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Abstract
Continuing a line of work by Abramsky (1994), by Bellin and
Scott (1994), and by Caires and Pfenning (2010), among others,
this paper presents CP, a calculus in which propositions of classical
linear logic correspond to session types. Continuing a line of work
by Honda (1993), by Honda, Kubo, and Vasconcelos (1998), and
by Gay and Vasconcelos (2010), among others, this paper presents
GV, a linear functional language with session types, and presents a
translation from GV into CP. The translation formalises for the first
time a connection between a standard presentation of session types
and linear logic, and shows how a modification to the standard
presentation yield a language free from deadlock, where deadlock
freedom follows from the correspondence to linear logic.

Categories and Subject Descriptors F.4.1 [Mathematical Logic]:
Lambda calculus and related systems; F.4.1 [Mathematical Logic]:
Proof theory; D.3.3 [Language Constructs and Features]: Concur-
rent programming structures

Keywords linear logic, lambda calculus, pi calculus

1. Introduction
Functional programmers know where they stand: upon the foun-
dation of λ-calculus. Its canonicality is confirmed by its double
discovery, once as natural deduction by Gentzen and once as λ-
calculus by Church. These two formulations are related by the
Curry-Howard correspondence, which takes

propositions as types,
proofs as programs, and

normalisation of proofs as evaluation of programs.
The correspondence arises repeatedly: Girard’s System F corre-
sponds to Reynold’s polymorphic λ-calculus; Peirce’s law in clas-
sical logic corresponds to Felleisen’s call-cc.

Today, mobile phones, server farms, and multicores make us all
concurrent programmers. Where lies a foundation for concurrency
as firm as that of λ-calculus? Many process calculi have emerged—
ranging from CSP to CCS to π-calculus to join calculus to mobile
ambients to bigraphs—but none is as canonical as λ-calculus, and
none has the distinction of arising from Curry-Howard.

Since its inception by Girard (1987), linear logic has held the
promise of a foundation for concurrency rooted in Curry-Howard.
In an early step, Abramsky (1994) and Bellin and Scott (1994) de-
vised a translation from linear logic into π-calculus. Along another
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line, Honda (1993) introduced session types, further developed by
Honda et al. (1998) and others, which take inspiration from linear
logic, but do not enjoy a relationship as tight as Curry-Howard.

Recently, Caires and Pfenning (2010) found a twist on Abram-
sky’s translation that yields an interpretation strongly reminiscent
of session types, and a variant of Curry-Howard with

propositions as session types,
proofs as processes, and

cut elimination as communication.

The correspondence is developed in a series of papers by Caires,
Pfenning, Toninho, and Pérez. This paper extends these lines of
work with three contributions.

First, inspired by the calculus πDILL of Caires and Pfenning
(2010), this paper presents the calculus CP. Based on dual intu-
itionistic linear logic, πDILL uses two-sided sequents, with two
constructs corresponding to output (⊗ on the right of a sequent and
( on the left), and two constructs corresponding to input (( on
the right of a sequent and ⊗ on the left). Based on classical lin-
ear logic, CP uses one-sided sequents, offering greater simplicity
and symmetry, with a single construct for output (⊗) and a single
construct for input (O), each dual to the other. Caires et al. (2012a)
compares πDILL with πCLL, which like CP is based on classical
linear logic; we discuss this comparison in Section 4. (If you like,
CP stands for Classical Processes.)

Second, though πDILL is clearly reminiscent of the body of
work on session types, no one has previously published a formal
connection. Inspired by the linear functional language with session
types of Gay and Vasconcelos (2010), this paper presents the cal-
culus GV, and presents a translation from GV into CP, for the first
time formalising a tight connection between a standard presentation
of session types and linear logic. In order to facilitate the transla-
tion, GV differs from the language of Gay and Vasconcelos (2010)
in some particulars. These differences suffice to make GV, unlike
the original, free from deadlock. (If you like, GV stands for Good
Variation.)

Curry-Howard relates proof normalisation to computation. Lo-
gicians devised proof normalisation to show consistency of logic,
and for this purpose it is essential that proof normalisation termi-
nates. Hence, a consequence of Curry-Howard is that it identifies
a fragment of λ-calculus for which the Halting Problem is solved.
Well-typed programs terminate unless they explicitly resort to non-
logical features such as general recursion. Similarly, a consequence
of Curry-Howard for concurrency is that it identifies a fragment of
a process calculus which is free of deadlock. In particular, πDILL
and CP are both such fragments, and the proof that GV is deadlock-
free follows immediately from its translation to CP.

Third, this paper presents a calculus with a stronger connection
to linear logic, at the cost of a weaker connection to traditional
process calculi. Bellin and Scott (1994) and Caires and Pfenning
(2010) each present a translation from linear logic into π-calculus
such that cut elimination converts one proof to another if and only if



the translation of the one reduces to the translation of the other; but
to achieve this tight connection several adjustments are necessary.

Bellin and Scott (1994) restrict the axiom to atomic type, and
Caires and Pfenning (2010) omit the axiom entirely. In terms of
a practical programming language, such restrictions are excessive.
The former permits type variables, but instantiating a type variable
to a type requires restructuring the program (as opposed to simple
substitution); the latter outlaws type variables altogether. In conse-
quence, neither system lends itself to parametric polymorphism.

Further, Bellin and Scott (1994) only obtain a tight correspon-
dence between cut elimination and π-calculus for the multiplicative
connectives, and they require a variant of π-calculus with surpris-
ing structural equivalences such as x(y).x(z).P ≡ x(z).x(y).P—
permuting two reads on the same channel! Caires and Pfenning
(2010) only obtain a tight correspondence between cut elimination
and π-calculus by ignoring commuting conversions; this is hard to
justify logically, because commuting conversions play an essential
role in cut elimination. Pérez et al. (2012) show commuting con-
versions correspond to contextual equivalences, but fail to capture
the directionality of the commuting conversions.

Thus, while the connection established in previous work be-
tween cut elimination in linear logic and reduction in π-calculus is
encouraging, it comes at a substantial cost. Accordingly, this paper
cuts the Gordian knot: it takes the traditional rules of cut elimina-
tion as specifying the reduction rules for its process calculus. Pro:
we let logic guide the design of the ‘right’ process calculus. Con:
we forego the assurance that comes from double discoveries of the
same system, as with Gentzen and Church, Girard and Reynolds,
and Pierce and Felleisen. Mitigating the con slightly are the results
cited above that show a connection between Girard’s linear logic
and Milner’s π-calculus, albeit not as tight as the other connections
just mentioned.

In return for loosening its connection to π-calculus, the design
of CP avoids the problems described above. The axiom is inter-
preted at all types, using a construct suggested by Caires et al.
(2012a), and consequently it is easy to extend the system to sup-
port polymorphism, using a construct suggested by Turner (1995).
All commuting conversions of cut elimination are satisfied.

This paper is organised as follows. Section 2 presents CP. Sec-
tion 3 presents GV and its translation to CP. Section 4 discusses
related work. Section 5 concludes.

2. Classical linear logic as a process calculus
This section presents CP, a session-typed process calculus. CP is
based on classical linear logic with one-sided sequents, the system
treated in the first paper on linear logic by Girard (1987).

Types Propositions, which may be interpreted as session types,
are defined by the following grammar:

A,B,C::=
X propositional variable
X⊥ dual of propositional variable
A⊗B ‘times’, output A then behave as B
AOB ‘par’, input A then behave as B
A⊕B ‘plus’, select from A or B
ANB ‘with’, offer choice of A or B
!A ‘of course!’, server accept
?A ‘why not?’, client request
∃X.B existential, output a type
∀X.B universal, input a type
1 unit for ⊗
⊥ unit for O
0 unit for ⊕
> unit for N

Let A,B,C range over propositions, and X,Y, Z range over
propositional variables. Every propositional variable X has a
dual written X⊥. Propositions are composed from multiplicatives
(⊗,O), additives (⊕,N), exponentials (!, ?), second-order quanti-
fiers (∃, ∀), and units (1,⊥, 0,>). In ∃X.B and ∀X.B, proposi-
tional variable X is bound in B. Write fv(A) for the free variables
in proposition A.

Duals Duals play a key role, ensuring that a request for input at
one end of a channel matches an offer of a corresponding output at
the other, and that a request to make a selection at one end matches
an offer of a corresponding choice at the other.

