution 6 such that F10 = F5.

A special case of CLP is CLP(FD), that is Constraint Logic Programming over
a Finite Domain. In CLP(FD) the set of constraint variables VAR range over some
finite set VAL of values. A typical finite set is the set {true, false} of Boolean
values, which would permit us to have Boolean expressions as constraints.

The set of solutions sol(C) of a constraint C are all variable mappings o :
VAR — VAL that render the constraint C' true.

The implementation described in this thesis uses the binary decision diagram
package BuDDy (see [1] for an explanation of Binary Decision Diagrams) over
Boolean values, but can with some simple modifications support any set CON
of constraints supporting the basic operations @ : CON x CON — CON, ® :
CON x CON — CON, 11 : VAR* x CON — CON, © : CON x CON — CON,
—=: CON — CON and ¢: VAR x VAL — CON, satisfying the following:

o s50l(Cy & Cs) = sol(Ch) U sol(Cy)

sol(C1 ® C3) = sol(C1) N sol(Ca)

0 € sol(IIzC) iff there exists ¢’ € sol(C) such that Vz; € T: 0(x;) = 6 (x;)
sol(—=C) = sol(true)t \ sol(C)

sol(C1 © Ca) = sol((Cy ® =C3) @ (—C1 ® Cs))

o 0 e sol(zov)iff §(z) =v

That is, we require disjunction, conjunction, projection, complementation,
symmetric difference and binding of values to variables.

Below are some examples. A valuation {Vi — nq, Vo — nga, V3 — n3} is written
(n1,n2,m3). A value of * denotes that any value in VAL is permitted, so {(1,2, )}
acts as a short form for {(1,2,X) | X € VAL}.

VAR = {V1,V,5,V3} VAL=1{1,2,3}
sol(Vio1) ®=(Va02))
= sol(V1 0 1) N sol(—(Va ©2))
= {10 N ({0 %03 \ {(%,2,%)})
= {(17 *y *)} N {(*, 1, %), (*7 3, *)}
- {(17 1, *)7 (1a 3, *)}
SOZ(H{V27V3}((V1 <& ].) ® _‘(Vé & 2)))
= {(*7 L, *)7 (*’ 3, *)}
Unifiers are extensively used throughout the model description. The unifiers
used here are directed most general unifiers, or dmgus for short. The motivation

for such a construct is that we will need to control which variables occur in the
terms we create.

Ltrue represents the constraint that is always satisfied



2.2 Computation Tree Logic (CTL) 5

Definition 2.6 (directed most general unifier (dmgu)) A directed most gen-
eral unifier dmgu(s,t) of two terms s and t is a most general unifier of s and ¢ in
which all variable-to-variable mappings are from variables in t to variables in s.

Whenever there exists an mgu, there also exists a dmgu. The example below
should show this intuitively.

s=f(X,Y) t=f(5,9(2))
unifier mgu(s,t)? dmgu(s,t)?
(X = 8,Y — g(2)} YES NO
(S = X,Y — g(2)} YES YES

2.2 Computation Tree Logic (CTL)

Only a brief survey of CTL is supplied here. For further insights on CTL and
other temporal logics, see [5].

CTL is a temporal logic. This means that it can express properties about
present and future states. It also supports quantifying existentially or universally
on the possible paths to get to these states. A state in CTL is a valuation of
the state variables (which might be By,..., B, when we operate in the Boolean
domain and need no more than 2" states). Modifying one or more state variables
moves us into another state.

For expressing the CTL operators, we need a binary transition relation R that
describes which pairs of states that express possible transitions in our model.
(01,02) € R (or, alternatively expressed, o1 Ro2) iff it is possible to go from state
01 to o9 in a single step. It is assumed that every state permits at least one
transition (possibly into itself). The transition relation then implicitly defines a
set of infinite transition paths ogoy ..., given an initial state og. In Table 2.1,
such an underlying static transition relation is assumed. oy = F means that the
property F holds in the state 0.

oo Ex=vw iff v € VAR, v € VAL and o¢(z) = v
UO):FI/\FQ iﬂ'Uo):FlaIldO'Q):FQ
oo ): Fi Vv Fy iff o ): Fy or og ': Fy (01“ bOth)

oo = ~F iff o [ F
oo E ex(F) iff there is a path ogoy ... such that o1 E F
oo E eg(F) iff there is a path ogoq ... such that o; = F for every i > 0

oo | eu(Fy, Fy) iff there is a path ogoy ... and an ¢ > 0 such that
oj = Fy for every 0 < j < iand o; E F
oo E ef(F) iff there is a path cgoy ... such that 31 >0:0, E F

Table 2.1. CTL operators

In addition to the operators listed in Table 2.2, there are also operators ax, ag,
au and af. Their meaning differ from ez, eg, eu and ef only in that “if there is



6 Preliminaries

a path ogoy ... such that” is changed into “for all paths ogoy ...”. For example,
0o E ax(F) means “F holds in every state that can be reached from og in one
step”.

To remember the meaning of the CTL operators, one could associate the letters
in the following manner.

there Exists

for All

in the neXt

is Globally satisfied (now and in the future)
is satisfied Until

is satisfied some time in the Future

a0l MK YD

2.2.1 CLP representation of CTL

When defining the CLP representation of the CTL operators defined in Table 2.1,
one needs to define a few predicates.

holds/2 takes a (ground) CTL formula and a state description as arguments. The
meaning of holds(F, S) is “F holds in the state S”.

step/2 takes two state descriptions as arguments and returns true iff there is a
transition from the first state to the second.

sat/1 is the satisfies-predicate. It takes a formula of constraint variables as its
argument and expresses a constraint. This predicate is treated in a special
way, since its semantics are different from the other predicates’.

The complete list of CTL operators may then be expressed as in Table 2.2.
Some of the operators, are expressed in terms of other operators. For example,
eg(F) is equivalent to —af(—F), since “there exists an infinite path where F is
always satisfied” is equivalent to “it is not true that all paths sooner or later
dissatisfy F”.

The transition relation step/2 is easiest described by having a single sat-formula
on the right hand side. An example of a transition relation over states expressed
by two state variables (a maximum of four states) that permits transitions from
(1,1) to (1,0) and from (1,0) to (1,1) and to all other states to themselves? is
then

step([S1, S2], [S], S5]) < sat(or(and(Sy = 1,and(S2 = 1,and(S] = 1,55 = 0))),
or(and(Sy = 1,and(S2 = 0,and(S7 = 1,55 = 1))),
or(and(S; = 0,and(S2 = 0,and(S7 = 0,55 = 0)))

and(S1 = 0,and(S2 = 1,and(S] = 0,55 = 1))))))).

or, in infix notation

2As defined in Section 2.2, all states must have a transition to some state.



2.2 Computation Tree Logic (CTL)

holds(or(F,G),S) — holds(F,S).

holds(or ( G),S) — holds(G, 5).

holds(and(F,G), S) — holds(F, S), holds(G, S).
holds(not(F ) S) —n~ holds(F,S).
holds(xor(F1,F2),S) <« holds(F1,5),~ holds(F2,5).
holds(xor(F1,F2),S) <« holds(F2,5),~ holds(F1,5).
holds(ex(F), S) — step(S1, 52), holds(F, S2).
holds(eg(F), S) — holds(not(af(not(F))),S).
holds(eu(F,G), S) — holds(G, S).
holds(eu(F,G),S) — holds(F, S), holds(ex(eu(F,G)),S).
holds(ef(F),S) — holds(eu(true F),9S).
holds(axz(F), S) — holds(not(ex(not(F))), S).
holds(ag(F),S) — holds(not(ef(not(F))),S).
holds(au(F1, F2),S)

holds(and(’not( u(not(F2), and(not(F1),not(F2)))), not(eg(not(F2)))),S).
holds(af(F), — holds(F,S).
holds(af(F), — holds(ax(af(F)),S).
holds(true, S).

