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• Γ ⊢ t  : We can deduce a conclusion t from a sequence of premises Γ 

Propositional Logic - Natural Deduction

A ∈ Γ
Γ ⊢ A

Γ, A, A ⊢ B
Γ, A ⊢ B

contraction
Γ ⊢ B

Γ, A ⊢ B
weakening

Γ,Δ ⊢ A
Δ,Γ ⊢ A

exchange

• Alternatively, we could state that Γ is a set and do with one rule:

A ⊢ A
Identity



• Rules come in pairs: introduction and elimination

Propositional Logic - Natural Deduction

Γ ⊢ A Γ ⊢ B
Γ ⊢ A ∧ B

∧ −I

Γ ⊢ A ∧ B
Γ ⊢ A

∧ −E1 Γ ⊢ A ∧ B
Γ ⊢ B

∧ −E2



•  ⋁-introduction and elimination

Propositional Logic - Natural Deduction

Γ ⊢ A
Γ ⊢ A ∨ B

∨ −I1

Γ ⊢ A ∨ B Γ ⊢ A ⇒ C Γ ⊢ B ⇒ C
Γ ⊢ C

∨ −E

Γ ⊢ B
Γ ⊢ A ∨ B

∨ −I2



• Implication

Propositional Logic - Natural Deduction

Γ, A ⊢ B
Γ ⊢ A ⇒ B

⇒ − I Γ ⊢ A Γ ⊢ A ⇒ B
Γ ⊢ B

⇒ − E



• Negation/False 

Propositional Logic - Natural Deduction

⊥ ⊢ A

• not is an abbreviation for A ⇒ ⊥



• These rules correspond to intuitionistic or constructive interpretation of 
propositional logic: 

- no rule to derive  ￢￢A <=> A    or     (A V ￢A) 

- Propositional logic is decidable

Propositional Logic - Natural Deduction



• Gentzen observed that all proofs for propositional logic can be 
normalised, so they only contain sub formulas of premise or conclusion:

Propositional Logic - Natural Deduction

Γ ⊢A ∧ B
Γ ⊢B

Γ ⊢A ∧ B
Γ ⊢A

Γ ⊢ B ∧ A
∧-I

∧-E2 ∧-E1

Γ ⊢A ∧ B
Γ ⊢B

Γ ⊢ A ∧ B
Γ ⊢A

Γ ⊢B ∧ A

Γ ⊢ A ∧ B
Γ ⊢ A

Γ ⊢A ∧ A
Γ ⊢A



• In 1934, Curry observed a relationship between logic implication A ⇒ B and 
function types A ➔ B in the simply typed lambda calculus 

• Howard realised in 1969 that this connection is much deeper

Curry Howard Isomorphism (Correspondence)



• Consider MinHs, with sum- and product types 
- can be encoded in the λ-calculus, apart from  

- recfun, which can’t be directly encoded, as the function needs to be 
named in the body to be referred to 

- we can implement recursion in the λ-calculus though, as we can apply a 
function to itself: 

•λf. f f 
- not a problem in the untyped λ-calculus, but not possible in the simply typed 
λ-calculus 

- reductions in the simply typed λ-calculus terminate 

- introduce the Y-combinator to make it Turing complete again:

Curry Howard Isomorphism

Y = λf. ((λx. f (x x))(λx. f(x x))) 
Y f = f (Y f) 

Y :: (A ➔ A) ➔ A 
sumF f n = if (n == 0) then 0 (n + f (n-1)) 

sum = Y sumF



• Propositional logic rules directly correspond to our typing rules:

Propositional Logic - Natural Deduction

A ⊢ A
Identity Γ, A, A ⊢ B

Γ, A ⊢ B
contraction

Γ ⊢ B
Γ, A ⊢ B

weakening Γ,Δ ⊢ A
Δ,Γ ⊢ A

exchange

A ∈ Γ
Γ ⊢ A

is equivalent to defining Γ to be a set and the rule

x : A ∈ Γ
Γ ⊢ x : A

which corresponds to the typing rule for variables:



• Rules for ∧ and product typing rules:

Propositional Logic - Natural Deduction

Γ ⊢ A Γ ⊢ B
Γ ⊢ A ∧ B

∧ −I

Γ ⊢ A ∧ B
Γ ⊢ A

∧ −E1

Γ ⊢ A ∧ B
Γ ⊢ B

∧ −E2

Γ ⊢ 𝚝𝟷 : A Γ ⊢ 𝚝𝟸 : B
Γ ⊢ 𝙿𝚊𝚒𝚛 t1 t2 : A * B

Γ ⊢ t : A * B
Γ ⊢ 𝙵𝚜𝚝 t : A

Γ ⊢ t : A * B
Γ ⊢ 𝚂𝚗𝚍 t : B



• Implication and the function type:

Propositional Logic - Natural Deduction

Γ, A ⊢ B
Γ ⊢ A ⇒ B

⇒ − I

Γ ⊢ A Γ ⊢ A ⇒ B
Γ ⊢ B

⇒ − E

Γ, x : A ⊢ t : B
Γ ⊢ 𝙵𝚞𝚗 x . t : A → B

Γ ⊢ t2 : A Γ ⊢ t1 : : A → B
Γ ⊢ 𝙰𝚙𝚙𝚕𝚢 t1 t2 : B



•  ⋁-rules and the sum type:

Propositional Logic - Natural Deduction

Γ ⊢ A
Γ ⊢ A ∨ B

∨ −I1

Γ ⊢ A ∨ B Γ ⊢ A ⇒ C Γ ⊢ B ⇒ C
Γ ⊢ C

∨ −E

Γ ⊢ B
Γ ⊢ A ∨ B

∨ −I2

Γ ⊢ t : A
Γ ⊢ 𝙸𝚗𝙻 t : A + B

Γ ⊢ t : B
Γ ⊢ 𝙸𝚗𝚁 t : A + B

Γ ⊢ t : A + B Γ, x : A ⊢ t1 : C Γ, y : B ⊢ t2 : C
Γ ⊢ 𝙲𝚊𝚜𝚎 t (x . t1) (y . tt) : C



A ∧ B ⊢ B ∧ A

A ∧ B ⊢ A ∧ B
A ∧ B ⊢ B

A ∧ B ⊢ A ∧ B
A ∧ B ⊢ A

A ∧ B ⊢ B ∧ A

x : A * B ⊢ x : A * B
x : A * B ⊢ 𝚂𝚗𝚍 x : B

x : A * B ⊢ A * B
x : A * B ⊢ 𝙵𝚜𝚝 x : A

x : A * B ⊢ 𝙿𝚊𝚒𝚛 (𝚂𝚗𝚍 x) ( 𝙵𝚜𝚝 x) : B * A

Proofs and programs

•  Proof:

•  Corresponding typing judgement



• What about this term?

Proofs and programs

𝙿𝚊𝚒𝚛 (𝚂𝚗𝚍 𝚡) (𝚂𝚗𝚍 (𝙿𝚊𝚒𝚛 (𝙵𝚜𝚝 𝚡) (𝙵𝚜𝚝 𝚡)))



• In short, it is the observation that  

- propositions can be viewed as types 

- well-typed programs as their (constructive) proof 

- proof normalisation as program evaluation 

- in the simply typed lambda-calculus, all programs terminate 

‣ what happens if we add the Y-combinator?

Curry Howard Isomorphism



Curry Howard Isomorphism

• For which of the following types can we write total, terminating MinHs functions? 

- ∀ a. ∀ b.(a * b) ➔ (b * a) 

- ∀ a. ∀ b.(a + b) ➔ (b + a) 

- ∀ a. ∀ b.(a * b) ➔ a 

- ∀ a. ∀ b.(a + b) ➔ a 

- ∀ a. ∀ b.(a ➔ b) ➔ (b ➔ a)  

- ∀ a. ∀ b. ∀ c. (a  ➔ b) ➔ (b  ➔ c) ➔  (a ➔ c) 

• terminating programs to (constructive) proofs, and the type checker acts as a 
proof checker



• We discussed the type interpretation of  ∧ (*) , ⋁ (+), and ⇒ (➔) 

• What about the logic constants True and False? 