Each proposition A has a dual A⊥, defined as follows:

(X)⊥ = X⊥ (X⊥)⊥ = X
(A⊗B)⊥ = A⊥ OB⊥ (AOB)⊥ = A⊥ ⊗B⊥
(A⊕B)⊥ = A⊥ NB⊥ (ANB)⊥ = A⊥ ⊕B⊥

(!A)⊥ = ?A⊥ (?A)⊥ = !A⊥

(∃X.B)⊥ = ∀X.B⊥ (∀X.B)⊥ = ∃X.B⊥
1⊥ = ⊥ ⊥⊥ = 1
0⊥ = > >⊥ = 0

The dual of a propositional variable, X⊥, is part of the syntax.
Multiplicatives are dual to each other, as are additives, exponen-
tials, and quantifiers.

Duality is an involution, (A⊥)⊥ = A.

Substitution Write B{A/X} to denote substitution of A for X
in B. Substitution of a proposition for a dual propositional variable
results in the dual of the proposition. Assuming X 6= Y , define

X{A/X} = A X⊥{A/X} = A⊥

Y {A/X} = Y Y ⊥{A/X} = Y ⊥

The remaining clauses are entirely standard, for instance (A ⊗
B){C/X} = A{C/X} ⊗B{C/X}.

Duality preserves substitution, B{A/X}⊥ = B⊥{A/X}.

Environments Let Γ, ∆, Θ range over environments associating
names to propositions, where each name is distinct. Assume Γ =
x1 : A1, . . . , xn : An, with xi 6= xj whenever i 6= j. Write
fn(Γ) = {x1, . . . , xn} for the names in Γ, and fv(Γ) = fv(A1) ∪
· · · ∪ fv(An) for the free variables in Γ. Order in environments is
ignored. Environments use linear maintenance. Two environments
may be combined only if they contain distinct names: writing Γ, ∆
implies fn(Γ) ∩ fn(∆) = ∅.

Processes Our process calculus is a variant on the π-calculus
(Milner et al., 1992). Processes are defined by the following gram-
mar:

P,Q,R::=
x↔y link
νx :A.(P | Q) parallel composition
x[y].(P | Q) output
x(y).P input
x[inl].P left selection
x[inr].P right selection
x.case(P,Q) choice
!x(y).P server accept
?x[y].P client request
x[A].P send type
x(X).P receive type
x[ ].0 empty output
x().P empty input
x.case() empty choice

In νx :A.(P | Q), name x is bound in P and Q, in x[y].(P | Q),
name y is bound in P (but not in Q), and in x(y).P , ?x[y].P , and



w↔x ` w : A⊥, x : A
Ax

P ` Γ, x : A Q ` ∆, x : A⊥

νx :A.(P | Q) ` Γ, ∆
Cut

P ` Γ, y : A Q ` ∆, x : B

x[y].(P | Q) ` Γ, ∆, x : A⊗B
⊗

R ` Θ, y : A, x : B

x(y).R ` Θ, x : AOB
O

P ` Γ, x : A

x[inl].P ` Γ, x : A⊕B
⊕1

P ` Γ, x : B

x[inr].P ` Γ, x : A⊕B
⊕2

Q ` ∆, x : A R ` ∆, x : B

x.case(Q,R) ` ∆, x : ANB
N

P ` ?Γ, y : A

!x(y).P ` ?Γ, x : !A
!

Q ` ∆, y : A

?x[y].Q ` ∆, x : ?A
?

Q ` ∆

Q ` ∆, x : ?A
Weaken

Q ` ∆, x′ : ?A, x′′ : ?A

Q{x/x′, x/x′′} ` ∆, x : ?A
Contract

P ` Γ, x : B{A/X}
x[A].P ` Γ, x : ∃X.B ∃

Q ` ∆, x : B

x(X).Q ` ∆, x : ∀X.B
∀ (X 6∈ fv(∆))

x[ ].0 ` x : 1
1

P ` Γ
x().P ` Γ, x : ⊥ ⊥ (no rule for 0) x.case() ` Γ, x : > >

Figure 1. CP, classical linear logic as a session-typed process calculus

!x(y).P , name y is bound in P . We write fn(P ) for the free names
in process P . In x(X).P , propositional variable X is bound in P .

The form x↔y denotes forwarding, where every message re-
ceived on x is retransmitted on y, and every message received on y
is retransmitted on x. Square brackets surround outputs and round
brackets surround inputs; unlike π-calculus, both output and input
names are bound. The forms x(y).P and !x(y).P in our calculus
behave like the same forms in π-calculus, while the forms x[y].P
and ?x[y].P in our calculus both behave like the form νy.x〈y〉.P
in π-calculus.

A referee suggested, in line with one tradition for π-calculus,
choosing the notation x(y).P in place of x[y].P ; but overlines can
be hard to spot, while the distinction between round and square
brackets is clear.

Judgments The rules for assigning session types to processes are
shown in Figure 1. Judgments take the form

P ` x1 : A1, . . . , xn : An

indicating that process P communicates along each channel named
xi obeying the protocol specified by Ai. Erasing the process and
the channel names from the above yields

` A1, . . . , An

and applying this erasure to the rules in Figure 1 yields the rules of
classical linear logic, as given by Girard (1987).

2.1 Structural rules
The calculus has two structural rules, Axiom and Cut. We do not
list Exchange explicitly, since order in environments is ignored.

The axiom is:

w↔x ` w : A⊥, x : A
Ax

We interpret the axiom as forwarding. A name input along w is
forwarded as output along x, and vice versa, so types of the two
channels must be dual. Bellin and Scott (1994) restrict the axiom to
propositional variables, replacing A by X and replacing w↔x by
the π-calculus termw(y).x〈y〉.0. Whereas we forward any number
of times and in either direction, they forward only once and from
X to X⊥.

The cut rule is:

P ` Γ, x : A Q ` ∆, x : A⊥

νx :A.(P | Q) ` Γ, ∆
Cut

Following Abramsky (1994) and Bellin and Scott (1994), we in-
terpret Cut as a symmetric operation combining parallel composi-
tion with name restriction. Process P communicates along channel
x obeying protocol A, while process Q communicates along the
same channel x obeying the dual protocol A⊥. Duality guarantees
that sends and selections in P match with receives and choices in
Q, and vice versa. Communications along Γ and ∆ are disjoint,
so P and Q are restricted to communicate with each other only
along x. If communication could occur along two channels rather
than one, then one could form a loop of communications between
P and Q that leads to deadlock.

Observe that, despite writing νx : A in the syntax, the type of
x differs in P and Q—it is A in the former but A⊥ in the latter.
Including the typeA in the syntax for Cut guarantees that given the
type of each free name in the term, each term has a unique type
derivation. To save ink and eyestrain, the type is omitted when it is
clear from the context.

Cut elimination corresponds to process reduction. Figure 2
shows three equivalences on cuts, and one reduction that simplifies
a cut against an axiom, each specified in terms of derivation trees;
from which we read off directly the corresponding equivalence or
reduction on processes. We write ≡ for equivalences and =⇒ for
reductions. Equivalence (Swap) states that a cut is symmetric:

νx :A.(P | Q) ≡ νx :A⊥.(Q | P )

It serves the same role as the π-calculus structural equivalenc
for symmetry, P | Q ≡ Q | P . Equivalences (Assoc) permit
reordering cuts:

νy.(νx.(P | Q) | R) ≡ νx.(P | νy.(Q | R))

It serves the same role as the π-calculus structural equivalences for
associativity, P | Q ≡ Q | P , and scope extrusion (νx.P ) | Q ≡
νx.(P | Q) when x /∈ P .

Reduction (AxCut) simplifies a cut against an axiom.

νx.(w↔x | P ) =⇒ P{w/x}

We write P{w/x} to denote substitution of w for x in P .



(Swap) P ` Γ, x : A Q ` ∆, x : A⊥

νx :A.(P | Q) ` Γ, ∆
Cut ≡

Q ` ∆, x : A⊥ P ` Γ, x : A

νx :A⊥.(Q | P ) ` Γ, ∆
Cut

(Assoc) P ` Γ, x : A Q ` ∆, x : A⊥, y : B

νx.(P | Q) ` Γ, ∆, y : B
Cut

R ` Θ, y : B⊥

νy.(νx.(P | Q) | R) ` Γ, ∆, Θ
Cut

≡

P ` Γ, x : A

Q ` ∆, x : A⊥, y : B R ` Θ, y : B⊥

νy.(Q | R) ` ∆, Θ, x : A⊥
Cut

νx.(P | νy.(Q | R)) ` Γ, ∆, Θ
Cut

(AxCut) w↔x ` w : A⊥, x : A
Ax

P ` Γ, x : A⊥

νx.(w↔x | P ) ` Γ, w : A⊥
Cut =⇒ P{w/x} ` Γ, w : A⊥

Figure 2. Structural cut equivalences and reduction for CP

2.2 Output and input
The multiplicative connectives A ⊗ B and A O B are dual. We
interpret A ⊗ B as the session type of a process which outputs an
A and then behaves as a B, and A O B as the session type of a
process which inputs an A and then behaves as a B.