Table 2.2. CLP version of CTL operators

step([S1, Sa), [S1,55]) < sat((S1 A Sa A ST A —Sh)
V (S1 A =Sy ASTASS)
V (=81 A =Ss A =S7 A —=SY)
V (=81 A Sa A=ST A SY))

or, in graph notation

The expressions above is written as a disjunction of steps from the state (51, S2)
to the state (57, 5%), but any equivalent Boolean constraint expression would also
do. The constraints on the state variables tells under which conditions a state

transition is allowed.



8 Preliminaries

Negation concerns

The usage of negation in CTL requires us to ask questions of the form “Which
variable substitutions do not satisfy this formula?”. This raises a concern that we
have to deal with.

What if we have the illustrative example program in Figure 2.17

Figure 2.1. Tllustrative example program

Here, we would like to get the answer X # 1 or X € {2, 3} if we seek an answer
to the question p(X). The latter means calculating the Herbrand universe and
then complementing the answers to ¢(X) within this universe.

The kind of negation we need is called constructive negation [13] and basically
amounts to taking the complement of the disjunction of all answers to a positive
goal.

Definition 2.7 (alphabet, functor) The alphabet of a program P is the set
of functors (symbols denoting objects) and predicate symbols (symbols denoting
relations between objects) of P. A functor takes zero or more arguments from
the object domain to construct an object. A functor with arity zero is called a
constant.

Definition 2.8 (Herbrand universe) The Herbrand universe Us of an alpha-

bet A is the set of all possible ground terms possible to express using the functors
of A.

Py . holds(and(Fy, F3),S) — holds(Fy,S), holds(Fs, S).
P, :  holds(a,[S1,S2]) « sat(S1 =1).
Py : holds(b, [S1, S2]) < sat(Se =1).

a?

Py i query([Bi, Bs]) < holds(and(a, b), [B1, Bs]).

predicate symbols: query/1, holds/2, sat/1
functors: and/2, a/0, b/0

Figure 2.2. Example program

Part of the Herbrand universe of the program in Figure 2.2 would be

{a, b, and(a,b), and(and(a,and(b,a))), and(and(a,a),and(b,b)), ...}



2.2 Computation Tree Logic (CTL) 9

We see that as soon as we have a functor taking at least one argument, we will
have a Herbrand universe of infinite size. This is then clearly also the case with
our representation of CTL (Table 2.2), since it contains several such functors.

Luckily, by imposing a very sensible restriction on our queries, we can avoid this
problem. The solution is to ground all CTL formulae in our queries. This actually
makes perfect sense, since we are hardly interested in asking “From which states
can we go to another state where any formula is true?”. By inspecting Table 2.2,
we see that as long as we keep our queries semi-ground, the first argument to
holds/2 in all subsequent calls will also be ground and our negation concerns
reduced to negating so-called semi-ground formulae. This is enough, since the
constraint variables are only placeholders for the constraint values we return.

Definition 2.9 (semi-ground) A formula is semi-ground if it contains no vari-
ables except for constraint variables.

Definition 2.10 (linear) A formula is linear if no variable in it occurs more than
once.

Definition 2.11 (state vector) A state vector is a sequence of state variables
[Vi,...,V,] that together with a constraint on the same state variables expresses
a set of states of the system we are simulating.

Definition 2.12 (semi-ground canonical form) A formula is in semi-ground
canonical form if it is semi-ground and linear and all state variables occur only in
State vectors.

Examples of formulae and properties follow. VAR = {V1,V>}.

Semi-ground | Linear | State variables only
in state vectors

h([Vi, Va, V1]). YES NO YES
h([VA]) < by (V4). YES NO NO
h([Vi, Va]) < bi(X). NO YES YES
hi(a, [V1, Va]). YES YES YES

Definition 2.13 (answer tuple) An answer tuple is a tuple (H, A) where
H is a positive literal in semi-ground canonical form.
A Is a constraint that represents a set of answers associated with H.

Depending on the context in which it is used, an answer tuple will be an alternative
answer tuple or a bounding answer tuple. The difference between these will be
explained in Section 2.3.

Definition 2.14 (call tuple) A call tuple is a tuple (H, B, C, P) where



10 Preliminaries

H is a positive literal in semi-ground canonical form, representing the head of a
call.

B is a non-empty sequence of literals, the body literals of a call.
C is the constraint so far accumulated for this call tuple.

P is the set {Py,...,P,} of program clauses that can be used for EBC (see Sec-
tion 2.3) with this call tuple.

Using the program in Figure 2.2 as our input program, some of the possible
call tuples and answer tuples that may arise are:

Call tuples

H B C P
query([B1, Bz]) (holds(and(a,b), [B1, Ba])) true {P}
holds(and(a,b),[B1, Ba]) (holds(a, [B1, Ba)), true {P2}
holds(b, [B1, Bz]))
holds(and(a,b),[B1, Ba]) (holds(b, [B1, Ba))) true ® (B1 =1) | {Ps}

Answer tuples

H A

hOldS(CL, [Bl, BQ]) Bl

hOldS(b, [Bl, BQ]) B2
holds(and(a,b),[B1, Bz]) | true® (By =1)® (B2 =1)

This thesis covers only the temporal logic CTL, but any temporal logic ex-
pressed in CLP(FD) meeting the requirements of a correct input program (see
Section 3.1.1) will do.

2.3 Overview of the computation model

This section will give an informal explanation to the computation model, in order
to make the exact definition later on easier to understand.

All extension operations operate on an abstract table. The actual implemen-
tation may use a set or another data structure. Lookup and insert operations are
used frequently, and each entry is guaranteed to be unique® so the implementa-
tion described in this thesis uses several sets (giving logarithmic time complexity
for both insertion and lookup). The term used for this abstract data structure is
simpy table.

The entries that populate the table are call tuples and answer tuples. The
answer tuples come in two flavours—alternatives and (upper) bounds—which differ
only in the way that they are used.

3Entries whose clauses are variants are merged, while keeping information about renaming
substitutions to separate them.



2.3 Overview of the computation model 11

The main idea behind the computation model is that the order in which the
extension operations are applied does not matter, as far as soundness and com-
pleteness are concerned. By using different computation strategies, one can influ-
ence different aspects of the computation, which will in turn influence the amount
of resources used. The strategies will be discussed in Chapter 4.

Before any of the extension operations take place, the table needs to contain
something to operate on. This will be our query (a semi-ground CLP program
clause, e.g. P, in Table 2.2), given along with the rest of the CLP program.
Extensive definitions of the input program syntax and semantics are given in Sec-
tion 3.1.

When none of the possible extension operations would change the table (by
adding new entries or modifying existing ones) we have reached our sought fixpoint
and the answers to the initial query can be extracted from the final table.

There are three types of extension operations on the table, namely resolution
operations, instantiation operations and updating operations.

2.3.1 Resolution operations

The resolution operations are Extension By Answer Alternative (EBAA) and Ex-
tension By Closed World Assumption (EBCWA).

EBAA

Given one call tuple C' and one alternative answer tuple A in the table, a new
entry is created by intersecting the set of answers for C' with the set of answers of
A and removing the first body literal of C'. This new entry is then inserted into the
table. The requirement is of course that the head of A is relevant for (unifies with)
the first body literal of C. The following is an example of the EBAA operation.
The entries above the arrow are present in the table and the entry below the arrow
is added. Csjz_x) in the example is the constraint Cy with all occurences of Z
replaced by X.

h(X, Y) — 4 | bl(X),bQ(Y),b3(Z) € table
b1(Z) «— Cs. € table

U
W(X,Y) — C1 @ Capy_xy | ba2(Y),bs(Z). € table

The update mechanism (described in Section 3.4.2) needs to know which entries
that were added by EBAA operations and which call tuples that were used, so we
need to store these answer extensions.

Definition 2.15 (answer extension) An answer extension is a tuple (E;, Ey, o)
where E,, is the entry obtained through an EBAA on E;, E}, is an entry stored in
the table and o = dmgu(FEy, E.,) exists. Sometimes Ej, is also called the answer
extension of E; (by o).



