
1

Simply-Typed Lambda Calculus

Meeting 18, CSCI 5535, Spring 2009

Announcements

• I have commented on most of your
proposals

2

Quick Review

• Tell me about λ-calculus

3

Quick Review

• λ-calculus is as expressive as a Turing
machine

• We can encode a multitude of data types
in the untyped λ-calculus

• To simplify programming it is useful to
add types to the language

• We now start the study of type systems
in the context of the typed λ-calculus

4

Today’s Plan

• Type System Overview
• First-Order Type Systems
• Typing Rules
• Typing Derivations
• Type Safety

5

Types

• A program variable can assume a range range
of valuesof values during the execution of a
program

• An upper bound of such a range is called
a type of the variable
– A variable of type “bool” is supposed to
assume only boolean values

– If x has type “bool” then the boolean
expression “not(x)” has a sensible meaning
during every run of the program

6

2

Typed and Untyped Languages

• Untyped languages
– Do not restrict the range of values for a given variable
– Operations might be applied to inappropriate arguments. The

behavior in such cases might be unspecified

– The pure λ-calculus is an extreme case of an untyped language
(however, its behavior is completely specified)

• (Statically) Typed languages
– Variables are assigned (non-trivial) types

– A type system keeps track of types

– Types might or might not appear in the program itself

– Languages can be explicitly typed or implicitly typed

7

Typed and Untyped Languages

• Untyped languages
– Do notnot restrict the range of values for a given variable
– Operations might be applied to inappropriate arguments. The

behavior in such cases might be unspecified

– The pure λ-calculus is an extreme case of an untyped language
(however, its behavior is completely specified)

• (Statically) Typed languages
– Variables are assigned (non-trivial) types

– A type system keeps track of types

– Types might or might not appear in the program itself

– Languages can be explicitly typed or implicitly typed

8

The Purpose Of Types

• The foremost purpose of types is to prevent
certain types of run-time execution errors

• Traditional trapped execution errors
– Cause the computation to stop immediately
– And are thus well-specified behavior
– Usually enforced by hardware
– e.g., Division by zero, floating point op with a NaN
– e.g., Dereferencing the address 0 (on most systems)

• Untrapped execution errors
– Behavior is unspecified (depends on the state of the
machine = this is very bad!)

– e.g., accessing past the end of an array
– e.g., jumping to an address in the data segment

9

Execution Errors

• A program is deemed safe if it does not cause
untrapped errors
– Languages in which all programs are safe are safe languages

• For a given language we can designate a set of
forbidden errors
– A superset of the untrapped errors, usually including some

trapped errors as well
• e.g., null pointer dereference

• Modern Type System Powers:
– prevent race conditions (e.g., Flanagan TLDI ‘05)
– prevent insecure information flow (e.g., Li POPL ’05)
– prevent resource leaks (e.g., Vault)
– help with generic programming, probabilistic languages, …
– … are often combined with dynamic analyses (e.g., CCured)

10

Preventing Forbidden Errors:
Static Checking

• Forbidden errors can be caught by a
combination of static and run-time checking

• Static checking

– Detects errors early, before testingbefore testing

– Types provide the necessary static
information for static checking

– e.g., ML, Modula-3, Java

– Detecting certain errors statically is
undecidable in most languages

11

Preventing Forbidden Errors:
Dynamic Checking

• Required when static checking is
undecidable
– e.g., array-bounds checking

• Run-time encodings of types are still
used (e.g. Lisp)

• Should be limited since it delays the
manifestation of errors

• Can be done in hardware (e.g. null-
pointer)

12

3

Why Typed Languages?

13

Why Typed Languages?

• Development
–– Type checking catches early many mistakesType checking catches early many mistakes

– Reduced debugging time

– Typed signatures are a powerful basis for design

– Typed signatures enable separate compilation

• Maintenance
– Types act as checked specifications

– Types can enforce abstraction

• Execution
– Static checking reduces the need for dynamic checking

–– Safe languages are easier to analyze staticallySafe languages are easier to analyze statically
• the compiler can generate better code

14

Why Not Typed Languages?

15

Why Not Typed Languages?

• Static type checking imposes constraints on the
programmer
– Some valid programs might be rejected

– But often they can be made well-typed easily

– Hard to step outside the language (e.g. OO programming in a
non-OO language, but cf. OCaml, etc.)

• Dynamic safety checks can be costly
– 50% is a possible cost of bounds-checking in a tight loop

• In practice, the overall cost is much smaller

– Memory management must be automatic ⇒ need a garbage
collector with the associated run-time costs

– Some applications are justified in using weakly-typed
languages (e.g., by external safety proof)

16

Safe Languages

• There are typed languages that are not safe (“weakly
typed languages”)

• All safe languages use types (static or dynamic)

17

Unsafe

Safe

DynamicStatic

UntypedTyped

Safe Languages

• There are typed languages that are not safe (“weakly
typed languages”)

• All safe languages use types (static or dynamic)

• We focus on statically typed languages
18

Assembly?C, C++,
Pascal, ...

Unsafe

λ-calculusLisp, Scheme, Ruby,
Perl, Smalltalk, PHP,

Python, …

ML, Java,
Ada, C#,
Haskell, ...

Safe

DynamicStatic

UntypedTyped

4

Properties of Type Systems

• How do types differ from other program
annotations?