The rule for output is:

P ` Γ, y : A Q ` ∆, x : B

x[y].(P | Q) ` Γ, ∆, x : A⊗B
⊗

Processes P andQ act on disjoint sets of channels. Process P com-
municates along channel y obeying protocol A, while process Q
communicates along channel x obeying protocol B. The compos-
ite process x[y].(P | Q) communicates along channel x obeying
protocol A ⊗ B; it allocates a fresh channel y, transmits y along
x, and then concurrently executes P and Q. Disjointness of P and
Q ensures there is no further entangling between x and y, which
guarantees freedom from deadlock.

The rule for input is:

R ` Θ, y : A, x : B

x(y).R ` Θ, x : AOB
O

Process R communicates along channel y obeying protocol A
and along channel x obeying protocol B. The composite process
x(y).R communicates along channel x obeying protocol AOB; it
receives name y along x, and then executes R. Unlike with output,
the single process R that communicates with both x and y. It is
safe to permit the same process to communicate with x and y on
the input side, because there is no further entangling of x with y on
the output side, explaining the claim that disentangling x from y on
output guarantees freedom from deadlock.

For output, channel x has type B in the component process Q
but type A ⊗ B in the composite process x[y].(P | Q). For input,
channel x has type B in the component process R but type AOB
in the composite process x(y).R. One may regard the type of the
channel evolving as communication proceeds, corresponding to the
notion of session type. Assigning the same channel name different
types in the hypothesis and conclusion of a rule is the telling twist
added by Caires and Pfenning (2010), in contrast to the use of
different variables in the hypothesis and conclusion followed by
Abramsky (1994) and Bellin and Scott (1994).

The computational content of the logic is most clearly revealed
in the principal cuts of each connective against its dual. Principal
cut reductions are shown in Figure 3.

Cut of output⊗ against input O corresponds to communication,
as shown in rule (β⊗O):

νx.(x[y].(P | Q) | x(y).R) =⇒ νy.(P | νx.(Q | R))

In stating this rule, we take advantage of the fact that y is bound
in both x[y].P and x(y).Q to assume the same bound name y
has been chosen in each; Pitts (2011) refers to this as the ‘anti-
Barendregt’ convention.

Recall that x[y].P in our notation corresponds to νy.x〈y〉.P
in π-calculus. Thus, the rule above corresponds to the π-calculus
reduction:

νx.(νy.x〈y〉.(P | Q) | x(z).R) =⇒ νy.P | νx.(Q | R{z/y})
This follows from from x〈y〉.P | x(z).R =⇒ P | R{z/y}, and
the structural equivalences for scope extrusion, since x /∈ fn(P ).

The right-hand side of the above reduction can be written in two
ways, which are equivalent by use of the the structural rules (Swap)
and (Assoc).

νx :A.(P | νy :B.(Q | R))
≡ νx :A.(P | νy :B⊥.(R | Q)) (Swap)
≡ νy :B⊥.(νx :A.(P | R) | Q) (Assoc)
≡ νy :B.(Q | νx :A.(P | R)) (Swap)

The apparent lack of symmetry betweenA⊗B andB⊗Amay
appear unsettling: the first means output A and then behave as B,
the second means output B and then behave as A. The situation
is similar to Cartesian product, where B × A and A × B differ
but satisfy an isomorphism. Similarly, A ⊗ B and B ⊗ A are
interconvertible.

w↔z ` w : B⊥, z : B
Ax

y↔x ` y : A⊥, x : A
Ax

x[z].(w↔z | y↔x) ` w : B⊥, y : A⊥, x : B ⊗A
⊗

w(y).x[z].(w↔z | y↔x) ` w : A⊥ OB⊥, x : B ⊗A
O

Let Q ` ∆ be the conclusion of the above derivation. Given an
arbitrary derivation ending in P ` Γ, w : A⊗B, one may replace
A⊗B with B ⊗A as follows:

P ` Γ, w : A⊗B Q ` ∆

νw.(P | Q) ` Γ, x : B ⊗A Cut

Here processP communicates alongw obeying the protocolA⊗B,
outputting A and then behaving as B. Composing P with Q yields
the process that communicates along x obeying the protocolB⊗A,
outputting B and then behaving as A.

The multiplicative units are 1 for⊗ and⊥ for O. We interpret 1
as the session type of a process that performs an empty ouput, and
⊥ as the session type of a process that performs an empty input.
These are related by duality: 1⊥ = ⊥. Their rules are shown in
Figure 1. Cut of empty output 1 against empty input⊥ corresponds
to an empty communication, as shown in rule (β1⊥):

νx.(x[ ].0 | x().P ) =⇒ P



(β⊗O) P ` Γ, y : A Q ` ∆, x : B

x[y].(P | Q) ` Γ, ∆, x : A⊗B
⊗

R ` Θ, y : A⊥, x : B⊥

x(y).R ` Θ, x : A⊥ OB⊥
O

νx.(x[y].(P | Q) | x(y).R) ` Γ, ∆, Θ
Cut

=⇒

P ` Γ, y : A

Q ` ∆, x : B R ` Θ, y : A⊥, x : B⊥

νx.(Q | R) ` ∆, Θ, y : A⊥
Cut

νy.(P | νx.(Q | R)) ` Γ, ∆, Θ
Cut

(β⊕N) P ` Γ, x : A

x[inl].P ` Γ, x : A⊕B
⊕1

Q ` ∆, x : A⊥ R ` ∆, x : B⊥

x.case(Q,R) ` ∆, x : A⊥ NB⊥
N

νx.(x[inl].P | x.case(Q,R)) ` Γ, ∆
Cut

=⇒ P ` Γ, x : A Q ` ∆, x : A⊥

νx.(P | Q) ` Γ, ∆
Cut

(β!?) P ` ?Γ, y : A

!x(y).P ` ?Γ, x : !A
!

Q ` ∆, y : A⊥

?x[y].Q ` ∆, x : ?A⊥
?

νx.(!x(y).P | ?x[y].Q) ` ?Γ, ∆
Cut

=⇒ P ` ?Γ, y : A Q ` ∆, y : A⊥

νy.(P | Q) ` ?Γ, ∆
Cut

(β!W ) P ` ?Γ, y : A

!x(y).P ` ?Γ, x : !A
!

Q ` ∆

Q ` ∆, x : ?A⊥
Weaken

νx.(!x(y).P | Q) ` ?Γ, ∆
Cut

=⇒
Q ` ∆

Q ` ?Γ, ∆
Weaken

(β!C) P ` ?Γ, y : A

!x(y).P ` ?Γ, x : !A
!

Q ` ∆, x′ : ?A, x′′ : ?A

Q{x/x′, x/x′′} ` ∆, x : ?A
Contract

νx.(!x(y).P | Q{x/x′, x/x′′}) ` ?Γ, ∆
Cut

=⇒

P ′ ` ?Γ′, y′ : A

!x′(y′).P ′ ` ?Γ′, x′ : !A
!

P ′′ ` ?Γ′′, y′′ : A

!x′′(y′′).P ′′ ` ?Γ′′, x′′ : !A
!
Q ` ∆, x′ : ?A⊥, x′′ : ?A⊥

νx′′.(!x′′(y′′).P ′′ | Q) ` ?Γ′, ∆, x : ?A⊥
Cut

νx′.(!x′(y′).P ′ | νx′′.(!x′′(y′′).P ′′ | Q)) ` ?Γ′, ?Γ′′, ∆
Cut

νx′.(!x′(y).P | νx′′.(!x′′(y).P | Q)) ` ?Γ, ∆
Contract

(β∃∀) P ` Γ, x : B{A/X}
x[A].P ` Γ, x : ∃X.B ∃

Q ` ∆, x : B⊥

x(X).Q ` ∆, x : ∀X.B⊥
∀

νx.(x[A].P | x(X).Q) ` Γ, ∆
Cut

=⇒

P ` Γ, x : B{A/X} Q{A/X} ` ∆, x : B⊥{A/X}
νx.(P | Q{A/X}) ` Γ, ∆

Cut

(β1⊥)
x[ ].0 ` x : 1

1
P ` Γ

x().P ` Γ, x : ⊥ ⊥

νx.(x[ ].0 | x().P ) ` Γ
Cut

=⇒ P ` Γ

(β0>) (no rule for 0 with >)

Figure 3. Principal cut reductions for CP

This rule resembles reduction of a nilary communication in the
polyadic π-calculus.