12 Preliminaries

All answer extensions are stored as a labeled DAG (Directed Acyclic Graph)
on the entries, where ¢ constitutes the label. This DAG will be used by the update
mechanism described in Section 3.4.2. Figure 2.3 shows how part of such a DAG
could look like.

a(X) <= b(X), d(X). |

- \

a(Y) <= c(Y), d(Y). {Y > X}
E.

Figure 2.3. DAG for the answer extensions {(FE1, Es, {}), (F2, E3,{Y — X})}, obtained
from two EBAA operations—first using F; and then using Eb.

EBCWA

Many logic programming systems operate under the closed world assumption, in
which lack of evidence of a property is taken as evidence to the contrary. The
closed world assumption made in our implementation is that if a body literal L of
a call tuple in the table does not unify with the head of any clause in the input
program, we infer that there is no way to solve L.

If L is a positive literal, there exists no solution to the whole body, since any
solution must satisfy all body literals.

But if L is a negative literal we have the case that the negation of what we
want to prove is false. Then we simply remove L and continue.

2.3.2 Instantiation operations

Instantiating operations create new entries to put in the table. The only instanti-
ation operation is Extension By Call (EBC).

EBC

Given one call tuple in the table and a clause from the input program, a new entry
is created by unifying the head of a copy of the program clause and the first body
literal of the call tuple. An example of the EBC operation is shown below.

a(Xl) — C | h(Xl,XQ),bg(XQ). € table
WMZ,X1) — Ca | b1(Z, X1),b2(X1). € input program
I
h(X1,X2) « C1 ® Copzx, x,—x,] | 01(X1, X2),02(X2). € table




2.3 Overview of the computation model 13

The meaning of this operation is to make sure a subgoal (the first body literal)
of the chosen call tuple is solved eventually. When this subgoal is actually solved
depends on the choice of strategies (see Chapter 4).

2.3.3 Updating operations

Updating operations do not actually extend the table, but propagate it towards the
fixpoint. The only updating operation is Extension By Answer Bound (EBAB).

EBAB

Through the course of computation, we might end up with bounding answer tuples
in our table. A bounding answer tuple with a head H states that the answers for
H must be within those specified by the bound. The final set of answers will be
(B1®---®B,)®(A1®---®A,,) where {(H, A1), ...,(H, A,,)} are the alternative
answer tuples for H and {(H, B1),...,{H, B,,)} are the bounding answer tuples
for H.

To make sure that this property holds even for entries previously processed, an
update mechanism is used on the table. The update mechanism will be covered in
the detailed computation model description in the next chapter.



14

Preliminaries




Chapter 3

The computation model

The computation model described in this chapter is an implementation of the ab-
stract computation model described in [7] and outlined in the previous chapter.
A few changes have been made to Jahundovics and Nilsson’s abstraction, but as
demonstrated later, soundness and completeness are still achieved. The imple-
mentation consists of several components (Figure 3.1) which will be explained in
detail in this chapter.

Input
program

Output

Fixoor
Scanner |:> Parser |:> xpoint z>
engine

Figure 3.1. Components of the implementation

3.1 Input specification

The input to the program consists of two parts. Firstly, a configuration file speci-
fying at least which strategies to use (see Chapter 4) and which output to produce.
The second type of input is the complete CLP program and the query for which
to seek all the answers.

3.1.1 CLP program

The syntax of the CLP program mimics that of the logic programming language
Prolog [10], with some restrictions. A BNF for the grammar used can be found in
Appendix A. The last clause of the input program, as shown in the BNF, is the
query to be answered.

Some additional requirements on the input program are required for the unifier
and entry merging (see Section 3.4.1) to work.

15



16 The computation model

linearity All literals must be linear. This is because the merging of two entries
(see Section 3.4.1) presupposes that there is always a renaming substitution
unifying the stored entry and the one added.

preserved typed arity If two functors or predicate symbols in the program
share the same name, they also share the same arity and type of their argu-
ments.?

semi-ground query The head of the query clause must be semi-ground and all
its body literals must be in semi-ground canonical form.

instance semi-groundness All instances of program clauses must be in semi-
ground form. This implies that all variables of a program rule that is not
mentioned in the head are state variables (in state vectors).

variable representation The head of a clause (including the query) must con-
tain all state variables that are to be included in the answer to the head of
that clause. This is because variables mentioned in the body but not in the
head act as existentially quantified in the body.

The semi-ground query requirement and the instance semi-groundness require-
ment together ensure that all added entries will be in semi-ground canonical form.

Constraint expressions

A focal point of constraint logic programming is the constraints themselves. To
express a constraint associated with a clause, a sat/1-literal is put in the body
(see Appendix A). These constraint literals do not count as ordinary body literals
and are thus not referred to as such in the future.

Below is an example of a rule with the associated constraint “S1 is not satis-
fied”. Earlier examples of sat in Chapter 2 used the notation S; = 0, but what is
written below is how it actually looks like in the input program, since only Boolean
constraints are supported.

holds(prop, [S1, S2]) :- sat(not(S1)), holds(subprop, [S1, S2]).

3.2 The scanner

The scanner reads the program text, consisting of the step relation, the semanti-
cally complete fragment of CTL and the query to be evaluated. It then outputs
semantically marked symbols for the parser to use in the next step.

The scanner generator Flex [11] was used to create the scanner.

I This imposes a slight restriction on the program, since it is not possible to express a predicate
that takes two equal arguments (e.g. p(X, X)). It is still possible with state list arguments, since
it is possible to equate two state variables by using sat-clauses.

2Thus there can be no case where a functor takes a state list as its first argument and another
case where it takes a constant as its first argument. The program has to be constructed in such
a way that this never occurs. Variables do not count as a type in this regard, since they can
represent any type.



3.3 The parser 17

3.3 The parser

The parser reads the symbols given by the scanner and produces an abstract syntax
tree according to an LR (1) grammar (see Appendix A). In this process, constraint
expressions are interpreted (so it is only done once). After parsing is done, the
fixpoint search begins.

The parser generator Bison [3] was used to create the parser.

3.4 The fixpoint engine

Once the program and the supplied query has been fully parsed, the actual model
checking can begin. By repeatedly applying one of several extension operations,
which modify the table, until no more rules can be applied, a fixpoint will be
reached.

The fixpoint engine and auxiliary modules were entirely implemented in C+-+
using the Standard Library. [12]

3.4.1 Structures

The table® is a tuple (AnsA, ObAnsA, AnsB, ObAnsB, Calls, ObCalls, Links) of
disjoint sets where

AnsA is the set of alternative answer tuples derived but not yet used in an EBAA
operation.

ObAnsA is the set of alternative answer tuples already used in an EBAA operation.

AnsB is the set of bounding answer tuples that have not yet influenced any used
answer alternatives in ObAnsA. EBAB operations remove entries from this
set.

ObAnsB is the set of bounding answer tuples that have influenced all matching
answer alternatives in ObAnsA.

Calls is the set of call tuples that still have a possibility for EBC or EBCWA.

ObCalls is the set of call tuples where neither EBC nor EBCWA are possible
anymore.

Links is the set of answer extensions (may be perceived as a DAG) created by
EBAA operations.

Also included in the computation is the program Prog, which is a static list
containing all the clauses except the query from the input.

Before computation starts, Calls consists of the query and the rest of the table
is empty.

3Discussed in Section 2.3.



18 The computation model

Adding to the table

In the following sections, we will use the expression “put (E,C) into the table”,
where E is a clause H <+ By, Ba,...,B, (n > 0) and C is the constraint to be
associated with that clause. This convenient notation covers both call tuples and
answer tuples. The constraint C' is projected onto the state variables occuring in
E before being added.

This does not necessarily mean that an entry is added to the table, as (F, C)
could instead merge with an existing entry (E’,C’). A prerequisite for merging
them is that F and E’ are variants. The actual merging amounts to changing
the existing constraint C” into C’' @ C, where § = dmgu(E, E'), and discarding
(E,C).