- True can be represented by a type with exactly one element (unit):

Adding True and False

()

data Unit = Unit

- False by the empty type:

data Void



• Howard proposed extension for for-all and existentially quantified types (now 
known as dependent types) to predicate logic 

- de Bruijn’s Automath 

- Martin-Löf’s type theory (Agda, Idris) 

- PRL, nuPRL 

- Coquant and Huet’s calculus of constructions (Coq proof assistant)

Curry Howard Isomorphism



• The pattern of logicians/computer scientist discovering the same system 
independently has repeated since then multiple times: 

- Second order lambda calculus (Jean-Yves Girard, John Reynolds), basis for 
Java, C# 

- Principal type inference, by Roger Hindley and Robin Milner (e.g., Haskell) 

- Existential quantification in second order logic as basis for abstraction (John 
Mitchell, Gordon Plotkin)  

- Girard’s linear logic, linear types

Curry Howard Isomorphism



• Propositions represent assumptions, can be used as many types as we like, or 
be ignored 

• Typed identifiers in the environment can also be used as many times as we like 
(or ignored) 

• How can we restrict access to a variable? 

- abstract data types

Propositional logic and simply typed MinHs/λ-calculus



• For example, the fresh variable store in the assignment:

Example: modelling state

module MinHS.TCMonad (TC
                     , freshNames
                     , runTC)

newtype TC a = TC ([Id] -> ([Id], a))

instance Monad TC where
  …

runTC :: TC a -> a
runTC (TC f) = map snd (f freshNames)

fresh :: TC Type
fresh = TC $ \(x:xs) -> (xs,TypeVar x)



• The fact that TC is a monad means 

- we have return :: a -> TC a

- and           (>>=) :: TC a -> (a -> TC b) -> TC b

- and syntactic sugar

Example: modelling state

do 
   newName1 <- fresh
   newName2 <- fresh 
   return (Prod newName1 newName2)



• Other scenarios where it would be good to track access to objects 

- knowing when to safely change a structure using destructive update 

- knowing when to garbage collect an object

Tracking access to objects



• In linear logic, logical atoms can be interpreted as resources 

- can’t be arbitrarily copied 

- don’t disappear 

• New operators: 

- A ⊗ B : you’ve got A and B  

- A & B : you can pick either A or B 

- A ⊕ B : you get A or B (not your choice)  

- A ⊸ B  : consumes A, gives B 

- !A : you’ve got an unlimited amount of A 

• Assumptions 

- <A> : linear assumption (weakening and contraction don’t hold) 

- [A]   : intuitionistic assumption (weakening and contraction hold)

Linear Logic



• Example: 

lunch special: for 10$, you get one serving of tempura, as much rice as you 
like, your choice of side salad or veggies, and dessert of the day (fruit or ice 
cream, depending what’s on offer)

Linear Logic

($1⊗ $1⊗ $1⊗ $1⊗ $1⊗ $1⊗ $1⊗ $1⊗ $1⊗ $1) 

⊸ 

(Tempura ⊗ !Rice ⊗  (Soup &  Veggies) ⊗ (Fruit ⊕  IceCream)) 

      



[A] ⊢ A
[Id]

