Announcements

Simp|y_Typed Lambda Calculus + I have clommen’red on most of your
proposals

Meeting 18, CSCI 5535, Spring 2009

BERORE QOING SEAT RETST.
[WILL LIKE THIS,
AN GWE

Quick Review Quick Review
+ Tell me about A-calculus %m; + A-caleulus is as expressive as a Turing
) MWW{ o machine
4 Pomredu T " fanciton ,.W].‘c-dbl\ * We can encode a multitude of data types
) waa. - suope S von ‘oldes in the untyped L-calculus
D’ deed Jerm (ro e) + To simplify programming it is useful to
. (ombhna add types to the language
o enomirg & bounl vasdls ’d“’nm:é;j‘m) - We now start the study of type systems

=5 algrds da Griyn rottion L7

in |h€ context 0' |h€ Iyped A,—CC(ICUIUS
° .&rv\',m.-h&m%dml be, !
MMAQ F Y

TSR NK 3 4
Today's Plan Types
+ Type System Overview + A program variable can assume a range
* First-Order Type Systems of values during the execution of a
+ Typing Rules program
- Typing Derivations * An upper bound of such a range is called

a type of the variable

- A variable of type "bool" is supposed to
assume only boolean values

- If x has type "bool” then the boolean
expression "not(x)" has a sensible meaning
during every run of the program

* Type Safety

Typed and Untyped Languages

+ Untyped lanquages
. c.,.) &S

wghet’

-lw
‘1““%4'][\” ,Pu.‘,rpw ts“?bwm"

- (Statically) Typed languages
“Prd “yte oS et comple 4

Typed and Untyped Languages

* Untyped languages
- Do not restrict the range of values for a given variable

- Operations might be applied to inappropriate arguments. The
behavior in such cases might be unspecified

- The pure A-calculus is an extreme case of an untyped language
(however, its behavior is completely specified)

- (Statically) Typed languages
- Variables are assigned (non-trivial) types
- A type system keeps track of types
- Types might or might not appear in the program itself
- Languages can be explicitly typed or implicitly typed

The Purpose Of Types

- The foremost purpose of types is to prevent
certain types of run-time execution errors
* Traditional trapped execution errors
- Cause the computation to stop immediately
- And are thus well-specified behavior
- Usually enforced by hardware
- eg., Division by zero, floating point op with a NaN
- eg., Dereferencing the address O (on most systems)
* Untrapped execution errors

- Behavior is unspecified (depends on the state of the
machine = this is very bad!)

- e.g., accessing past the end of an array

- e.g., jumping to an address in the data segment
9

Preventing Forbidden Errors:
Static Checking
+ Forbidden errors can be caught by a
combination of static and run-time checking
+ Static checking
- Detects errors early, before testing
- Types provide the necessary static
information for static checking
- eg., ML, Modula-3, Java
- Detecting certain errors statically is
undecidable in most languages

Execution Errors

* A program is deemed safe if it does not cause
untrapped errors
- Languages in which all programs are safe are safe languages
+ For a given language we can designate a set of
forbidden errors
- Asuperset of the untrapped errors, usually including some
trapped errors as well
+ e.g., null pointer dereference
+ Modern Type System Powers:
- prevent race conditions (e.g., Flanagan TLDI '05)
- prevent insecure information flow (e.g., Li POPL '05)
- prevent resource leaks (e.g., Vault)
- help with generic programming, probabilistic languages, ...
- .. are often combined with dynamic analyses (e.g., CCured)
10

Preventing Forbidden Errors:

Dynamic Checking

* Required when static checking is
undecidable
- e.g., array-bounds checking

* Run-time encodings of types are still
used (e.g. Lisp)

* Should be limited since it delays the
manifestation of errors

+ Can be done in hardware (e.g. null-
pointer)

Why Typed Languages?

» Pedlormance

9 Kagw moK nformarhion
Seq. wt s
5 fmt th 4o chacll 64 randme.

4
Senth Emors tMla_
%docvymnmm

- Walgs wl rpc.AmNa.

Why Typed Languages?

- Development
- Type checking catches early many mistakes
- Reduced debugging time
- Typed signatures are a powerful basis for design
- Typed signatures enable separate compilation
* Maintenance
- Types act as checked specifications
- Types can enforce abstraction
+ Execution
- Static checking reduces the need for dynamic checking

- Safe languages are easier to analyze statically
+ the compiler can generate better code

Why Not Typed Languages?

Pleavle y
Z e Tgpe g ot sy
- L e
;70?:&,//'”;@ ?"’j”“"‘)
o Wk wnﬂwlhﬂ“a

’;\ Can‘““d‘a “'@f ‘ﬂ‘m

Why Not Typed Languages?