Adding an answer tuple If n =0, then F is an (alternative) answer tuple. In
this case, we check if there exists a renaming substitution A and an answer tuple
(H\, Ag) € AnsA. If it exists, Ay is replaced by Ay ® CA. Otherwise, a new
answer tuple (H,C) is inserted into AnsA.

Adding a call tuple If n > 0, we are dealing with a call tuple. In this case, we
first check Calls for a call tuple (H', (B}, B, ..., B.),C’, P"). If such a call tuple
exists, and = dmgu((H' < B}, B}, ..., B},), E) exists, then C" is replaced by C'&®
C0. If there exists no such call tuple, a new call tuple (H, (By, Ba, ..., By),C, P)
is inserted into Calls, where P is a set containing the program clauses from Prog
whose heads unifies with H.

When adding a call, we also need to instantly apply an answer extension by any
previously used answers for the first body literal B to it. This is necessary since the
answers already used will not reoccur and we need to incorporate them also into
our added entry. The answer to use (o,, 0, unifiers) in the extension is C, ® Cp,
where C,, is the answer alternative (4,0, ' if (Bo,, A,) € ObAnsA, otherwise true)
and Cj is the answer bound (Abab_1 if (Boyp, Apy) € ObAnsB, otherwise true). If
no earlier answer (alternative or bound) for B existed, nothing is done.

3.4.2 Update mechanism

When working with a table in which some entries depend on others, modifying one
entry might require modifying others. In this computation model, we sometimes
find additional answer constraints, which we must incorporate into the table. The
main idea of the update mechanism’s functionality is that the final result should
be the same independent of the order in which the operations were applied.

This amounts to having an update mechanism consisting of two mutually re-
cursive algorithms, which handle disjunctive and conjunctive constraint updates
respectively. The algorithms traverse along the answer extensions defined in Links.
Different actions are performed depending on whether the literal consumed in the
answer extension was negative or not.

The update mechanism guarantees that all necessary entries in the table are
affected by all previously processed answers before any given application of an



3.4 The fixpoint engine 19

extension operation. This is required for soundness, as explained in Section 3.4.4.

Disjunctive constraint update

A disjunctive constraint update on a table entry Ent by a constraint C means
changing the constraint Cg,; currently associated with Ent into Cg, & C. We
also need to recursively modify the answer extension of Ent, if it exists. This is
done in the following manner.

If Ent is an answer tuple If Ent is an answer tuple (H, X), it means we have
found an answer alternative for H. If we already have an entry (H\, A) € AnsA,
we change it into (H\, A @ C)\). Otherwise, we insert (H,C) into AnsA.

By definition, answer tuples have no answer extensions.

If Ent is a call tuple with a negative first body literal Fnt’s constraint
Cpnt is changed into Cg,: @ C. This means that an answer extension Ezt from
Ent needs to have its constraint changed from Cgp @ =C’ to (Cgn: @ C) @ =C’,
where =C" is the answer used for Ent’s first body literal.

Since this is the same as (Cgn: ® ~C") @ (C @ =C"), what we do is simply to
recursively make a disjunctive constraint update by C ® =C’ on Ext.

If Ent is a call tuple with a positive first body literal By a similar
reasoning as for a negative first body literal, we arrive at the conclusion that we
should make a disjunctive constraint update by C' ® C’ on the answer extension
Euxt (if it exists) instead.

Conjunctive constraint update

A conjunctive constraint update on a table entry Ent by a constraint C' means
changing the constraint C'g,; currently associated with Ent into Cg, ® C. We
also need to modify all entries that are answer extensions of Ent. This is done in
the following manner.

If Ent is an answer tuple If Ent is an answer tuple (H, X), it means we have
found an answer bound for H. If we already have an entry (H\, A,) € AnsB, we
change it into (H\, A, @ C\). Otherwise, if we have an entry (H0, A,) € ObAnsA,
we insert (H,C) into AnsB.

If we neither have (H\, Apy) € AnsB nor (H6, A,) € ObAnsA, it means that no
answer alternative has been used for any variant of H yet. In this case, we may just
change ObAnsB directly, since no EBAA have had use for the bounds in ObAnsB
anyway. This slightly ad-hoc solution is necessary to fulfill the requirement that an
alternative has been already applied when applying EBAB (see Section 3.4.3). If
(Hw, A’) € ObAnsB, we change it into (Hw, A’ ® Cw), otherwise we insert (H, C)
into ObAnsB.

By definition, answer tuples have no answer extensions.



20 The computation model

If Ent is a call tuple FEnt’s constraint Cg, is changed into Cgp, @ C.
This means that an answer extension Ezt from FEnt needs to have its constraints
changed from Cgpt ® C' to (Cpt ® C) @ C', where C” is the answer used for Ent’s
first body literal.

Since this is the same as (Cg,: ® C') ® C, what we do is simply to recursively
make a conjunctive constraint update by C' on FEuxt.

3.4.3 Extension operations

There are four possible extension operations on the table. These extension oper-
ations may in turn use the update mechanism defined above. Which one of these
extension operations to apply in a given situation is determined by the chosen
extension strategy. The strategies are covered in detail in Chapter 4.

Extension by call (EBC)

In applying EBC, we hope to find some answers for the next body literal in a call
in the table. We do this by unifying the head of an input program clause with
the first body literal in the chosen call. After this extension, we remove the used
input program clause from the set of matching clauses P to avoid trying to use it
again.

Preconditions
e Call = <H1, (Bll,Blg, ... ;Bln); C, P> € Calls
o Py = ((Hy <« Ba1,Ba,...,B2y,),C") € P.

o 0 =dmgu(B1, Hz)

Postconditions

e P ¢P

e 50l(C") C sol(C") and (sol(C") N sol(C)) C sol(C”) and sol(C") # 0.
e ((Hy < Ba1,Bag, ..., Bay)0,C") is put into the table.

The loose definition in the second postcondition leaves room for choice through
the EBC locality strategy described in Section 4.4.

If P turns into the empty set, then Call is removed from Calls and inserted
into ObClalls.

Extension by answer alternative (EBAA)

When applying EBAA, we pick an answer alternative (H,A) from AnsA. If
(Hw, Aprey) € ObAnsA and sol(A) C sol(Apreyw™!) then we simply remove (H, A)
from AnsA and abort the EBAA operation. This is because the new alternative



3.4 The fixpoint engine 21

is already covered by the disjunction of previous alternatives and would not affect
the set of answers when applied.

If we have not aborted already, we take different actions depending on whether
this is the first time an answer (alternative or bound) for H is applied. This is
because we might have to update call and answer tuples that have been created
from the previous answer extensions. We also always have to adhere to any used
answer bounds for the answer alternative we are applying.

Preconditions
o Ans = (H,A) € AnsA
o If (H\ Ayg) € ObAnsB, then Ay = Ayg\~t. Otherwise A, = true.

e S is the set of all call tuples Call; = (H;, B;, C;, P;) in Calls U ObCalls whose
first body literal B;; unifies with H.

Postconditions (V Call; € S) if no earlier answer for H existed
e FEzt; is equal to Call; with B;; removed and the constraint changed to C”.

e If B;; is negative, C' = C; ® (A ® Ap)f;. Otherwise C' = C; @ (A ® Ayp)b;.

Ezt; is put into the table.

If a new entry is added, Ert; = Ezt; and \; = (. Otherwise Ezt] is the
already existing entry that was modified and \; = dmgu(Ext,, Ext;).

e A link (Call;, Ext;, \;) is also added to Links.

(H, A) is removed from AnsA and inserted into ObAnsA.

Postconditions (V Call; € S) if an earlier answer for H existed

e If the first body literal of Call; is negative, a conjunctive constraint update
by (—(A ® Ap)0;)N; is performed on Ext;, where (Call;, Ext;, \;) € Links.
Otherwise, a disjunctive constraint update by (C;®(A® Ap)6;)\; is performed
on Ea:tl

e (H,A) is removed from AnsA and (Hw, Aprey) € ObAnsA is replaced by
(Hw, Aprey @ Aw).



