Definition 3.2 (LTL semantics)

  σ,i |= p     iff  p ∈  σi for p ∈  P                    (3.3)
  σ,i |= ¬φ    iff  not σ,i |= φ                          (3.4)
  σ,i |= φ ∨ ψ iff  σ,i |= φ or σ,i |= ψ                  (3.5)
  σ,i |= φ U ψ iff there is an j≥i such that σ,j |= ψ
               and σ,k |= φ for all i ≤ k < j          (3.6)
  σ,i |= Xφ    iff σ,i + 1 |= φ                           (3.7)
Syntatic sugar Conjunction: φ ∧ ψ ≡def ¬(¬φ∨¬ψ) Implication: φ → ψ ≡def ¬φ∨ψ

Reformulated (is this correct?)

   p∈ σi   p∈ P
  -------------- (3.3)
    σ,i |= p

\u03c3 σ \u03c6 φ \u03c8 ψ \u2208 ∈ \u2227 ∧ \u2228 ∨ 
\u2261 ≡ \u2264 ≤ \u2265 ≥ \u2192 → \u2194 ↔ 
\u22a4 ⊤ \u22a5 ⊥