Definition 3.2 (LTL semantics)
σ,i |= p iff p ∈ σi for p ∈ P (3.3)
σ,i |= ¬φ iff not σ,i |= φ (3.4)
σ,i |= φ ∨ ψ iff σ,i |= φ or σ,i |= ψ (3.5)
σ,i |= φ U ψ iff there is an j≥i such that σ,j |= ψ
and σ,k |= φ for all i ≤ k < j (3.6)
σ,i |= Xφ iff σ,i + 1 |= φ (3.7)
Syntatic sugar
Conjunction: φ ∧ ψ ≡def ¬(¬φ∨¬ψ)
Implication: φ → ψ ≡def ¬φ∨ψ
Reformulated (is this correct?)
p∈ σi p∈ P
-------------- (3.3)
σ,i |= p
\u03c3 σ \u03c6 φ \u03c8 ψ \u2208 ∈ \u2227 ∧ \u2228 ∨
\u2261 ≡ \u2264 ≤ \u2265 ≥ \u2192 → \u2194 ↔
\u22a4 ⊤ \u22a5 ⊥