22 The computation model

Extension by answer bound (EBAB)

When applying EBAB, we pick an answer bound (H, A) from AnsB. If (Hw, Aprey) €
ObAnsB and sol(Apreyw™1) C sol(A) then we simply remove (H, A) from AnsB
and abort the EBAB operation. This is because the new bound is weaker than
the conjunction of the previous bounds and would not affect the set of solutions
when applied. If we do not abort, we continue with the procedure below.

The only way of adding an answer bound to AnsB is by the update mechanism.
That procedure ensures that if we have an answer bound for H in AnsB, we have
applied an alternative for H some time before (see Section 3.4.2).

Preconditions
o Ans = (H,A) € AnsB

e S is the set of all call tuples Call; = (H;, B;, C;, P;) in Calls U ObCalls whose
first body literal B;; unifies with H.

° 91' = dmgu(Bll, H)

Postconditions (V Call; € S)

e If the first body literal of Call; is negative, a disjunctive constraint update
by (C; ® —A6;)\; is performed on Ext;, where (Call;, Ext;, \;) € Links.
Otherwise, a conjunctive constraint update by (A6;)\; is performed on Ezt;.

o (H,A) is removed from AnsB. If (Hw,Apres) € ObAnsB then Ape, is
replaced by Apres @ Aw. Otherwise, (H, A) is inserted into ObAnsB.

Extension by Closed World Assumption (EBCWA)

When applying EBCWA, we look for a call tuple in Calls which has no possibility
for EBC. If its first body literal is negative, we may simply remove it. This is
because we operate under CWA, where —F' is true if F' cannot be proven to be
true.

Preconditions

e Call = (H,(Biy,Bs,...,B,),C,0) € Calls

Postconditions
e (all is removed from Cualls and inserted into ObCalls.

o If By is negative, and Call has not been used for EBC, ((H < Bs, Bs, ..., By),C)
is put into the table.



3.4 The fixpoint engine 23

3.4.4 Soundness of the computation model

For showing soundness, we employ an induction proof showing that the table is
correct in every reachable state. By correct, we mean that a few specific properties
are true. The properties we want to uphold are

Consistency Every constraint associated with a call tuple or an answer tuple in
the table is as it would have been if all tuples from ObAnsA and ObAnsB
had been known from the beginning and the corresponding operations had
been applied at once. That is to say that all constraints in the table has been
affected by every appropriate constraint in ObAnsAU ObAnsB and that the
application order of the operations is irrelevant.

No stray calls There is no Call = (H,B,C, P) € (Calls U ObCalls) such that
(HO, A) € (ObAnsA U ObAnsB) and (Call, Call’,\) ¢ Links. This means
that we have the same result independent of whether the call tuple was
added before an answer for its first body literal was applied, or vice versa.

The base case, where

(AnsA, ObAnsA, AnsB, ObAnsB, Calls, ObCalls, Links)
= <(Z)a @7 @, 07 {Query}’ (Z)a @>

obviously satisfies the properties. Thus it suffices to show that every extension
operation transforms the table into a new table where the properties still hold. So
we examine the extension operations.

The update mechanism

This is technically not an extension operation, but acts as a major part of EBAA
and EBAB.

The soundness of the update mechanism as far as consistency is concerned
should be apparent from its definition in Section 3.4.2.

The property of no stray calls is apparently preserved, since no new calls are
added.

EBC

When performing EBC, we may either add a call tuple or an answer tuple. In
both of these cases, the consistency property holds. This is because the answers
stored in ObAnsA and ObAnsB are not modified in any way.

As for no stray calls—if no answer for the first body literal of the call has been
used, we clearly are not adding a stray call. If an answer for the first body literal
was used before, the property still holds. The latter follows from the definition of
adding a call to the table (see Section 3.4.1).



24 The computation model

EBAA

If it is the first answer alternative found for the literal in question, the consistency
property is naturally satisfied. A new call might be added from this first answer
extension though, but the stray call property is covered in the same way as for
EBC.

The trickier part comes when there have been earlier answer extensions for
this literal. Here we must consider two cases, depending on whether the literal
in question is positive or negative. The commonality in these cases is that we
operate on all call tuples Call = (H,(By,...,By,),C, P) where Bj is a variant of
the head of our answer to be applied. First renaming the variables to those used
already in C'is a requirement for merging the answers at all. We are also sure that
(Call, Call’,0) € Links. Tt is Call’ that we focus on in this proof. C,,, is the new
alternative we are adding.

In the positive case, C' = C' ® (C, ® Cp) must be changed into C ® ((C, @
Chrew)®Ch) = C'B(CRChewy ®CY). This of course amounts to making a disjunctive
update by (C ® Crew ® Cp).

In the negative case, the constraint C’ associated with Call’ can be expressed
as C' = C®—-(C, ®Cyp), where C, and Cj, are the answer alternatives and answer
bounds used for H so far (not including the alternative to be incorporated). Cj is
defined to be true if no earlier answer bound for By has been applied. The new
constraint for Call’ must be logically equivalent to C ®—((Cy ® Chew) 2 Ch) = C'®
—(Cp ® Chew). This clearly represents the same outcome as making a conjunctive
update by =(Cy ® Chew))-

EBAB

As explained in the EBAB description of Section 3.4.3, we are sure that every time
we perform an EBAB we have used a corresponding answer alternative before. Just
as for EBAA above, we have the negative and the positive case. The variables used
are the same as in the EBAA case, except of course that C),.,, now represents the
new answer bound.

In the negative case, ¢/ = C ® -(C, ® Cp) must be changed into C @ —(C, ®
(Cp @ Chew)) =C" & (C @ Chew), a disjunctive update by (C ® ~Chey)-

In the positive case, ¢! = C® (C, ® Cp) must be changed into C® (C, @ (Cp ®
Chrew)) = C' ® Cpew, a conjunctive update by Chpeq-

ECWA

An ECWA extension amounts to adding the derived call or answer to the table so
the same reasoning as for EBC applies.

3.4.5 Completeness of the computation model

For completeness, we need to show that the computation process terminates and
that all possible answers have been found.



3.4 The fixpoint engine 25

Termination

For proving termination, we create a rank function on the possible states of the
table and prove that each operation decreases the rank towards a finite minimal
value.

The valuation function F' on the table state is defined as the sum of X, ..., Xg.

X, Total number of non-satisfying valuations for the constraints in ObAnsA.
Xy Total number of satisfying valuations for the constraints in ObAnsB.
X3 The product of X3; and X3s.

X317 The number of possible valuations for all state variables in any literal
+ 1. This is the same as the product of the number of possible values
for each state variable. We only deal with finite domains for the state
variables, so we know this is a finite product.

X3 The number of additional answer tuples that can be added to ObAnsA
or ObAnsB without merging with existing ones. The set of all possible
entries that can be added is uniquely determined (modulo renaming of
variables) by the input and is clearly finite.

X4 The sum of all set sizes of P in all call tuples in Calls.
X5 The product of X5; and Xxo.

X517 The number of rules in Prog + 1.

X5o The number of additional call tuples we can add to the table that would
not merge with already existing ones. The set of all possible entries that
can be added is uniquely determined (modulo renaming of variables)
by the input and is clearly finite.

X The number of call tuples in Calls that permit EBCWA.

The minimal value of F'is 0, since all six terms have 0 as their minimal value.
So if we can decrease the value of F' in every step, we know that we cannot go on
forever.

EBC Suppose that the number of rules in Prog is n. That means that the size
of P in any call tuple is at most n.

By making an EBC, we first decrease X4 by one. At the same time, we might
add a new call tuple, which would increase X4 by m (0 < m < n) and/or increase
X6 by 1. But by adding a call, we also decrease X5 by n + 1. The net change of
X4+ X5 + Xg is then a decrease of at least 1.

EBAA There are two cases here.



26 The computation model

We merge with an existing entry in ObAnsA Since we only use? answer

alternatives that are not already covered by the disjunction of previous alternatives
used for the same head we are sure to decrease X;. A call might be added from
this EBAA operation (if it is the first answer), but just as in the case of EBC,
X4+ X5 + Xg will then have a net decrease of at least 1.