2.3 Selection and choice
The additive connectives A⊕B and ANB are dual. We interpret
A⊕B as the session type of a process which selects from either an
A or a B, and ANB as the session type of a process which offers
a choice of either an A or a B.

The rule for left selection is:
P ` Γ, x : A

x[inl].P ` Γ, x : A⊕B
⊕1

Process P communicates along channel x obeying protocolA. The
composite process x[inl].P communicates along channel x obeying
protocol A ⊕ B; it transmits along x a request to select the left
option from a choice, and then executes process P . The rule for
right selection is symmetric.

The rule for choice is:

Q ` ∆, x : A R ` ∆, x : B

x.case(Q,R) ` ∆, x : ANB
N

The composite process x.case(Q,R) communicates along channel
x obeying protocol A N B; it receives a selection along channel x
and executes either process Q or R accordingly.

For selection, channel x has type A in the component process
P and type A ⊕ B in the composite process x[inl].P . For choice,
channel x has type A in the component process Q, type B in
the component process R, and type A N B in the composite pro-
cess x.case(Q,R). Again, one may regard the type of the channel
evolving as communication proceeds, corresponding to the notion
of session type.



(κ⊗1) νz.(x[y].(P | Q) | R) =⇒ x[y].(νz.(P | R) | Q), if z ∈ fn(P )

(κ⊗2) νz.(x[y].(P | Q) | R) =⇒ x[y].(P | νz.(Q | R)), if z ∈ fn(Q)

(κO) νz.(x(y).P | Q) =⇒ x(y).νz.(P | Q)

(κ⊕) νz.(x[inl].P | Q) =⇒ x[inl].νz.(P | Q)

(κN) νz.(x.case(P,Q) | R) =⇒ x.case(νz.(P | R), νz.(Q | R))

(κ!) νz.(!x(y).P | Q) =⇒ !x(y).νz.(P | Q)

(κ?) νz.(?x[y].P | Q) =⇒ ?x[y].νz.(P | Q)

(κ∃) νz.(x[A].P | Q) =⇒ x[A].νz.(P | Q)

(κ∀) νz.(x(X).P | Q) =⇒ x(X).νz.(P | Q)

(κ⊥) νz.(x().P | Q) =⇒ x().νz.(P | Q)

(κ0) (no rule for 0)

(κ>) νz.(x.case() | Q) =⇒ x.case()

Figure 4. Commuting conversions for CP

Cut of selection ⊕ against choice N corresponds to picking an
alternative, as shown in rule (β⊕N):

x[inl].P | x.case(Q,R) =⇒ νx.(P | Q)

The rule to select the right option is symmetric.
The additive units are 0 for⊕ and> for N. We interpret 0 as the

session type of a process that selects from among no alternatives,
and⊥ as the session type of a process that offers a choice among no
alternatives. These are related by duality: 0⊥ = >. Their rules are
shown in Figure 1. There is no rule for 0, because it is impossible
to select from no alternatives. Hence, there is also no reduction for
a cut of an empty selection against an empty choice, as shown in
Figure 3.

2.4 Servers and clients
The exponential connectives !A and ?A are dual. We interpret
!A as the session type of a server that will repeatedly accept an
A, and interpret ?A as the session type of a collection of clients
that may each request an A. Servers and clients are asymmetric: a
server must be impartial, providing the same service to each client;
whereas differing clients may accumulate requests to pass to the
same server.

The rule for servers is:
P ` ?Γ, y : A

!x(y).P ` ?Γ, x : !A
!

Process P communicates along channel y obeying protocolA. The
composite process !x(y).P communicates along channel x obeying
the protocol !A; it receives y along x, and then spawns a fresh copy
of P to execute. All channels used by P other than y must obey a
protocol of the form ?B, for some B, to ensure that replicating P
respects the type discipline. Intuitively, a process may only provide
a replicable service if it is implemented by communicating only
with other processes that provide replicable services.

There are three rules for clients, corresponding to the fact that a
server may have one, none, or many clients. The three rules corre-
spond to the standard rules of classical linear logic for dereliction,
weakening, and contraction.

The first rule is for a single client.

Q ` ∆, y : A

?x[y].Q ` ∆, x : ?A
?

ProcessQ communicates along channel y obeying protocolA. The
composite process ?x[y].Q communicates along channel x obeying

protocol ?A; it allocates a fresh channel y, transmits y along x, and
then executes process Q. Cut of rule ! against rule ? corresponds to
spawning a single copy of a server to communicate with a client, as
shown in rule (β!?):

νx.(!x(y).P | ?x[y].Q) =⇒ νy.(P | Q)

The second rule is for no clients.

Q ` ∆

Q ` ∆, x : ?A
Weaken

A processQ that does not communicate along any channel obeying
protocol A may be regarded as communicating along a channel
obeying protocol ?A. Cut of rule ! against Weaken corresponds
to garbage collection, deallocating a server that has no clients, as
shown in rule (β!W ):

νx.(!x(y).P | Q) =⇒ Q, if x 6∈ fn(Q)

The third rule aggregates multiple clients.

Q ` ∆, x′ : ?A, x′′ : ?A

Q{x/x′, x/x′′} ` ∆, x : ?A
Contract

ProcessQ communicates along two channels x and x′ both obeying
protocol ?A. Process Q{x/x′, x/x′′} is identical to Q save all
occurrences of x′ and x′′ have been renamed to x; it communicates
along a single channel x obeying protocol ?A. Cut of rule ! against
Contract corresponds to replicating a server, as shown in rule (β!C):

νx.(!x(y).P | Q{x/x′, x/x′′}) =⇒
νx′.(!x′(y).P | νx′′.(!x′′(y).P | Q))

The type derivation on the right-hand side of rule (β!C) applies
Contract once for each free name zi in Γ. The derivation is written
using the following priming convention: we assume that to each
name z there are associated other names z′ and z′′, and we write
P ′ for the process identical to P save that each free name z in P
has been replaced by z′; that is, if fn(P ) = {y, z1, . . . , zn} then
P ′ = P{y′/y, z′1/z1, . . . , z′n/zn}, and similarly for P ′′.

A referee notes weakening and contraction could be given ex-
plicit notation rather than implicit. For instance, we could replace
Q by ?x[ ].Q in weakening, and Q{x/x′, x/x′′} by ?x[x′, x′′].Q
in contraction, yielding

Q ` ∆

?x[ ].Q ` ∆, x : ?A
Weaken



and
Q ` ∆, x′ : ?A, x′′ : ?A

?x[x′, x′′].Q ` ∆, x : ?A
Contract

while reduction rules (β!W ) and (β!C) become

νx.(!x(y).P | ?x[ ].Q) =⇒?z1[ ]. · · · .?zn[ ].Q

and
νx.(!x(y).P | ?x[x′, x′′].Q) =⇒

?z1[z′1, z
′′
1 ]. · · · .?zn[z′n, z

′′
n].

νx′.(!x′(y′).P ′ | νx′′.(!x′′(y′′).P ′′ | Q))

where fn(P ) = {y, z1, . . . , zn}.

2.5 Polymorphism
The quantifiers ∃ and ∀ are dual. We interpret ∃X.B as the ses-
sion type of a process that instantiates propositional variableX to a
given proposition, and interpret ∀X.B as the session type of a pro-
cess that generalises over X . These correspond to type application
and type abstraction in polymorphic λ-calculus, or to sending and
receiving types in the polymorphic π-calculus of Turner (1995).

The rule for instantiation is:
P ` Γ, x : B{A/X}
x[A].P ` Γ, x : ∃X.B ∃

ProcessP communicates along channel x obeying protocolB{A/X}.
The composite process x[A].P communicates along channel x
obeying protocol ∃X.B; it transmits a representation of A along x,
and then executes P .

