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Simply-Typed Lambda Calculus

Meeting 18, CSCI 5535, Spring 2009

Announcements

• I have commented on most of your 
proposals
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Quick Review

• Tell me about  λ-calculus

3

Quick Review

• λ-calculus is as expressive as a Turing 
machine

• We can encode a multitude of data types 
in the untyped λ-calculus

• To simplify programming it is useful to 
add types to the language

• We now start the study of type systems 
in the context of the typed λ-calculus

4

Today’s Plan

• Type System Overview
• First-Order Type Systems
• Typing Rules
• Typing Derivations
• Type Safety
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Types

• A program variable can assume a range range 
of valuesof values during the execution of a 
program

• An upper bound of such a range is called 
a type of the variable
– A variable of type “bool” is supposed to 
assume only boolean values

– If x has type “bool” then the boolean
expression “not(x)” has a sensible meaning 
during every run of the program
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Typed and Untyped Languages

• Untyped languages
– Do not restrict the range of values for a given variable
– Operations might be applied to inappropriate arguments. The 

behavior in such cases might be unspecified

– The pure λ-calculus is an extreme case of an untyped language 
(however, its behavior is completely specified) 

• (Statically) Typed languages
– Variables are assigned (non-trivial) types

– A type system keeps track of types

– Types might or might not appear in the program itself

– Languages can be explicitly typed or implicitly typed
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The Purpose Of Types

• The foremost purpose of types is to prevent 
certain types of run-time execution errors

• Traditional trapped execution errors
– Cause the computation to stop immediately
– And are thus well-specified behavior
– Usually enforced by hardware
– e.g., Division by zero, floating point op with a NaN
– e.g., Dereferencing the address 0 (on most systems) 

• Untrapped execution errors
– Behavior is unspecified (depends on the state of the 
machine = this is very bad!) 

– e.g., accessing past the end of an array
– e.g., jumping to an address in the data segment
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Execution Errors

• A program is deemed safe if it does not cause 
untrapped errors
– Languages in which all programs are safe are safe languages

• For a given language we can designate a set of 
forbidden errors
– A superset of the untrapped errors, usually including some 

trapped errors as well
• e.g., null pointer dereference

• Modern Type System Powers:
– prevent race conditions (e.g., Flanagan TLDI ‘05) 
– prevent insecure information flow (e.g., Li POPL ’05) 
– prevent resource leaks (e.g., Vault) 
– help with generic programming, probabilistic languages, …
– … are often combined with dynamic analyses (e.g., CCured) 
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Preventing Forbidden Errors:
Static Checking

• Forbidden errors can be caught by a 
combination of static and run-time checking

• Static checking

– Detects errors early, before testingbefore testing

– Types provide the necessary static 
information for static checking

– e.g., ML, Modula-3, Java

– Detecting certain errors statically is 
undecidable in most languages
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Preventing Forbidden Errors:
Dynamic Checking

• Required when static checking is 
undecidable
– e.g., array-bounds checking

• Run-time encodings of types are still 
used (e.g. Lisp) 

• Should be limited since it delays the 
manifestation of errors

• Can be done in hardware (e.g. null-
pointer) 
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Why Typed Languages?
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Why Typed Languages?

• Development
–– Type checking catches early many mistakesType checking catches early many mistakes

– Reduced debugging time

– Typed signatures are a powerful basis for design

– Typed signatures enable separate compilation

• Maintenance
– Types act as checked specifications

– Types can enforce abstraction

• Execution
– Static checking reduces the need for dynamic checking

–– Safe languages are easier to analyze staticallySafe languages are easier to analyze statically
• the compiler can generate better code
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Why Not Typed Languages?
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Why Not Typed Languages?

• Static type checking imposes constraints on the 
programmer
– Some valid programs might be rejected

– But often they can be made well-typed easily

– Hard to step outside the language (e.g. OO programming in a 
non-OO language, but cf. OCaml, etc.) 

• Dynamic safety checks can be costly
– 50% is a possible cost of bounds-checking in a tight loop

• In practice, the overall cost is much smaller

– Memory management must be automatic ⇒ need a garbage 
collector with the associated run-time costs

– Some applications are justified in using weakly-typed 
languages (e.g., by external safety proof) 
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Safe Languages

• There are typed languages that are not safe (“weakly 
typed languages”) 

• All safe languages use types (static or dynamic) 
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Unsafe

Safe

DynamicStatic

UntypedTyped

Safe Languages

• There are typed languages that are not safe (“weakly 
typed languages”) 

• All safe languages use types (static or dynamic) 

• We focus on statically typed languages
18

Assembly?C, C++, 
Pascal, ...

Unsafe

λ-calculusLisp, Scheme, Ruby, 
Perl, Smalltalk, PHP, 

Python, …

ML, Java, 
Ada, C#, 
Haskell, ...

Safe

DynamicStatic

UntypedTyped
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Properties of Type Systems

• How do types differ from other program 
annotations?

– Types are more precise than comments

– Types are more easily mechanizable than 
program specifications

• Expected properties of type systems:

– Types should be enforceable

– Types should be checkable algorithmically

– Typing rules should be transparent
• Should be easy to see why a program is not well-typed
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Why Formal Type Systems?