We create a new entry in ObAnsA If we add a new entry to ObAnsA,
X1 will probably increase. X3o will decrease by 1, however, which in turn will
decrease X3 by more than X7 increased. The net decrease of X; + X3 is at least
1.

EBAB There are two cases here too, and they are similar to those in the EBAA
case.

We merge with an existing entry in ObAnsB  Since we only use? answer

bounds that are more discriminating than the conjunction of bounds used for the
same head before we are sure to decrease Xo.

We create a new entry in ObAnsB If we add a new entry to ObAnsB,
X5 will probably increase. X3z will decrease by 1, however, which in turn will
decrease X3 by more than X5 increased. The net decrease of Xs + X3 is at least
1.

EBCWA This will decrease Xg by 1. As with EBC and EBAA, this EBCWA
may have added a call, but the same reasoning applies yet again. We get a net
decrease of at least 1.

Update mechanism It is clear that a finite number of invocations of the update
mechanism performs a finite number of steps. More to the point, it will perform
at most n steps per invokation, where n is the length in literals of the longest body
of a rule in Prog.

Furthermore, it is evident from the EBAA and EBAB parts above that the
update mechanism is only invoked a finite number of times, since they are the
only invokers of the update mechanism.

The cases where the update mechanism puts entries into ObAnsA and ObAnsB
are to be considered the same as the EBAA and EBAB cases above. Both will
give a net decrease of at least 1.

Completeness discussion

As shown above, the computation always terminates in the end. When it does
terminate, all possible extension operations have been applied, meaning that all

4 Aborting before commencing the actual EBAA/EBAB is equivalent to doing nothing, since
the answer might as well not have been there.



3.5 The output 27

possible call tuples have been added through EBC and that all answers have been
applied through EBAA.

It is not as clear, however, that all answer bounds are properly incorporated
into the table, since they are added to ObAnsB directly if no associated EBAA
has been performed. This will only be a problem if no EBAA is performed for that
head at all. As shown below, we are sure that an EBAA will always be performed
for these heads.

The update mechanism is the only way of adding entries into ObAnsB in this
way. We have two cases where an (upper) answer bound is added for a head H.

e We have (H6,(B1),C, P) € CallsUObCalls, where By is the only body literal
of the call tuple and is negative. If we find an additional alternative answer
for By, the update mechanism will impose a new bound for H. In this case,
however, we have already added an answer alternative for H to AnsA, which
have been or will be applied.

e We have (HO,(B;),C,P) € Calls U ObCalls, where B is the only body
literal of the call tuple and is positive. If we find a bound for By, the update
mechanism will want to add a new bound for H. By recursive reasoning,
this would require that an EBAA for B; has been applied, in which case we
would have already added an answer alternative for H to AnsA, which have
been or will be applied.

3.4.6 Computation process

The initial state of the computation is when AnsA = AnsB = ObAnsA = ObAnsB =
Calls = ObCalls = 0 and (Q, C) is added to the table. @ is the query supplied as
the last clause of the input and C is the constraint initially associated with that
rule.

After that, the computation proceeds in accordance with the flow chart in
Figure 3.2. Actions marked with “(S)” are influenced by the chosen strategy (see
Chapter 4).

3.5 The output

The amount of output from the program can be regulated to include selected parts
of the following. See Appendix B for an example of how this is specified in the
configuration file. Most users will only use status, report, res and err.

Each output type is explained and illustrated below.

status This option enables the printing of status messages showing the configu-
ration options and informing of the different stages of the execution.

Configuration options are

GLOBAL_STRATEGY = weighted



28 The computation model

Begin

Are we finished?

Report result
Quit

Pick entry type (S)

Answer bound Call

Answer

Pick bound (S) alternative Pick a call C1 (S)
Y

Pick alternative (S)
Abide by old bounds

Can a clause C2
be chosen?

Associated
alternative used
before?

No

First application
of that alternative?

No

ves Has C1 been

Save bound used for EBC?
I

Does C1'’s first body literal
and C2’s head unify?

Run update mechanism

Y

Perform EBCWA

A 4

Find all fitting calls No

Resolve with first body literal
Add derivates

Add derived entry

Figure 3.2. Flow chart of fixpoint computation.

PERCENT_LOCAL_EXTENSIONS = 50
STRATEGY_ANS_A = random
STRATEGY_ANS_B = random
STRATEGY_CALLS = random
STRATEGY_POSSIBLES = random
Logging: report status res err

Initialising constraints...
Parsing... Parsed.

report This option enables the printing of the final answer from the fixpoint
calculation.



3.5 The output 29

query([Al, A2]) is satisfied under the following conditions:
{ A1=0, A2=1}
{ A1=1, A2=0 }

res This option enables the printing of resource measurements, including number
of constraint macro operations, different types of extension operations, etc.
as well as the total time used for each resource.

Resource statistics

Constraint macro operations (67): 0.002 s
Constraint projection (27): 0.000999 s
EBAA (8): 0.004 s

table This option enables the printing of the internal table after each computation
step. The number of steps is usually very large and a single description of the
table will often be very big, so this logging option will increase the output
substantially.

Step 2

--Answer alternatives (1)
holds(crit, [A1,A2]). { }
{ A1(8) A2(9) }

ROOT: 82
[ 20] 9 : 0 1
[ 82] 8 : 0 20

--Answer bounds (0)

--Calls (1)

query ([A1,A2]) <- holds(or(ex(crit), crit), [A1,A2]). { 4 }
{17

ROOT: 1

--Obsolete answer alternatives (0)

--Obsolete answer bounds (0)

--Obsolete calls (1)

holds(or(ex(crit), crit), [A1,A2]) <- holds(crit, [A1,A2]). { 1}

{1}
ROOT: 1



30 The computation model

ext This option enables the printing of messages for the actions taken during
extensions.

Extending by first answer

Trying to add to set: holds(or(ex(crit), crit), [A1,A2]).
Adding answer

err This option enables the printing of error messages. The only harmless case
where these show up is if the input program is syntactically incorrent. Other
occasions include corrupt table entries which indicate program failure.

An error occured during parsing.

Bad alternative answer present.

dbg This option enables the printing of debug messages. These are strictly for
debugging purposes and may not make much sense other than to developers.

Applying (1) { A1=S1#5, A2=S2#5 } to holds(ex(crit), [A1,A2]).
Projecting constraint in: holds(ex(crit), [A1,A2]). { }



Chapter 4

Strategies

As the attentive reader may have noticed in the preceding chapter, not every aspect
of the computation is unambiguously defined. What is not defined is left as a choice
of strategy and is the non-determinism of the model. Deciding on the strategies
does not alleviate all non-determinism though, since a fully plausible strategy
would be to randomly pick an alternative among the alternatives presented.

There are a few different types of strategies that can be defined, and they will
be covered in detail in this chapter. All of these strategies are stateless and can
thus be changed before any computation step.

The choice of strategies is specified in the configuration file. For an example of
how a configuration file might look like, see Appendix B.

4.1 Extension picking strategy

In many cases, several of the extension operations (EBC, EBAA, EBAB, EBCWA)
are possible. In this case, it would be preferable to have a strategy that decides
which extension type to use in the next step.

4.1.1 Preference ordering on entry types

This strategy permits six (3!) different preference orderings on the table entry types
(calls, answer alternatives and answer bounds). In a given preference ordering, the
entry type that is most preferred and has at least one corresponding entry in the
table will be chosen.

The letters A, B and C are used to denote Alternative answer tuples, Bounding
answer tuples and Call tuples. The preference ordering ABC then means “Choose
alternative answer tuples before bounding answer tuples and bounding answer
tuples before call tuples.”

31



32 Strategies

4.1.2 Weighted random selection

Using this strategy, a random entry type will be chosen. The probability of choos-
ing a certain entry type is the number of such entries in the table divided by the
sum of all three types.