The rule for generalisation is:

Q ` ∆, x : B

x(X).Q ` ∆, x : ∀X.B
∀ (X 6∈ fv(∆))

Process Q communicates along channel x obeying protocol B.
The composite process x(X).Q communicates along channel x
obeying protocol ∀X.B; it receives a description of a proposition
along channel x, binds the proposition to the propositional variable
X , and then executes Q.

Cut of instantiation ∃ against generalisation ∀ corresponds
to transmitting a representation of a proposition, as shown in
rule (β∃∀):

νx.(x[A].P | x(X).Q) =⇒ νx.(P | Q{A/X})
This rule behaves similarly to beta reduction of a type abstraction
against a type application in polymorphic λ-calculus, or communi-
cation of a type in the polymorphic π-calculus.

2.6 Commuting conversions
Commuting conversions are shown in Figure 4. To save space,
these are shown as reductions on terms, without the accompanying
derivation trees.

Each commuting conversion pushes a cut inside a communica-
tion operation. There are two conversions for ⊗, depending upon
whether the cut pushes into the left or right branch. Each of the re-
maining logical operators has one conversion, with the exception
of ⊕, which has two (only the left rule is shown, the right rule is
symmetric); and of 0, which has none.

An important aspect of CP is revealed by considering rule (κO),
which pushes cut inside input:

νz.(x(y).P | Q) =⇒ x(y).νz.(P | Q)

On the left-hand side processQmay interact with the environment,
while on the right-hand side Q is guarded by the input and cannot
interact with the environment. In our setting, this is not problematic.
If x is bound by an outer cut, then the guarding input is guaranteed

to match a corresponding output at some point. If x is not bound by
an outer cut, then we consider the process halted while it awaits
external communication along x; compare this with the use of
labeled transitions in Lemma 5.7 of Caires and Pfenning (2010).

2.7 Cut elimination
In addition to the rules of Figures 2, 3, and 4, we add a rule relating
reductions to structural equivalences:

P ≡ Q Q =⇒ R R ≡ S
P ≡ S

And we add rules that permit reduction under cut:

P =⇒ R
νx.(P | Q) =⇒ νx.(R | Q)

Q =⇒ R

νx.(P | Q) =⇒ νx.(R | Q)

We do not add reduction under other operators; see below.
CP satisfies subject reduction: well-typed processes reduce to

well-typed processes.

THEOREM 1. If P ` Γ and P =⇒ Q then Q ` Γ.

Proof sketch: Figures 2 and 3 contain the relevant proofs for their
rules, the proofs for Figure 4 are similar. �

Say process P is a cut if it has the form νx.(Q | R) for some
x, Q, and R. CP satisfies top-level cut elimination: every process
reduces to a process that is not a cut.

THEOREM 2. If P ` Γ then there exists a Q such that P =⇒∗ Q
and Q is not a cut.

Proof sketch: If P is a cut, there are three possibilities. If one side of
the cut uses the axiom, apply AxCut. If one side of the cut is itself
a cut, recursively eliminate the cut. In the remaining cases, either
both sides are logical rules that act on the cut variable, in which
case a principal reduction of Figure 3 applies, or at least one side
is a logical rule acting on a variable other than the cut variable, in
which case a commuting reduction of Figure 4 applies. Since we
support impredicative polymorphism, where a polymorphic type
may be instantiated by a polymorphic type, some care is required in
formulating the induction to ensure termination, but this is standard
(Gallier, 1990). �

This result resembles the Principal Lemma of Cut Elimination
(Girard et al., 1989, Section 13.2), which eliminates a final cut
rule, possibly replacing it with (smaller) cuts further up the proof
tree. Top-level cut elimination corresponds to lack of deadlock; it
ensures that any process can reduce until it needs to perform an
external communication.

If our goal was to eliminate all cuts, we would need to introduce
congruence rules, such as

P =⇒ Q

x(y).P =⇒ x(y).Q

and similarly for each operator. Such rules do not correspond well
to our notion of computation on processes, so we omit them; this
is analogous to the usual practice of not permitting reduction under
lambda.

3. A session-typed functional language
This section presents GV, a session-typed functional language
based on one devised by Gay and Vasconcelos (2010), and presents
its translation into CP.

Our presentation of GV differs in some particulars from that of
Gay and Vasconcelos (2010). Most notably, our system is guar-
anteed free from deadlock whereas theirs is not. Achieving this
property requires some modifications to their system. We split their
session type ‘end’ into two dual types ‘end!’ and ‘end?’, and we



x : T ` x : T
Id ` unit : Unit

Unit
Φ ` N : U un(T )

Φ, x : T ` N : U
Weaken

Φ, x′ : T, x′′ : T ` N : U un(T )

Φ, x : T ` N{x/x′, x/x′′} : U
Contract

Φ, x : T ` N : U

Φ ` λx.N : T ( U
(-I

Φ ` L : T ( U Ψ `M : T
Φ, Ψ ` LM : U

(-E
Φ ` L : T ( U un(Φ)

Φ ` L : T → U
→-I

Φ ` L : T → U
Φ ` L : T ( U

→-E

Φ `M : T Ψ ` N : U
Φ, Ψ ` (M,N) : T ⊗ U ⊗-I

Φ `M : T ⊗ U Ψ, x : T, y : U ` N : V

Φ, Ψ ` let (x, y) = M in N : V
⊗-E

Φ `M : T Ψ ` N : !T .S
Φ, Ψ ` sendM N : S

Send
Φ `M : ?T .S

Φ ` receiveM : T ⊗ S Receive

Φ `M : ⊕{li : Si}i∈I

Φ ` select lj M : Sj
Select

Φ `M : N{li : Si}i∈I (Ψ, x : Si ` Ni : T )i∈I

Φ, Ψ ` caseM of {li : x.Ni}i∈I : T
Case

Φ, x : S `M : end! Ψ, x : S ` N : T

Φ, Ψ ` with x connectM to N : T
Connect

Φ `M : T ⊗ end?

Φ ` terminateM : T
Terminate

Figure 5. GV, a session-typed functional language

replace their constructs ‘accept’, ‘request’, and ‘fork’, by two new
constructs ‘with-connect-to’ and ‘terminate’.

A number of features of Gay and Vasconcelos (2010) are not
echoed here. Their system is based on asynchronous buffered
communication, they show that the size required of asynchronous
buffers can be bounded by analysing session types, and they sup-
port recursive functions, recursive session types, and subtyping. We
omit these contributions for simplicity, but see no immediate dif-
ficulty in extending our results to include them. Of course, adding
recursive terms or recursive session types may remove the property
that all programs terminate.

For simplicity, we also omit a number of other possible features.
We do not consider base types, which are straightforward. We
also do not consider how to add replicated servers with multiple
clients, along the lines suggested by ! and ? in CP, or how to add
polymorphism, along the lines suggested by ∃ and ∀ in CP, but both
extensions appear straightforward.

Session types Session types are defined by the following gram-
mar:

S ::=
!T .S output value of type T then behave as S
?T .S input value of type T then behave as S
⊕{li : Si}i∈I select from behaviours Si with label li
N{li : Si}i∈I offer choice of behaviours Si with label li
end! terminator, convenient for use with output
end? terminator, convenient for use with input

Let S range over session types, and let T,U, V range over types.
Session type !T .S describes a channel along which a value of
type T may be sent and which subsequently behaves as S. Dually,
?T .S describes a channel along which a value of type T may
be received and which subsequently behaves as S. Session type
⊕{li : Si}1∈I describes a channel along which one of the distinct
labels li may be sent and which subsequently behaves as Si. Dually,
N{li : Si}1∈I describes a channel along which one of the labels
li may be received, and which subsequently behaves as Si. Finally,
end! and end? describe channels that cannot be used for further
communication. As we will see, it is convenient to use one if the
last action on the channel is a send, and the other if the last action
on the channel is a receive.

Types Types are defined by the following grammar:

T,U, V ::=
S session type (linear)
T ⊗ U tensor product (linear)
T ( U function (linear)
T → U function (unlimited)
Unit unit (unlimited)

Every session type is also a type, but not conversely. Types are
formed from session types, tensor product, two forms of function
space, and a unit for tensor product.

Each type is classified as linear or unlimited:

lin(S) lin(T ⊗ U) lin(T ( U) un(T → U) un(Unit)

Here lin(T ) denotes a type that is linear, and un(T ) a type that
is unlimited. Session types, tensor, and one type of function are
limited; the other type of function and unit are unlimited. Unlimited
types support weakening and contraction, while linear types do not.
Unlimited types correspond to those written with ! in CP.