⟨A⟩ ⊢ A
⟨Id⟩

Γ,Δ ⊢ A
Δ,Γ ⊢ A

Exchange

Γ, [A], [A] ⊢ B
Γ, [A] ⊢ B

Contraction
Γ ⊢ B

Γ, [A] ⊢ B
Weakening



[Γ] ⊢ A
[Γ] ⊢ !A

! − Intro

Γ ⊢ !A Δ, [A] ⊢ B
Γ,Δ ⊢ B

! − Elim



Γ, ⟨A⟩ ⊢ B
Γ ⊢ A ⊸ B

⊸ − Intro

Γ ⊢ A ⊸ B Δ ⊢ A
Γ,Δ ⊢ B

⊸ − Elim



-A ⊗ B : you’ve got A and B

Γ ⊢ A Δ ⊢ B
Γ,Δ ⊢ A ⊗ B

⊗− Intro

Γ ⊢ A ⊗ B Δ, ⟨A⟩, ⟨B⟩ ⊢ C
Γ,Δ ⊢ C

⊗− Elim



-A & B : you can pick either A or B

Γ ⊢ A Γ ⊢ B
Γ ⊢ A & B

& − Intro

Γ ⊢ A & B
Γ ⊢ A

& − Elim − 1
Γ ⊢ A & B
Γ ⊢ B

& − Elim − 1



Γ ⊢ A
Γ,Δ ⊢ A ⊕ B

⊕− Intro − 1

Γ ⊢ A ⊕ B Δ, ⟨A⟩ ⊢ C Δ, ⟨B⟩ ⊢ C
Γ,Δ ⊢ C

⊕− Elim

Γ ⊢ B
Γ,Δ ⊢ A ⊕ B

⊕− Intro − 2

-A ⊕ B : you get A or B (not your choice)  



• Taken from Phil Wadler’s ‘Linear types can change the world’ paper:

A linearly type simple language

s,t,u ::=   x  
| λ⟨x⟩.t | s t  
| !t      | case s of  !x → u  
|⟨s,t⟩   | case s of ⟨x, y⟩ → t  
| Inl s | Inl s  | case s of Inl x  → t; Inr y → u  
| ⟨⟨s,t⟩⟩ | Fst s | Snd s



[x : A] ⊢ x : A
[Id] ⟨x : A⟩ ⊢ x : A

⟨Id⟩

Γ,Δ ⊢ t : A
Δ,Γ ⊢ t : A

Exchange

Γ, [y : A], [z : A] ⊢ u : B
Γ, [x : A] ⊢ u[y := x, z := x] : B

Contraction

Γ ⊢ u : B
Γ, [x : A] ⊢ u : B

Weakening



[Γ] ⊢ t : A
[Γ] ⊢ !t : !A

! − Intro

Γ ⊢ s : !A Δ, [x : A] ⊢ B
Γ,Δ ⊢ case s of !x → u : B

! − Elim



Γ, ⟨x : A⟩ ⊢ B
Γ ⊢ λ⟨x⟩ . u : A ⊸ B

⊸ − Intro

Γ ⊢ s : A ⊸ B Δ ⊢ t : A
Γ,Δ ⊢ s⟨t⟩ : B

⊸ − Elim



Γ ⊢ t : A Δ ⊢ u : B
Γ,Δ ⊢ ⟨t, u⟩ : A ⊗ B

⊗− Intro

Γ ⊢ s : A ⊗ B Δ, ⟨x : A⟩, ⟨y : B⟩ ⊢ C
Γ,Δ ⊢ case s of ⟨x, y⟩ → v : C

⊗− Elim



Γ ⊢ t : A Γ ⊢ u : B
Γ ⊢ ⟨⟨t, u⟩⟩ : A & B

& − Intro

Γ ⊢ s : A & B
Γ ⊢ Fst s : A

& − Elim − 1

Γ ⊢ s : A & B
Γ ⊢ Snd t : B

& − Elim − 1



Γ ⊢ t : A
Γ,Δ ⊢ InL t : A ⊕ B

⊕− Intro − 1

Γ ⊢ s : A ⊕ B Δ, ⟨x : A⟩ ⊢ C Δ, ⟨y : B⟩ ⊢ w : C
Γ,Δ ⊢ case s of Inl ⟨x⟩ → v; InR⟨y⟩ → w : C

⊕− Elim

Γ ⊢ s : B
Γ,Δ ⊢ InR s : A ⊕ B

⊕− Intro − 2



• A linear type system is very restrictive 

- every function has to return all its linear arguments, otherwise they can’t be 
used by the caller anymore 

- that might be ok for functions which ‘update’ the arguments, but is annoying 
for read-only functions 

- there are work-arounds, by allowing read-only access in a limited scope, but 
it’s still onerous 

Ownership-types in practice



• The systems programming language Rust uses an ownership type system 

- closer to a so-called affine type system: variables can be used at most once 
(not exactly once, as in linear) 

• Motivation: 

- cleaner and safer than C, so no manual memory management 

- but still efficient, with predictable performance (no garbage collection)

Ownership-types in practice



Ownership-types in practice



Ownership-types in practice