+ Static type checking imposes constraints on the
programmer
- Some valid programs might be rejected
- But often they can be made well-typed easily
- Hard to step outside the language (e.g. OO programming in a
non-O0 language, but cf. OCaml, etc.)
+ Dynamic safety checks can be costly
- 50% is a possible cost of bounds-checking in a tight loop
+ Inpractice, the overall cost is much smaller
- Memory management must be automatic = need a garbage
collector with the associated run-time costs

- Some applications are justified in using weakly-typed
languages (e.g., by external safety proof)

Safe Languages

+ There are typed languages that are not safe (‘weakly
typed languages")

+ All safe languages use types (static or dynamic)

Typed Untyped
Static Dynamic
Safe |Jove , ML o
J Pyteen, ,Péiu;u g Yeade
floyy-, D

Safe Languages

+ There are typed languages that are not safe (“weakly
typed languages")

+ All safe languages use types (static or dynamic)

Typed Untyped
Static Dynamic

Safe ML, Java, Lisp, Scheme, Ruby, | A-calculus
Ada, C# Perl, Smalltalk, PHP,

Haskell, ... Python, ...

+ We focus on statically typed languages

Properties of Type Systems

* How do types differ from other program
annotations?

- Types are more precise than comments
- Types are more easily mechanizable than
program specifications
+ Expected properties of type systems:
- Types should be enforceable
- Types should be checkable algorithmically
- Typing rules should be transparent
+ Should be easy to see why a program is not well-typed

19

Why Formal Type Systems?

* Many typed languages have informal
descriptions of the type systems (e.g., in
language reference manuals)

20

Why Formal Type Systems?

+ Many typed languages have informal
descriptions of the type systems (e.g., in
language reference manuals)

+ A fair amount of careful analysis is required
to avoid false claims of type safety

+ A formal presentation of a type system is a
precise specification of the type checker
- And allows formal proofs of type safety

+ But even informal knowledge of the principles
of type systems help

Formalizing a Language

1. Syntax
« Of expressions (programs), of types
« Issues of binding and scoping
2. Static semantics (typing rules)
« Define the typing judgment and its derivation rules
3. Dynamic Semantics (e.g., operational)
+ Define the evaluation judgment and its derivation rules
4. Type soundness
+ Relates the static and dynamic semantics
« State and prove the soundness theorem

22

Typing Judgments

Recall: judgment?
A stakment” e w/cl

Typing Judgments

+ Recall: judgment
- A statement J about certain formal entities
+ A common form of typing judgment:
I' - e : 1 (eisanexpressionand tis a type)
I (6amma) is a set of type assignments for
the free variables of e
- Defined by the grammar T := - | T, x i t

- Type assignments for variables not free in e are
not relevant

-eg, Xx:int,y:intkx+y:int

24

Typing rules

* Typing rules are used to derive typing
Jjudgments
I'=1:int

+ Examples: eir el

I'Fxz:7
I'ker:int T'kFeg:int
I'Fep +es:int

Typing Derivations

+ A typing derivation is a derivation of a typing
Jjudgment (big surprise)

+ Example:

rz:intFz:int x:intk1:int
z:intk x:int z:intkFxz+1:int
z:intkFz+ (z+1):int
+ ' e: 1 means there exists a derivation of this
typing judgment (= "we can prove it")
+ Type checking: given T, e and t, find a derivation
+ Type inference: given I and e, find tand a derivation

26

Proving Type Soundness: Intuition

* A typing judgment
+ Define what it means for a value to have a type
ve ||
(e.g. 5 €| int || and true € || bool ||)
+ Define what it means for an expression to have

a type
eec |t| iff w.(elv=ve|r|)
+ Prove type soundness
If - Fe:t thene € | 1 |

or equivalently
If -te:tandelv thenve|]|
+ This implies safe execution (since the result of
a unsafe execution is not in || t || forany 1) ,

Simply-Typed Lambda Calculus

+ Syntax: Notice the i
Terms eu= x |Axit. e |eje,
n |e+e, |iszeroe

|

| true | false | not e
| if e; then e, else e

Types t:u=int | bool | 1y — 1,

71 — T, is the function type

—» associates to the right

+ This language is also called F,
28

Static Semantics of F,

+ Function rules

el Mxtretz
I'Fz:7 I'FXzire:7— 7

fre: vt (he,t

F|_616227'

Static Semantics of F

+ Function rules

z:7rel Tz:Tke:7
I'Fax:T1 'FXzire:7— 7

I'Fei:m—>717 T'hesy:m

F|_€1€227'

30

More Static Semantics of F,

* Base type rules

I'ker:int T'kHes:int
I'n:int I'ke +ey:int

I'e: bool
'+ true : bool I'F not e : bool
I'kei:bool T'key:7 TI'keg:T

I'if e; theneselsees: 7

Typing Derivation in F,

+ Consider the term

AX 1 int. Ab : bool. if b then f x else x
- With the initial typing assignment f : int — int

+ Write the type derivation

32

Typing Derivation in F;

+ Consider the term
AX :int. Ab : bool. if b then f x else x
- With the initial typing assignment f : int — int

Xb : bool. if b then f =
feint = int - Az ¢ int.Ab : bool. if b then f else : int — bool — int