Duals Each session type S has a dual S, defined as follows:

!T .S = ?T .S
?T.S. = !T .S

⊕(li : Si)i∈I = N(li : Si)i∈I

N(li : Si)i∈I = ⊕(li : Si)i∈I

end! = end?

end? = end!

Input is dual to output, selection is dual to choice, and the two
terminators are dual. Duality between input and output does not
take the dual of the type.

Duality is an involution, S = S.

Environments We let Φ, Ψ range over environments associating
variables to types. Write un(Φ) to indicate that each type in Φ is
unlimited. As in Section 2, order in environments is ignored and we
use linear maintenance.



Terms Terms are defined by the following grammar:

L,M,N ::=
x identifier
unit unit constant
λx.N function abstraction
LM function application
(M,N) pair construction
let (x, y) = M in N pair deconstruction
sendM N send value M on channel N
receiveM receive from channel M
select l M select label l on channel M
caseM of {li : x.Ni}i∈I offer choice on channel M
with x connectM to N connect M to N by channel x
terminateM terminate input

The first six operations specify a linear λ-calculus, and the remain-
ing six specify communication along a channel.

The terms are best understood in conjunction with their type
rules, shown in Figure 5. The rules for variables, unit, weakening,
contraction, function abstraction and application, and pair construc-
tion and deconstruction are standard. Functions are either limited or
unlimited. As usual, function abstraction may produce an unlimited
function only if all of its free variables are of unlimited type. Fol-
lowing Gay and Vasconcelos (2010) we do not give a separate rule
for application of unlimited function, but instead give a rule permit-
ting an unlimited function to be treated as a linear function, which
may then be applied using the rule for linear function application.

For simplicity, we do not require that each term have a unique
type. In particular, a λ-expression where all free variables have
unlimited type may be given either linear or unlimited function
type. In a practical system, one might introduce subtyping and
arrange that each term have a unique smallest type.

The rule for output is
Φ `M : T Ψ ` N : !T .S

Φ, Ψ ` sendM N : S
Send

Channels are managed linearly, so each operation on channels takes
the channel before the operation as an argument, and returns the
channel after the operation as the result. Executing ‘send M N ’
outputs the value M of type T along channel N of session type
!T .S, and returns the updated channel, which after the output has
session type S.

The rule for input is
Φ `M : ?T .S

Φ ` receiveM : T ⊗ S Receive

Executing ‘receive M’ inputs a value from channel M of session
type ?T .S, and returns a pair consisting of the input value of type
T , and the updated channel, which after the input has session type
S. The returned pair must be linear because it contains a session
type, which is linear.

Gay and Vasconcelos (2010) treat ‘send’ and ‘receive’ as func-
tion constants, and require two versions of ‘send’ to cope with
complications arising from currying. We treat ‘send’ and ‘receive’
as language constructs, which avoids the need for two versions of
‘send’. Thanks to the rules for limited and unlimited function ab-
straction, λx. λy. send x y has type T ( !T .S( S and also type
T → !T .S( S when un(T ).

The operations Select and Case are similar, and standard.
The rule to create new channels is:

Φ, x : S `M : end! Ψ, x : S ` N : T

Φ, Ψ ` with x connectM to N : T
Connect

Executing ‘with x connect M to N’ creates a new channel x with
session type S, where x is used at type S within term M and at the
dual type S within term N . The two terms M and N are evaluated

concurrently. As is usual when forking off a value, only one of
the two subterms returns a value that is passed to the rest of the
program. The left subterm returns the exhausted channel, which
has type end!. The right subterm returns a value of type T that is
passed on to the rest of the program.

Finally, we require a rule to terminate the other channel:
Φ `M : T ⊗ end?

Φ ` terminateM : T
Terminate

Executing ‘terminate M’ evaluates term M , which returns a pair
consisting of an exhausted channel of type end? and a value of type
T , then deallocates the channel and returns the value.

The constructs for Connect and Terminate between them deal-
locate two ends of a channel. The system is designed so it is con-
venient to use end! on a channel whose last operation is Send, and
end? on a channel whose last operation is Receive.

Usually, session typed systems make end an unlimited type
that is self-dual, but the formulation here fits better with CLL. A
variation where end is a linear type requiring explicit deallocation
is considered by Vasconcelos (2011).

One might consider alternative designs, say to replace Connect
by an operation that creates a channel and returns both ends of it in
a pair of type S ⊗ S, or to replace Terminate by an operation that
takes a pair of type end! ⊗ end? and returns unit. However, both of
these designs are difficult to translate into CP, which suggests they
may suffer from deadlock.

3.1 Translation
The translation of GV into CP is given in Figures 6 and 7.

Session types The translation of session types is as follows:

J!T .SK = JT K⊥ O JSK
J?T .SK = JT K⊗ JSK

J⊕{li : Si}i∈IK = JS1K N · · ·N JSnK, I = {1, . . . , n}
JN{li : Si}i∈IK = JS1K⊕ · · · ⊕ JSnK, I = {1, . . . , n}

Jend!K = ⊥
Jend?K = 1

This translation is surprising, in that each operator translates to the
dual of what one might expect! The session type for output in GV,
!T .S is translated into O, the connective that is interpreted as input
in CP, and the session type for input in GV, ?T .S is translated into
⊗, the connective that is interpreted as output in CP. Similarly ⊕
and N in GV translate, respectively, to N and⊕ in CP. Finally, end!

and end? in GV translate, respectively, to ⊥ and 1 in CP, the units
for O and ⊗.

The intuitive explanation of this duality is that Send and Receive
in GV take channels as arguments, whereas the interpretation of
the connectives in CP is for channels as results. Indeed, the send
operation takes a value and a channel, and sends the value to that
channel—in other words, the channel must input the value. Dually,
the receive operation takes a channel and returns a value—in other
words, the channel must output the value. A similar inversion
occurs with respect to Select and Case.

Recall that duality on session types in GV leaves the types of
sent and received values unchanged:

!T .S = ?T .S ?T.S. = !T .S

Conversely, the translation of these operations takes the dual of the
sent value, but not the received value:

J!T .SK = JT K⊥ O JSK J?T .SK = JT K⊗ JSK

In classical linear logic, A ( B = A⊥ O B, so the right-hand
side of the first line could alternatively be written JT K ( JSK.
Accordingly, and as one would hope, the translation preserves
duality: JSK = JSK⊥.



q
x : T ` x : T

Id
y
z = x↔z ` x : JT K⊥, z : JT K

Ax q
` unit : Unit

Unit
y
z = y.case() ` y : > >

!z(y).y.case() ` z : !> !

s
Φ ` N : U un(T )

Φ, x : T ` N : U
Weaken

{
z =

JNKz ` JΦK⊥, z : JUK

JNKz ` JΦK⊥, x : JT K⊥, z : JUK
Weaken

s
Φ, x′ : T, x′′ : T ` N : U un(T )

Φ, x : T ` N{x/x′, x/x′′} : U
Contract

{
z =

JNKz ` JΦK⊥, x′ : JT K⊥, x′′ : JT K⊥, z : JUK

JN{x/x′, x/x′′}Kz ` JΦK⊥, x : JT K⊥, z : JUK
Contract

s
Φ, x : T ` N : U

Φ ` λx.N : T ( U
(-I

{
z =

JNKz ` JΦK⊥, x : JT K⊥, z : JUK

z(x).JNKz ` JΦK⊥, z : JT K⊥ O JUK
O

s
Φ ` L : T ( U Ψ `M : T

Φ, Ψ ` LM : U
(-E

{
z =

JLKy ` JΦK⊥, y : JT K⊥ O JUK

JMKx ` JΨK⊥, x : JT K y↔z ` y : JUK⊥, z : JUK
Ax

y[x].(JMKx | y↔z) ` JΨK⊥, y : JT K⊗ JUK⊥, z : JUK
⊗

νy.(JLKy | y[x].(JMKx | y↔z)) ` JΦK⊥, JΨK⊥, z : JUK
Cut

s
Φ ` L : T ( U un(Φ)

Φ ` L : T → U
→-I

{
z =

JLKy ` JΦK⊥, y : JT ( UK

!z(y).JLKy ` JΦK⊥, z : !JT ( UK
!

r
Φ ` L : T → U
Φ ` L : T ( U

→-E
z
z = JLKy ` JΦK⊥, y : !JT ( UK

x↔z ` x : JT ( UK⊥, z : JT ( UK
Ax

?y[x].x↔z ` y : ?JT ( UK⊥, z : JT ( UK
?