– Types are more precise than comments

– Types are more easily mechanizable than
program specifications

• Expected properties of type systems:

– Types should be enforceable

– Types should be checkable algorithmically

– Typing rules should be transparent
• Should be easy to see why a program is not well-typed

19

Why Formal Type Systems?

• Many typed languages have informal
descriptions of the type systems (e.g., in
language reference manuals)

20

Why Formal Type Systems?

• Many typed languages have informal
descriptions of the type systems (e.g., in
language reference manuals)

• A fair amount of careful analysis is required
to avoid false claims of type safety

• A formal presentation of a type system is a
precise specification of the type checker
– And allows formal proofs of type safety

• But even informal knowledge of the principles
of type systems help

21

Formalizing a Language

1. Syntax
• Of expressions (programs) , of types
• Issues of binding and scoping

2. Static semantics (typing rules)
• Define the typing judgment and its derivation rules

3. Dynamic Semantics (e.g., operational)
• Define the evaluation judgment and its derivation rules

4. Type soundness
• Relates the static and dynamic semantics
• State and prove the soundness theorem

22

Typing Judgments

• Recall: judgment?

23

Typing Judgments

• Recall: judgment
– A statement J about certain formal entities

• A common form of typing judgment:
ΓΓΓΓ ⊢⊢⊢⊢ e : ττττ (e is an expression and τ is a type)

• Γ (Gamma) is a set of type assignments for
the free variables of e
– Defined by the grammar Γ ::= · | Γ, x : τ
– Type assignments for variables not free in e are
not relevant

– e.g, x : int, y : int ⊢⊢⊢⊢ x + y : int

24

5

Typing rules

• Typing rules are used to derive typing
judgments

• Examples:

25

Γ ⊢ 1 : int

x : τ ∈ Γ

Γ ⊢ x : τ

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int

Typing Derivations

• A typing derivation is a derivation of a typing
judgment (big surprise)

• Example:

• Γ ⊢ e : τ means there exists a derivation of this
typing judgment (= “we can prove it”)

• Type checking: given Γ, e and τ, find a derivation
• Type inference: given Γ and e, find τ and a derivation

26

x : int ⊢ x : int

x : int ⊢ x : int x : int ⊢ 1 : int

x : int ⊢ x+ 1 : int

x : int ⊢ x+ (x+ 1) : int

Proving Type Soundness: Intuition

• A typing judgment
• Define what it means for a value to have a type

v ∈∈∈∈ ‖‖‖‖ ττττ ‖‖‖‖
(e.g. 5 ∈ ‖ int ‖ and true ∈ ‖ bool ‖)

• Define what it means for an expression to have
a type

e ∈ ∈ ∈ ∈ |||| ττττ |||| iff ∀∀∀∀v. (e ⇓⇓⇓⇓ v ⇒⇒⇒⇒ v ∈∈∈∈ ‖‖‖‖ ττττ ‖‖‖‖)

• Prove type soundness
If ···· ⊢⊢⊢⊢ e : ττττ then e ∈∈∈∈ |||| ττττ ||||

or equivalently
If ···· ⊢⊢⊢⊢ e : ττττ and e ⇓⇓⇓⇓ v then v ∈∈∈∈ ‖‖‖‖ ττττ ‖‖‖‖

• This implies safe execution (since the result of
a unsafe execution is not in ‖ τ ‖ for any τ) 27

Simply-Typed Lambda Calculus

• Syntax:
Terms e ::= x | λλλλx:ττττ. e | e1 e2

| n | e1 + e2 | iszero e
| true | false | not e
| if e1 then e2 else e3

Types τ ::= int | bool | ττττ1 →→→→ ττττ2

• τ1 → τ2 is the function type
• → associates to the right

• This language is also called F1
28

Notice the ::Notice the ::ττττττττ

Static Semantics of F1

• Function rules

29

Γ ⊢ x : τ Γ ⊢ λx:τ.e : τ → τ ′

Γ ⊢ e1 e2 : τ

Static Semantics of F1

• Function rules

30

x : τ ∈ Γ

Γ ⊢ x : τ

Γ, x : τ ⊢ e : τ ′

Γ ⊢ λx:τ.e : τ → τ ′

Γ ⊢ e1 : τ2 → τ Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ

6

More Static Semantics of F1

• Base type rules

31

Γ ⊢ n : int

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int

Γ ⊢ true : bool

Γ ⊢ e : bool

Γ ⊢ not e : bool

Γ ⊢ e1 : bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ if e1 then e2 else e3 : τ

Typing Derivation in F1

• Consider the term
λx : int. λb : bool. if b then f x else x

– With the initial typing assignment f : int → int

• Write the type derivation

32

Typing Derivation in F1

• Consider the term
λx : int. λb : bool. if b then f x else x

– With the initial typing assignment f : int → int

33

f :int→ int, x:int, b:bool ⊢ b : bool

f :int→ int, x:int, b:bool ⊢ f : int → int f :int→ int, x:int, b:bool ⊢ x : int

f :int→ int, x:int, b:bool ⊢ f x : int f :int→ int, x:int, b:bool ⊢ x : int

f :int → int, x:int, b:bool ⊢ if b then f x else x : int

f : int→ int, x : int ⊢ λb : bool. if b then f x else x : bool→ int

f : int→ int ⊢ λx : int.λb : bool. if b then f x else x : int→ bool→ int