4.2 Entry picking strategy

When an entry type is chosen, we have implicitly also chosen which extension
operation to try. This is almost true, since call tuples can be used for both EBC
and EBCWA. This ambiguity is resolved after the entry picking strategy has had
effect.

Through the entry picking strategy, we decide which entry of a given type to
use. Once we have picked an entry we are bound to a specific extension operation.
If we have decided on alternative answer tuples or bounding answer tuples, this
should be obvious, since they may only be used for one extension operation each.
When presented with a specific call tuple, the choice is still clear, since EBCWA
is only possible if the set P of possible call extensions is empty.

The possible choices for this strategy type is first, last and random, where first
and last use an arbitrary (but predetermined) ordering which is approximately
alphabetical and random just picks an element at random.

4.3 EBC clause picking strategy

When performing EBC, a clause in the program is chosen and unified with the first
body literal of the chosen call tuple. Although we can only guess which clauses
in the program unifies with the literal, we are sure that we are choosing from a
superset of the possible choices. The EBC clause picking strategy decides in which
order to try clauses from this superset. If the chosen clause’s head does not unify
with the chosen call tuple’s first body literal, the possibility is removed from the
superset.

Just as in the entry picking strategy, our possible strategy choices are first, last
and random and the meaning is the same, with the exception that the ordering is
now the order in which the clauses appear in the program.

4.4 EBC locality strategy

In the definition of EBC in Section 3.4.3, one can notice that “sol(C") C sol(C")
and (sol(C")Nsol(C)) C sol(C")” is one of the postconditions. The reason for this
being so loosely defined is that one may choose C” differently here and affect the
efficiency (keeping soundness and completeness of course). We call this the EBC
locality strategy, and the two obvious choices would be to use C” = C’ (global
EBC) and C” = (C N ") (local EBC).



4.4 EBC locality strategy 33

The strategy permits randomly choosing between these two extreme values by
weighted probability. Setting the probability to 0 or 1 then means using a pure
EBC locality strategy.

4.4.1 Global EBC

By using the global strategy, we mean that the entries added during EBC do not
care about the constraint context in which they were derived. This is evident from
the fact that the constraint for the added entry is only the constraint defined for
that program rule.

The global strategy will in effect result in calculating the constraints for the
constituents first and then conjoining them when calculating the constraint for the
parent call.

4.4.2 Local EBC

Local EBC differs from global in that we know the calling context of the entry
added. We see that because the solutions of the constraint of the added entry is
guaranteed to be a subset of the solutions to the caller’s constraint. In a way, this
is like working top-down.



34

Strategies




Chapter 5

Experimental evaluation

This chapter shows the result of running a test program using different strategies.
The test program represents a system of processes with critical sections. For
each tested strategy configuration, the number of calculation steps and various
resources used are shown. Each test is run three times and the values represented
are average values. The hardware used during testing was a Pentium 3 of 450 MHz
with 256 MB of memory.

5.1 Input program

The program listed here is for three processes, but the tests below are made of
programs with three, five and ten processes. The two larger programs are written
in an analogous way.

This particular input program is chosen for several reasons.

scalability It can be scaled up to as many processes as wanted, while still keeping
the overall structure.

negation It will provide several layers of nested negation during computation.
Negation also provides the possibility for EBAB operations.

branching It contains many branching points, where the computation can take
different, paths, because of the involvement of the CTL predicate or.

comprehensibility The program is comprehensible to humans. We also know
which answers we are supposed to get and can thus easily verify the result.

The input program contains the CTL representation listed in Table 2.2 and the
following code (at the end). The meaning of the code is described in Section 5.2.

35



36 Experimental evaluation

holds(init, [S1,S2,S3]).

holds(crit1l, [S1,52,S3]) :- sat(S1).
holds(crit2, [S1,S2,S3]) :- sat(S2).
holds(crit3, [S1,52,S3]) :- sat(S3).

holds(doublecrit, [S1, S2, S3]) :-
holds(or(or(and(critl, crit2), and(critil, crit3)),
and(crit2, crit3)), [S1, S2, S3]).

step([S1, S2, s3], [T1, T2, T3]) :-
action([S1, T1, T2, T3]),
action([S2, T2, T1, T3]),
action([S3, T3, T1, T2]).

action([S, T, TT1, TT2]) :-
sat (or (and (not (S) ,not(T)),
or(and(not(S), and(not(TT1), and(not(TT2), T))),
).

spec([S1, S2, S3]) :- holds(ag(not(doublecrit)), [S1, S2, S3]).

query([S1, S2, S3]) :- holds(init, [S1, S2, S3]),
spec([S1, S2, 83]).

5.2 Input interpretation

We use one state variable to represent the state of each process. They are very
simple processes that are only allowed to be in either the non-critical or the critical
state (values 0 and 1 respectively). The whole system of three processes then
contain three state variables.

We see that the program defines five properties.

init holds in every state. By restricting this, we can restrict which states we are
interested in. The name init suggests that it is our initial configuration, but
the name is of course arbitrary.

critN (Ne {1,2,3}) holds iff process N is in its critical state (i.e. the N:th state
variable is 1).

doublecrit holds iff at least two of the properties {crit1, crit2, crit3} hold. This
will be called an invalid state, as opposed to a valid state, where at most
one process is in its critical section.

Also noteworthy is that when scaling this example up to five and ten processes,
the doublecrit predicate is defined as a balanced binary tree with depth [lg (g)]

and [lg(%))] respectively.



5.2 Input interpretation 37

The restriction put on the transitions within the system is that each process
must perform one of three actions.

stay Stay in the state it is currently in.

enter Enter its critical session in the next step. This is only allowed if no other
process will be in its critical section in the next step.

leave Leave the critical state.

The step relation represented by the step predicate in the program will look
like in Figure 5.1. State XYZ means that process 1 is in state X, process 2 in
state Y and process 3 in state Z.

Figure 5.1. The step relation.

We then ask which states among the init states (all possible states in this
example) that supports the specification “No path ever reaches an invalid state.”
(for paths originating from that state). We expect that all valid states and no
other states will be returned as the set of answers. This is indeed what will be
returned.

The interesting part then becomes how much resources will be used to de-
termine this. This is shown using two different extension picking strategies in
Table 5.1 (using CBA) and in Table 5.2 (using ABC). Each of the tables show
resource usage when running the programs with three, five and ten processes, each
using 0%, 50% and 100% local EBC extensions. The results will be discussed in
Section 5.3.

The rows of the tables have the following meaning.

Steps Number of extension operations done.

Ops Number of operations on constraints. (®,@®,...)



38 Experimental evaluation

EBAA Number of EBAA operations.
EBAB Number of EBAB operations.
Tot time Total time in seconds used during computation.

The number of EBC and EBCWA operations performed is not shown, since
it does not vary with choice of strategy. Figure 5.2 shows the average time used
per constraint operation for different percentages of EBC locality with the CBA
extension picking strategy and 10 processes.

EBC locality 0% 50% 100%
Processes 3 5 10 3 5 10 3 5 10
Steps 64 135 458 69 126 483 57 134 466
Ops 131 314 1062 | 148 312 1187 | 120 324 1171
EBAA 30 62 198 34 56 219 26 61 204
EBAB 2 5 13 4 5 16 0 5 13
Tot time 0.04 0.12 092 | 0.04 0.12 0.88 | 0.04 0.12 0.82

Table 5.1. Resource usage with the CBA extension picking strategy.

EBC locality 0% 50% 100%
Processes 3 5 10 3 5 10 3 5 10
Steps 82 240 1050 | 76 232 1089 | 86 235 1063
Ops 180 665 3758 | 173 677 3887 | 204 677 3569
EBAA 43 132 616 40 127 633 45 128 617
EBAB 8 40 187 5 37 208 10 38 198
Tot time 0.05 0.23 226 | 0.05 0.23 228 | 0.06 0.23 2.06

Table 5.2. Resource usage with the ABC extension picking strategy.

5.3 Discussion about the results

The interpretation provided in this section applies only to the tested input pro-
grams. Other programs may behave in a different way.