νy.(JLKy | ?y[x].x↔z) ` JΦK⊥, z : JT ( UK
Cut

s
Φ `M : T Ψ ` N : U
Φ, Ψ ` (M,N) : T ⊗ U ⊗-I

{
z =

JMKy ` JΦK⊥, y : JT K JNKz ` JΨK⊥, z : JUK

z[y].(JMKy | JNKz) ` JΦK⊥, JΨK⊥, z : JT K⊗ JUK
⊗

s
Φ `M : T ⊗ U Ψ, x : T, y : U ` N : V

Φ, Ψ ` let (x, y) = M in N : V
⊗-E

{
z =

JMKy ` JΦK⊥, y : JT K⊗ JUK

JNKz ` JΨK⊥, x : JT K⊥, y : JUK⊥, z : JV K

y(x).JNKz ` JΨK⊥, y : JT K⊥ O JUK⊥, z : JV K
O

νy.(JMKy | y(x).JNKz) ` JΦK⊥, JΨK⊥, z : JV K
Cut

Figure 6. Translation from GV into CP, Part I

Types The translation of types is as follows:

JT ( UK = JT K⊥ O JUK
JT → UK = !(JT K⊥ O JUK)
JT ⊗ UK = JT K⊗ JUK

JUnitK = !>

Session types are also types, they are translated as above.
The right-hand side of the first equation could alternatively be

written JT K ( JUK, showing that linear functions translate as
standard.

The right-hand side of the second equation could alternatively
be written !(JT K ( JUK). There are two standard translations of
intuitionistic logic into classical linear logic or, equivalently, of
λ-calculus into linear λ-calculus. Girard’s original takes (A →
B)◦ = !A◦( B◦, and corresponds to call-by-name, while a
lesser known alternative takes (A → B)∗ = !(A∗( B∗), and
correspond to call-by-value (see Benton and Wadler (1996) and
Toninho et al. (2012)). The second is used here.

In classical linear logic, there is a bi-implication between 1 and
!> (in many models, this bi-implication is an isomorphism), so the
right-hand side of the last equation could alternatively be written 1,
the unit for ⊗.

An unlimited type in GV translates to a type constructed with !
in CP: If un(T ) then JT K = !A, for some A.

Terms Translation of terms is written in a continuation-passing
style standard for translations of λ-calculi into process calculi. The
translation of term M of type T is written JMKz where z is a
channel of type JT K; the process that translates M transmits the
answer it computes along z. More precisely, if Φ ` M : T then
JMKz ` JΦK⊥, z : JT K, where the Φ to the left of the turnstile in
GV translates, as one might expect, to the dual JΦK⊥ on the right
of the turn-style in CP.

The translation of terms is shown in Figures 6 and 7. Rather
than simply giving a translation from terms of GV to terms of
CP, we show the translation as taking type derivation trees to
type derivation trees. Giving the translation on type derivation
trees rather than terms has two advantages. First, it eliminates any
ambiguity arising from the fact, noted previously, that terms in GV
do not have unique types. Second, it makes it easy to validate that
the translation preserves types.

Figure 6 shows the translations for operations of a linear λ-
calculus. A variable translates to an axiom, weakening and con-
traction translate to weakening and contraction. Function abstrac-
tion and product deconstruction both translate to input, and func-



s
Φ `M : T Ψ ` N : !T .S

Φ, Ψ ` sendM N : S
Send

{
z =

JMKy ` JΦK⊥, y : JT K x↔z ` x : JSK⊥, z : JSK
Ax

x[y].(JMKy | x↔z) ` JΦK⊥, x : JT K⊗ JSK⊥
⊗

JNKx ` JΨK⊥, x : JT K⊥ O JSK

νx.(x[y].(JMKy | x↔z) | JNKx) ` JΦK⊥, JΨK⊥, z : JSK
Cut

r
Φ `M : ?T .S

Φ ` receiveM : T ⊗ S Receive
z
z = JMKz ` JΦK, z : JT K⊗ JSK

s
Φ `M : ⊕{li : Si}i∈I

Φ ` select lj M : Sj
Select

{
z =

JMKx ` JΦK⊥, x : JS1K N · · ·N JSnK

x↔z ` x : JSjK⊥, z : JSjK
Ax

x[inj ].x↔z ` x : JS1K⊥ ⊕ · · · ⊕ JSnK⊥, z : JSjK
⊕i

νx.(JMKx | x[inj ].x↔z) ` JΦK⊥, z : JSjK
Cut

s
Φ `M : N{li : Si}i∈I (Ψ, x : Si ` Ni : T )i∈I

Φ, Ψ ` caseM of {li : x.Ni}i∈I : T
Case

{
z =

JMKx ` JΦK⊥, x : JS1K⊕ · · · ⊕ JSnK
(JNiKz ` JΨK⊥, x : JSiK⊥, z : JT K)i∈I

x.case(JN1K, . . . , JNnK) ` x : JS1K N · · ·N JSnK, z : JT K
N

νx.(JMKx | x.case(JN1K, . . . , JNnK)) ` JΦK⊥, JΨK⊥, z : JT K
Cut

s
Φ, x : S `M : end! Ψ, x : S ` N : T

Φ, Ψ ` with x connectM to N : T
Connect

{
z =

JMKy ` JΦK⊥, x : JSK⊥, y : ⊥ y[].0 ` y : 1
1

νy.(JMKy | y[].0) ` JΦK⊥, x : JSK⊥
Cut

JNKz ` JΨK⊥, x : JSK, z : JT K

νx.(νy.(JMKy | y[].0) | JNKz) ` JΦK⊥, JΨK⊥, z : JT K
Cut

r
Φ `M : T ⊗ end?

Φ ` terminateM : T
Terminate

z
z =

JMKy ` JΦK⊥, y : JT K⊗ 1

z↔y ` z : JT K, y : JT K⊥
Ax

x().z↔y ` z : JT K, y : JT K⊥, x : ⊥
⊥

y(x).x().z↔y ` z : JT K, y : JT K⊥ O⊥
O

νy.(JMKy | y(x).x().z↔y) ` JΦK⊥, z : JT K
Cut

Figure 7. Translation from GV into CP, Part II

tion application and product construction both translate to output.
The translation of each elimination rule ((-E,→-E, and⊗-E) also
requires a use of Cut.

Figure 7 shows the translation for operations for communi-
cation. For purposes of the translation, it is convenient to work
with n-fold analogues of ⊕ and N, writing ∈i for selection and
case(P1, · · · , Pn) for choice.

Despite the inversion noted earlier in the translation of session
types, the translation of Send involves an output operation of the
form x[y].(P | Q), the translation of Select involves an select
operation of the form x[inj ].P , the translation of Case involves a
choice operation of the form case(Q1, . . . , Qn), the translation of
end! in Connect involves an empty output of the form y[ ].0, and the
translation of Terminate involves an empty input of the form x().P .
Each of these translations also introduces a Cut, corresponding to
communication with supplied channel. The translation of Receive
is entirely trivial, but the corresponding input operation of the form
x(y).R appears in the translation of ⊗-E, which deconstructs the
returned pair. Finally, the translation of Connect involves a Cut,
which corresponds to introducing a channel for communication
between the two subterms.

The translation preserves types.

THEOREM 3. If Φ `M : T then JMKx ` JΦK⊥, x : JT K.

Proof sketch. See Figures 6 and 7. �
We also claim that the translation preserves the intended seman-

tics. The formal semantics of Gay and Vasconcelos (2010) is based
on asynchronous buffered communication, which adds additional
complications, so we leave a formal proof of correspondence be-
tween the two for future work.

4. Related work
Session types Session types were introduced by Honda (1993),
and further extended by Takeuchi et al. (1994), Honda et al. (1998),
and Yoshida and Vasconcelos (2007). Subtyping for session types
is considered by Gay and Hole (2005), and the linear functional
language for session types considered in this paper was introduced
by Gay and Vasconcelos (2010). Session types have been applied
to describe operating system services by Fähndrich et al. (2006).

Deadlock freedom Variations on session types that guarantees
deadlock freedom are presented in Sumii and Kobayashi (1998)
and Carbone and Debois (2010). Unlike CP, where freedom from
deadlock follows from the relation to cut elimination, in the first it
is ensured by introducing a separate partial order on time tags, and
in the second by introducing a constraint on underlying dependency
graphs.