• Many typed languages have informal 
descriptions of the type systems (e.g., in 
language reference manuals) 
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Why Formal Type Systems?

• Many typed languages have informal 
descriptions of the type systems (e.g., in 
language reference manuals) 

• A fair amount of careful analysis is required 
to avoid false claims of type safety

• A formal presentation of a type system is a 
precise specification of the type checker
– And allows formal proofs of type safety

• But even informal knowledge of the principles 
of type systems help
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Formalizing a Language

1. Syntax
• Of expressions (programs) , of types
• Issues of binding and scoping

2. Static semantics (typing rules) 
• Define the typing judgment and its derivation rules

3. Dynamic Semantics (e.g., operational) 
• Define the evaluation judgment and its derivation rules

4. Type soundness
• Relates the static and dynamic semantics
• State and prove the soundness theorem
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Typing Judgments

• Recall: judgment?
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Typing Judgments

• Recall: judgment
– A statement J about certain formal entities

• A common form of typing judgment: 
ΓΓΓΓ ⊢⊢⊢⊢ e : ττττ        (e is an expression and τ is a type) 

• Γ (Gamma) is a set of type assignments for 
the free variables of e
– Defined by the grammar Γ ::= · | Γ, x : τ
– Type assignments for variables not free in e are 
not relevant

– e.g,    x : int, y : int ⊢⊢⊢⊢ x + y : int
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Typing rules

• Typing rules are used to derive typing 
judgments

• Examples:
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Γ ⊢ 1 : int

x : τ ∈ Γ

Γ ⊢ x : τ

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int

Typing Derivations

• A typing derivation is a derivation of a typing 
judgment (big surprise) 

• Example:

• Γ ⊢ e : τ means there exists a derivation of this 
typing judgment (= “we can prove it”) 

• Type checking: given Γ, e and τ, find a derivation
• Type inference: given Γ and e, find τ and a derivation
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x : int ⊢ x : int

x : int ⊢ x : int x : int ⊢ 1 : int

x : int ⊢ x+ 1 : int

x : int ⊢ x+ (x+ 1) : int

Proving Type Soundness: Intuition

• A typing judgment 
• Define what it means for a value to have a type

v ∈∈∈∈ ‖‖‖‖ ττττ ‖‖‖‖
(e.g. 5 ∈ ‖ int ‖ and true ∈ ‖ bool ‖ ) 

• Define what it means for an expression to have 
a type

e ∈   ∈   ∈   ∈   |||| ττττ |||| iff ∀∀∀∀v. (e ⇓⇓⇓⇓ v ⇒⇒⇒⇒ v ∈∈∈∈ ‖‖‖‖ ττττ ‖‖‖‖) 

• Prove type soundness
If ···· ⊢⊢⊢⊢ e : ττττ then e ∈∈∈∈ |||| ττττ ||||

or equivalently
If ···· ⊢⊢⊢⊢ e : ττττ and e ⇓⇓⇓⇓ v then v ∈∈∈∈ ‖‖‖‖ ττττ ‖‖‖‖

• This implies safe execution (since the result of 
a unsafe execution is not in ‖ τ ‖ for any τ) 27

Simply-Typed Lambda Calculus

• Syntax:
Terms     e ::=  x | λλλλx:ττττ. e | e1 e2

|  n | e1 + e2 | iszero e
| true | false | not e
| if e1 then e2 else e3

Types     τ ::= int | bool | ττττ1 →→→→ ττττ2

• τ1 → τ2 is the function type
• → associates to the right

• This language is also called F1
28

Notice the ::Notice the ::ττττττττ

Static Semantics of F1

• Function rules
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Γ ⊢ x : τ Γ ⊢ λx:τ.e : τ → τ ′

Γ ⊢ e1 e2 : τ

Static Semantics of F1

• Function rules
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x : τ ∈ Γ

Γ ⊢ x : τ

Γ, x : τ ⊢ e : τ ′

Γ ⊢ λx:τ.e : τ → τ ′

Γ ⊢ e1 : τ2 → τ Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ
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More Static Semantics of F1

• Base type rules

31

Γ ⊢ n : int

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int

Γ ⊢ true : bool

Γ ⊢ e : bool

Γ ⊢ not e : bool

Γ ⊢ e1 : bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ if e1 then e2 else e3 : τ

Typing Derivation in F1

• Consider the term
λx : int. λb : bool. if b then f x else x

– With the initial typing assignment  f : int → int

• Write the type derivation
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f :int→ int, x:int, b:bool ⊢ b : bool

f :int→ int, x:int, b:bool ⊢ f : int → int f :int→ int, x:int, b:bool ⊢ x : int

f :int→ int, x:int, b:bool ⊢ f x : int f :int→ int, x:int, b:bool ⊢ x : int

f :int → int, x:int, b:bool ⊢ if b then f x else x : int

f : int→ int, x : int ⊢ λb : bool. if b then f x else x : bool→ int

f : int→ int ⊢ λx : int.λb : bool. if b then f x else x : int→ bool→ int