As seen in Table 5.1 and Table 5.2, the only remarkable difference is that
CBA outperforms ABC in every way. The main reason for this is that ABC' uses
answer alternatives as soon as they are available, which greatly reduces the number
of occasions where two answer alternatives are merged before application. That
makes the update mechanism run much more frequently. It also introduces far
more bounding answer tuples into the table.

The EBC locality percentage evidently has an impact on the time used for
constraint operations (see Figure 5.2). This is because the added constraint may
become false during a local EBC operation. A constraint operation involving true



5.3 Discussion about the results 39

200

150

15/ op
100

50 - n

0 ! ! ! !
0 20 40 60 80 100

% local extensions

Figure 5.2. Running time per constraint operation.

or false is easier to handle. In this case, the average time for a constraint operation
using a purely local EBC locality strategy was about half of that using only global
EBC extensions. The reason why EBC locality did not matter significantly in the
test cases is that the constraint operations in these examples only contributed with
5-15 percent of the total time. This increases when more complicated constraints
(e.g. with more variables) are used.

It is clear, however, that the choice of computation strategies influence the
efficiency of the computation.



40

Experimental evaluation




Chapter 6

Conclusions

This chapter concludes by providing a thesis summary and suggesting some pos-
sible improvements.

6.1 Summary

In this thesis, we have shown how ideas from Constraint Logic Programming (CLP)
can be used in model checking of CTL. Tabled resolution is used as a technique for
avoiding infinite computation loops and constructive negation is used to maintain
soundness under negation.

The implementation behind this thesis is intended to work as a test bed for
future study on how to best use CLP(FD) for model checking. This necessitated
the possibility of specifying computation strategies to influence different aspects
of the computation.

6.2 Results

As shown in Section 5.3, the choice of computation strategies do influence the use
of resources. This is to be expected, of course.

In the experimental evaluation, the same configuration of strategies (CBA ex-
tension picking strategy, only local EBC extensions) worked best in every regard.
This need not be the case in every situation. though.

The ABC extension picking strategy might be preferred e.g. if we have a pro-
gram without negation and want to extract partial solutions mid-way through the
computation. When we have no negation in the program, every answer reported
on the way will be correct, since no bounding answer tuples will be produced to
restrict those answers. The impact of EBC locality naturally has much to do with
the implementation of the constraints.

41



42 Conclusions

6.3 Future improvements

One of the main goals with the implementation have been to provide for extensibility—
e.g. by new strategies and different finite domains. This therefore naturally pro-
vides many possibilities of future improvements.

Another improvement would be to rewrite the unification process and the pro-
cess merging two table entries to also permit non-linear terms. The current im-
plementation uses a very simple unification process since it is run very frequently.

The current implementation only supports reading the entire input program
at the same time together with the query. It would be preferable to have the
possibility of adding new queries interactively. As long as the head of the new
query does not unify with any previously existing formula, this will not be a
problem.

When problems get larger and more complicated, so does the internal repre-
sentation and the computation process. To remedy this problem, at least partly,
the implementation should support parallel computation on several machines. The
concept of divide and conquer used, where subgoals of a call tuple are solved inde-
pendently from most of the rest of the table, is normally well suited for parallelism.



Bibliography

[1] H.R. Andersen. An Introduction to Binary Decision Diagrams. Lecture notes,
1997.

[2] L. Degerstedt. Tabulation-based logic programming. PhD thesis, Linkdping
Institute of Technology, 1996.

[3] C.Donnely and R. Stallman. Bison. Free Software Foundation Inc., 59 Temple
Place - Suite 330, Boston, MA 02111, USA.

[4] O. Grumberg E. Clarke and D. Peled. Model Checking. MIT Press, 2000.

[5] E. Allen Emerson. Handbook of theoretical computer science (vol. B): formal
models and semantics, pages 995-1072. MIT Press, 1990.

[6] J. Jaffar and M. Maher. Constraint Logic Programming: A Survey. Journal
of Logic Programming, 19/20:503-581, 1994.

[7] V. Jahundovics and U. Nilsson. On the Efficiency of Local and Global Sym-
bolic Model Checking of CTL. (Draft), 2004.

[8] K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[9] U. Nilsson and J. Liibcke. Constraint Logic Programming for Local and
Symbolic Model-Checking. Lecture Notes in Computer Science, 1861:384+,
2000.

[10] U. Nilsson and J. Maluszyniski. Logic, Programming and Prolog. John Wiley
& Sons Ltd., 2nd edition, 2000.

[11] V. Paxson. Flex. Free Software Foundation Inc., 59 Temple Place - Suite 330,
Boston, MA 02111, USA.

[12] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd edi-
tion, 1997.

[13] P. J. Stuckey. Constructive Negation for Constraint Logic Programming. In
Proceedings of the 14th Australian Computer Science Conference, pages 328—
341, 1991.

[14] D. Warren. Memoing for logic programs. CACM, 35(3):93-111, 1992.

43



44

Bibliography




Appendix A

BNF for input program

This is the BNF of the grammar used for input programs (start symbol is program).
Every symbol may be separated by any number of <whitespace> characters.

program := program-clauses query

program—clauses : program—clause program—clauses

| program-clause

query := program-clause
program-clause := head ’.’
| head ’:-’ body ’.’
head := functor
body := sat
| sat literals
| literals
sat := ’sat’ ’(’ sat-expr ’)’
sat-expr := ’and’ ’(’ sat-expr ’,’ sat-expr ’)’
| or’> >(° sat-expr ’,’ sat-expr ’)’
| ’xor’ ’(’ sat-expr ’,’ sat-expr ’)’
| ’not’ ’(’ sat-expr ’)’
| <var>
literals := literal

| literal literals

literal := functor
| °\+’ functor

45



46 BNF for input program

<id>

functor :=
| <id> *( args ’)°

| arg ’,’ args

arg := functor

| 1list

| variable
list := [? °]°

| [’ args 1’

| °[? args |’ arg °]’
variable := <var>

<id> = [a-z][a-zA-Z_0-9]+
<var> = [A-Z][a-zA-Z_0-9]*
<whitespace> = [space]

| [tab]
| [newlinel

To support constraints over other finite domains than the Boolean, an extra
interpretation of sat needs to be added, as well as an interpretation of a a value
of that domain. There is currently no support for it in the implementation, but
it is easily added. Here is an example of a domain of integer numbers 0...99. eq
corresponds to the ¢ operator defined in Chapter 2.

sat := ’eq’ ’(’ <var> ’,’ <val> ’)’

<val> = [0-9][0-9]



Appendix B

Configuration file example

A configuration file is specified when running the program. Below are the general
configuration settings and their descriptions.

Logging This option lists which types of textual output we want from the pro-
gram. The different output types are described in Section 3.5.

LOG report status err res

EBC locality strategy This option defines the probability of performing local
EBC operations when EBC operations are performed. See Section 4.4 for a
description of the EBC locality strategy.

PERCENT_LOCAL_EXTENSIONS 100

Extension picking strategy This option defines our extension picking strategy.
A value of WEIGHTED denotes a weighted probability and a permutation of
ABC denotes a preference ordering where EBAA is performed before EBAB
and EBAB is performed before EBC and EBCWA. See Section 4.1 for a
description of the extension picking strategy.

GLOBAL_STRATEGY cba

Entry picking strategies These options define how an entry is picked when the
operation has been determined. Listed in order are the strategy choices for
picking alternative answer tuples, bounding answer tuples, call tuples and
program clauses (for EBC). Possible values are first, last and random. See
Section 4.2 for a description of the entry picking strategy.

47



48 Configuration file example

STRATEGY_ANS_A random
STRATEGY_ANS_B random
STRATEGY_CALLS random
STRATEGY_POSSIBLES random

Random seed Setting the random seed to a specific value ensures that the pseudo-
random number generator will generate the same sequence of random num-
bers from time to time. This is useful for debugging. Setting this option to
random or leaving it out completely results in a time-specific random seed
and unknown pseudo-random values.

RANDOM_SEED 1108844205