Linear types for process calculus A variety of linear types sys-
tems for process calculus are surveyed by Kobayashi (2002). Most
of these systems look rather different than session types, but
Kobayashi et al. (1996) presents an embedding of session types
into a variant of π-calculus with linear types for channels.

Linear proof search Functional programming can be taken as
arising from the Curry-Howard correspondence, by associating
program evaluation with proof normalisation. Analogously, logic
programming can be taken as arising by associating program eval-
uation with proof search. Logic programming approaches based on
linear logic give rise to systems with some similarities to CP, see
Miller (1992) and Kobayashi and Yonezawa (1993, 1994, 1995).

Polymorphism CP’s support of polymorphism is based on the
polymorphic π-calculus introduced by Turner (1995) and further
discussed by Pierce and Turner (2000) and Pierce and Sangiorgi
(2000), which uses explict polymorphism (Church-style). In con-
trast, Berger et al. (2005) introduce a polymorphically typed ses-
sion calculus that uses implicit polymorphism (Curry-style).

Linear logic as a process calculus Various interpretations of lin-
ear logic as a process calculus are proposed by Abramsky (1993),
Abramsky (1994), and Abramsky et al. (1996), the second of these
being elaborated in detail by Bellin and Scott (1994).

This paper is inspired by a series of papers by Caires, Pfen-
ning, Toninho, and Pérez. Caires and Pfenning (2010) first observed
the correspondence relating formulas of linear logic to session
types; its journal version is Caires et al. (2012b). Pfenning et al.
(2011) extends the correspondence to dependent types in a strati-
fied system, with concurrent communication at the outer level and a
dependently-typed functional language at the inner level, and Pfen-
ning et al. (2011) extends further to support proof-carrying code
and proof irrelevance. Toninho et al. (2012) explores encodings of
λ-calculus into πDILL. Pérez et al. (2012) introduces logical rela-
tions on linear-typed processes to prove termination and contextual
equivalences. Caires et al. (2012a) is the text of an invited talk at
TLDI, summarising the above.

Mazurak and Zdancewic (2010) present Lolliproc, which also
offers a Curry-Howard interpretation of session types by relating
the call/cc control operators to communication using a double-
negation operator on types.

DILL vs. CLL Caires et al. (2012b) consider a variant of πDILL
based on one-sided sequents of classical linear logic, which they
call πCLL. Their πCLL is similar to CP, but differs in important
particulars: its bookkeeping is more elaborate, using two zones,
one linear and one intuitionitic; it has no axiom, so cannot easily
support polymorphism; and it does not support reductions corre-
sponding to the commuting conversions.

Caires et al. (2012b) state they prefer a formulation based on
DILL to one based on CLL, because DILL satisfies a locality prop-
erty for replicated input while CLL does not. Locality requires that
names received along a channel may be used to send output but not
to receive input, and is useful both from an implementation point
of view and because a process calculus so restricted satisfies ad-
ditional observational equivalences, as shown by Merro and San-
giorgi (2004). Caires et al. (2012b) only restrict replicated input,
because restricting all input is too severe for a session-typed cal-
culus. However, the good properties of locality have been studied
only in the case where all input is prohibited on received names.
It remains to be seen to what extent the fact that DILL imposes
locality for replicated names is significant.

Additionally, in a private conversation, Pfenning relayed that he
believes DILL may be amenable to extension to dependent types,
while he suspects CLL is not because strong sums become degen-
erate in some classical settings, as shown by Herbelin (2005). How-
ever, linear logic is more amenable to constructive treatment than

traditional classical logic, as argued by Girard (1991), so it remains
unclear to what extent CP, or πCLL, may support dependent types.

5. Conclusion
One reason λ-calculus provides such a successful foundation for
functional programming is that it includes both fragments that
guarantee termination (typed λ-calculi) and fragments that can
model any recursive function (untyped λ-calculus, or typed λ-
calculi augmented with a general fixpoint operator). Indeed, the
former can be seen as giving rise to the latter, by considering
recursive types with recursion in negative positions; untyped λ-
calculus can be modelled by a solution to the recursion equation
X ' X → X . Similarly, a foundation for concurrency based on
linear logic will be of limited value if it only models deadlock-free
processes. Are there extensions that support more general forms of
concurrency?

Girard (1987) proposes one such extension, the Mix rule. In our
notation, this is written:

P ` Γ Q ` ∆

P | Q ` Γ, ∆
Mix

Mix differs from Cut in that there are no channels in common
between P and Q, rather than one. Mix is equivalent to provability
of the proposition A⊗B( AOB. Systems with Mix still do not
deadlock, but support concurrent structures that cannot arise under
CLL, namely, systems with two components that are independent.
Caires et al. (2012a) consider two variations of the rules for 1 and
⊥, the second of which is less restrictive and derives a rule similar
to Mix.

Abramsky et al. (1996) proposes another extension, the Binary
Cut rule (a special case of Multicut). In our notation, this is written:

P ` Γ, x : A, y : B Q ` ∆, x : A⊥, y : B⊥

νx :A, y :B.(P | Q) ` Γ, ∆
BiCut

Binary Cut differs from Cut in that there are two channels in com-
mon between P and Q, rather than one. Binary Cut is equivalent
to provability of the proposition A O B ( A ⊗ B. Binary Cut
allows one to express systems where communications form a loop
and may deadlock.

Systems with both Mix and Binary Cut are compact, in that
from either of A ⊗ B and A O B one may derive the other.
Abramsky et al. (1996) provides a translation of full π-calculus into
a compact linear system, roughly analogous to the embedding of
untyped λ-calculus into typed λ-calculus based on the isomorphism
X ' X → X .

Searching for principled extensions of CP that support the un-
fettered power of the full π-calculus is a topic for future work. As
λ-calculus provided foundations for functional programming in the
last century, may we hope for this emerging calculus to provide
foundations for concurrent programming in the coming century?
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123–204. Academic Press, 1990.

Simon J. Gay and Malcolm Hole. Subtyping for session types in
the pi calculus. Acta Informatica, 42(2-3):191–225, 2005.

Simon J. Gay and Vasco T. Vasconcelos. Linear type theory for
asynchronous session types. Journal of Functional Program-
ming, 20(1):19–50, 2010.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:
1–102, 1987.

Jean-Yves Girard. A new constructive logic: Classical logic. Math-
ematical Structures in Computer Science, 1(3):255–296, 1991.

Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types,
volume 7 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1989.

Hugo Herbelin. On the degeneracy of sigma-types in presence of
computational classical logic. In Typed Lambda Calculi and
Applications (TLCA), pages 209–220, 2005.

Kohei Honda. Types for dyadic interaction. In CONCUR, pages
509–523, 1993.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language
primitives and type discipline for structured communication-
based programming. In European Symposium on Programming
(ESOP), pages 122–138, 1998.

Naoki Kobayashi. Type systems for concurrent programs. In 10th
Anniversary Colloquium of UNU/IIST, LNCS 2757, pages 439–
453, 2002.

Naoki Kobayashi and Akinori Yonezawa. Acl — a concurrent
linear logic programming paradigm. In International Logic
Programming Symposium (ILPS), pages 279–294, 1993.

Naoki Kobayashi and Akinori Yonezawa. Higher-order concurrent
linear logic programming. In Theory and Practice of Parallel
Programming, LNCS 907, pages 137–166, 1994.

Naoki Kobayashi and Akinori Yonezawa. Asynchronous commu-
nication model based on linear logic. Formal Aspects of Com-
puting, 7(2):113–149, 1995.

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Lin-
earity and the pi-calculus. In POPL, pages 358–371, 1996.

Karl Mazurak and Steve Zdancewic. Lolliproc: to concurrency
from classical linear logic via curry-howard and control. In
International Conference on Functional Programming (ICFP),
pages 39–50, 2010.

Massimo Merro and Davide Sangiorgi. On asynchrony in name-
passing calculi. Mathematical Structures in Computer Science,
14(5):715–767, 2004.

Dale Miller. The pi-calculus as a theory in linear logic: Preliminary
results. In Extensions to Logic Programming, LNCS 660, pages
242–264, 1992.

Robin Milner, Joachim Parrow, and David Walker. A calculus of
mobile processes, i. Information and Computation, 100(1):1–40,
1992.
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